EN
登录

靶向单体N6神经氨酸酶的人单克隆抗体对禽H5N6流感病毒感染具有保护作用

A human monoclonal antibody targeting the monomeric N6 neuraminidase confers protection against avian H5N6 influenza virus infection

Nature 等信源发布 2024-10-15 10:25

可切换为仅中文


AbstractThe influenza neuraminidase (NA) is a potential target for the development of a next-generation influenza vaccine, but its antigenicity is not well understood. Here, we isolate an anti-N6 human monoclonal antibody, named 18_14D, from an H5N6 avian influenza virus (AIV) infected patient. The antibody weakly inhibits enzymatic activity but confers protection in female mice, mainly via ADCC function.

摘要流感神经氨酸酶(NA)是开发下一代流感疫苗的潜在靶标,但其抗原性尚不清楚。在这里,我们从H5N6禽流感病毒(AIV)感染的患者中分离出一种名为18'U 14D的抗N6人单克隆抗体。该抗体弱抑制酶活性,但主要通过ADCC功能赋予雌性小鼠保护作用。

The cryo-EM structure shows that 18_14D binds to a unique epitope on the lateral surface of the N6 tetramer, preventing the formation of tightly closed NA tetramers. These findings contribute to the molecular understanding of protective immune responses to NA of AIVs in humans and open an avenue for the rational design of NA-based vaccines..

cryo-EM结构表明,18'U 14D与N6四聚体侧面的独特表位结合,阻止了紧密闭合的NA四聚体的形成。这些发现有助于分子理解人类对禽流感病毒NA的保护性免疫反应,并为基于NA的疫苗的合理设计开辟了一条途径。。

IntroductionInfluenza viruses are continuing to evolve and cause seasonal flu and occasional worldwide pandemics, which have posed a great challenge to public health1,2,3,4. Influenza viruses have two major surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA). HA mediates the binding of viruses to the cellular sialic acid receptors and fusion of the virion membrane with the intracellular endosome membranes5.

引言流感病毒正在不断进化,并导致季节性流感和偶尔的全球大流行,这对公共卫生构成了巨大挑战1,2,3,4。流感病毒有两种主要的表面糖蛋白,血凝素(HA)和神经氨酸酶(NA)。HA介导病毒与细胞唾液酸受体的结合以及病毒粒子膜与细胞内内体膜的融合5。

NA removes decoy receptors from mucins and cleaves off the sialic acid, allowing the release of progeny viruses from the infected cells6,7.Human protective antibodies elicited by vaccination or infection can bind to both the HA and NA proteins8,9. In the past years, the NA has been historically understudied compared to the surface protein counterpart HA.

NA从粘蛋白中去除诱饵受体并切割唾液酸,允许从感染细胞中释放后代病毒6,7。通过疫苗接种或感染引发的人类保护性抗体可与HA和NA蛋白结合8,9。在过去的几年中,与表面蛋白对应物HA相比,NA在历史上一直未被充分研究。

However, increasing studies highlighted the importance of NA-targeting antibodies and their implications for therapy and design of universal flu vaccines, as they have shown that NA-targeted immunity can confer protective efficacy against influenza virus challenge in animal models10,11,12,13. NA-targeting monoclonal antibodies (mAbs) are shown to reduce the viral loads and symptoms in infected mice and even correlate with the protection in humans14,15,16, and antigenic drifts also occurred on NA protein16,17,18,19,20.Most of the NA-targeting antibodies directly inhibit enzymatic activity of the NA via binding to enzyme active site21,22,23,24,25, or indirectly inhibit enzymatic activity of the NA through steric hindrance24,26,27,28.

然而,越来越多的研究强调了NA靶向抗体的重要性及其对通用流感疫苗治疗和设计的影响,因为他们已经证明NA靶向免疫可以在动物模型中赋予针对流感病毒攻击的保护功效10,11,12,13。NA靶向单克隆抗体(mAb)可降低感染小鼠的病毒载量和症状,甚至与人类的保护作用相关14,15,16,NA蛋白16,17,18,19,20也发生抗原漂移。大多数NA靶向抗体通过与酶活性位点21,22,23,24,25结合直接抑制NA的酶活性,或通过空间位阻间接抑制NA的酶活性24,26,27,28。

Otherwise, there are some other NA antibodies with no inhibitory activity to the NA, could also contribute to protection through antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP)16.In addition to seasonal H1N1, H3N2 influenza A.

否则,还有一些其他NA抗体对NA没有抑制活性,也可能通过抗体依赖性细胞毒性(ADCC)或抗体依赖性细胞吞噬作用(ADCP)16有助于保护。除了季节性H1N1,H3N2甲型流感。

Data availability

数据可用性

The atomic coordinates data generated in this study have been deposited in the Protein Data Bank (PDB) database under accession code 8Z4E. The corresponding electron microscopy maps have been deposited in the Electron Microscopy Data Bank (EMDB) with the accession codes EMD-39762. Other structures for analysis, including 2CML, 4QN6, 6Q23, 6PZY, 8EZ3, 8EZ7, 8E6J, 8GAV, 4QNP, 6PZW, 6U02, were obtained from the PDB.

。相应的电子显微镜图已保存在电子显微镜数据库(EMDB)中,登录号为EMD-39762。从PDB获得了其他用于分析的结构,包括2CML,4QN6,6Q23,6PZY,8EZ3,8EZ7,8E6J,8GAV,4QNP,6PZW,6U02。

Source data are provided as a Source Data file. Source data are provided with this paper..

源数据作为源数据文件提供。本文提供了源数据。。

ReferencesHan, A. X., de Jong, S. P. J. & Russell, C. A. Co-evolution of immunity and seasonal influenza viruses. Nat. Rev. Microbiol. 21, 805–817 (2023).Article

。自然修订版微生物学。21805-817(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Harrington, W. N., Kackos, C. M. & Webby, R. J. The evolution and future of influenza pandemic preparedness. Exp. Mol. Med. 53, 737–749 (2021).Article

Harrington,W.N.,Kackos,C.M。和Webby,R.J。流感大流行防范的演变和未来。实验分子医学53737-749(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 47–60 (2018).Article

Petrova,V.N。和Russell,C.A。季节性流感病毒的进化。自然修订版微生物学。16,47-60(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, W. J. et al. Emerging HxNy influenza A viruses. Csh. Perspect Med. 12, a038406 (2022).

Liu,W.J.等人。新出现的HxNy甲型流感病毒。Csh公司。透视医学12,a038406(2022)。

Google Scholar

谷歌学者

Shi, Y., Wu, Y., Zhang, W., Qi, J. X. & Gao, G. F. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 12, 822–831 (2014).Article

。自然修订版微生物学。12822-831(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78, 12665–12667 (2004).Article

Matrosovich,M.N.,Matrosovich,T.Y.,Gray,T.,Roberts,N.A。&Klenk,H.D。神经氨酸酶对于在人气道上皮中引发流感病毒感染很重要。J Virol 7812665–12667(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palese, P., Tobita, K., Ueda, M. & Compans, R. W. Characterization of temperature sensitive influenza-virus mutants defective in neuraminidase. Virology 61, 397–410 (1974).Article

Palese,P.,Tobita,K.,Ueda,M。&Compans,R.W。表征神经氨酸酶缺陷的温度敏感性流感病毒突变体。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Y. Q. et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173, 417–429 (2018).Article

Chen,Y。Q。等人。人类流感感染诱导广泛的交叉反应性和保护性神经氨酸酶反应性抗体。细胞173417-429(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kallewaard, N. L. et al. Structure and function analysis of an antibody recognizing all influenza a subtypes. Cell 166, 596–608 (2016).Article

Kallewaard,N.L.等人。识别所有甲型流感亚型的抗体的结构和功能分析。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Easterbrook, J. D. et al. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology 432, 39–44 (2012).Article

Easterbrook,J.D.等人。通过在小鼠中用含有2009年大流行H1N1神经氨酸酶的病毒样颗粒鼻内免疫来预防致命的H5N1流感攻击。病毒学432,39-44(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wohlbold, T. J. et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. Mbio. 6, e02556 (2015).Article

Wohlbold,T.J。等人。用佐剂重组神经氨酸酶接种疫苗可诱导小鼠对流感病毒感染的广泛异源但非异源亚型交叉保护。。6,e02556(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kawai, A. et al. The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol 95, e0118021 (2021).Article

Kawai,A。等人。神经氨酸酶作为鼻疫苗抗原的潜力,以增加对流感病毒的交叉保护。J Virol 95,e0118021(2021)。文章

Google Scholar

谷歌学者

McMahon, M. et al. Correctly folded - but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine 38, 7129–7137 (2020).Article

McMahon,M。等人正确折叠但不一定具有功能的流感病毒神经氨酸酶需要在小鼠中诱导保护性抗体反应。疫苗387129-7137(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Couch, R. B. et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis. 207, 974–981 (2013).Article

Couch,R.B.等人。抗体与人类对自然发生的流感的免疫力以及抗体对神经氨酸酶的重要性相关和预测因子。J感染Dis。207974-981(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Monto, A. S. et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J Infect Dis. 212, 1191–1199 (2015).Article

Monto,A.S.等人。流感病毒神经氨酸酶抗体:保护的独立相关性。J感染Dis。2121191-1199(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat. Microbiol. 4, 1024–1034 (2019).Article

Yasuhara,A。等人。源自甲型流感病毒神经氨酸酶头部侧面变化的抗原漂移。自然微生物。41024-1034(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gao, J. et al. Antigenic drift of the influenza A(H1N1)pdm09 virus neuraminidase results in reduced effectiveness of A/California/7/2009 (H1N1pdm09)-specific antibodies. Mbio. 10, e00307-19 (2019).Article

Gao,J。等人。甲型H1N1流感pdm09病毒神经氨酸酶的抗原漂移导致A/California/7/2009(H1N1pdm09)特异性抗体的有效性降低。。10,e00307-19(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naeem, A. et al. Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J. Med. Virol 92, 3016–3027 (2020).Article

Naeem,A。等人。2014年至2015年沙特阿拉伯季节性H1N1流感病毒中血凝素和神经氨酸酶的抗原漂移。J、 医学博士Virol 923016-3027(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wan, H. Q. et al. The neuraminidase of A(H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nat. Microbiol. 4, 2216–2225 (2019).Article

Wan,H.Q。等人。自2016年以来流行的A(H3N2)流感病毒的神经氨酸酶在抗原性上与A/Hong Kong/4801/2014疫苗株不同。自然微生物。42216-2225(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Powell, H. & Pekosz, A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. Plos Pathog. 16, e1008411 (2020).Article

Powell,H。&Pekosz,A。H3N2进化枝3c.2a病毒的神经氨酸酶抗原漂移改变病毒复制,酶活性和抑制性抗体结合。Plos Pathog。16,e1008411(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stadlbauer, D. et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science 366, 499–504 (2019).Article

Stadlbauer,D。等人。针对流感病毒神经氨酸酶活性位点的广泛保护性人类抗体。科学366499-504(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Momont, C. et al. A pan-influenza antibody inhibiting neuraminidase via receptor mimicry. Nature 618, 590–597 (2023).Article

Momont,C.等人。一种通过受体模拟抑制神经氨酸酶的泛流感抗体。自然618590-597(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Madsen, A. et al. Human antibodies targeting influenza B virus neuraminidase active site are broadly protective. Immunity 53, 852–863 (2020).Article

针对乙型流感病毒神经氨酸酶活性位点的人类抗体具有广泛的保护作用。豁免53852-863(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gilchuk, I. M. et al. Influenza H7N9 virus neuraminidase-specific human monoclonal antibodies inhibit viral egress and protect from lethal influenza infection in mice. Cell Host Microbe 26, 715–728 (2019).Article

Gilchuk,I.M.等人。H7N9流感病毒神经氨酸酶特异性人单克隆抗体可抑制病毒的出口,并保护小鼠免受致命的流感感染。细胞宿主微生物26715-728(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yasuhara, A. et al. A broadly protective human monoclonal antibody targeting the sialidase activity of influenza A and B virus neuraminidases. Nat. Commun. 13, 6602 (2022).Article

Yasuhara,A。等人。一种广泛保护性的人单克隆抗体,靶向甲型和乙型流感病毒神经氨酸酶的唾液酸酶活性。国家公社。136602(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, L. et al. Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus infection broadly inhibit HxN1 viruses. Immunity 56, 1927–1938 (2023).Article

由大流行性H1N1病毒感染引发的人抗N1单克隆抗体广泛抑制HxN1病毒。豁免561927-1938(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lei, R. P. et al. Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. Immunity 56, 2621–2634 (2023).Article

Lei,R.P.等人利用疫苗接种诱导的保护性抗体来定义流感N2神经氨酸酶的保守表位。免疫力562621-2634(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lederhofer, J. et al. Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase. Immunity 57, 574–586 (2024).Article

Lederhofer,J。等人。保护性人类单克隆抗体靶向流感病毒神经氨酸酶底部的保守易感位点。免疫力57574-586(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lin, R., Lu, L., Lycett, S., Liu, W. & Li, J. Dealing with Highly Pathogenic Avian Influenza: An Impending Crisis. Innovation 2, 100084 (2021).PubMed

Lin,R.,Lu,L.,Lycett,S.,Liu,W。&Li,J。处理高致病性禽流感:迫在眉睫的危机。创新210084(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, W. F. et al. Epidemiologic, clinical, and genetic characteristics of human infections with influenza A(H5N6) viruses, China. Emerg Infect Dis. 28, 1332–1344 (2022).Article

Zhu,W.F.等人。中国甲型H5N6流感病毒人类感染的流行病学,临床和遗传学特征。Emerg感染Dis。281332-1344(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bi, Y. H. et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 20, 810–821 (2016).Article

Bi,Y。H。等人。中国H5N6禽流感病毒的发生,进化和流行。细胞宿主微生物20810-821(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sangesland, M. et al. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies against influenza virus. Immunity 55, 1693–1709 (2022).Article

等位基因多态性控制人类广泛中和流感病毒抗体的自身反应性和疫苗引发。豁免551693-1709(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Air, G. M. Influenza neuraminidase. Influenza Other Resp. 6, 245–256 (2012).Article

Air,G.M。流感神经氨酸酶。流感其他责任。6245-256(2012)。文章

Google Scholar

谷歌学者

Sun, X. M. et al. Structure of influenza virus N7: the last piece of the neuraminidase “jigsaw” puzzle. J Virol 88, 9197–9207 (2014).Article

Sun,X.M.等人,《N7流感病毒的结构:神经氨酸酶“拼图”拼图的最后一块》。J Virol 889197–9207(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wan, H. Q. et al. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat. Commun. 6, 6114 (2015).Article

Wan,H.Q.等人。跨越a(H1N1)pdm09流感病毒神经氨酸酶单体的保护性表位的结构表征。国家公社。66114(2015)。文章

ADS

广告

MathSciNet

MathSciNet

PubMed

PubMed

Google Scholar

谷歌学者

Strohmeier, S., Amanat, F., Carreno, J. M. & Krammer, F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol 13, 944907 (2022).Article

Strohmeier,S.,Amanat,F.,Carreno,J.M。&Krammer,F。靶向流感病毒N6神经氨酸酶的单克隆抗体。Front Immunol 13944907(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng, X. R. et al. Tetrameric neuraminidase of influenza A virus is required to induce protective antibody responses in mice. Front Microbiol. 12, 729914 (2021).Article

Deng,X.R。等人。甲型流感病毒的四聚体神经氨酸酶需要在小鼠中诱导保护性抗体反应。前微生物。12729914(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ellis, D. et al. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat. Commun. 13, 1825 (2022).Article

Ellis,D。等人。稳定的重组流感神经氨酸酶四聚体的基于结构的设计。国家公社。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, J. H. et al. Isolation of human monoclonal antibodies from peripheral blood B cells. Nat. Protoc. 8, 1907–1915 (2013).Article

Huang,J.H.等人。从外周血B细胞中分离人单克隆抗体。自然协议。81907-1915(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, K. Y. A. et al. Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat. Microbiol. 4, 306–315 (2019).Article

Huang,K.Y.A.等人。来自自然感染人类的H7N9流感中和抗体的结构-功能分析。自然微生物。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, Y. et al. A neutralizing-protective supersite of human monoclonal antibodies for yellow fever virus. Innovation 3, 100323 (2022).PubMed

Li,Y。等人。黄热病病毒人单克隆抗体的中和保护性超位点。创新3100323(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dai, L. et al. A protective human antibody against respiratory syncytial virus by targeting a prefusion epitope across sites IV and V of the viral fusion glycoprotein. hLife 1, 12–25 (2023).Article

Dai,L。等人。一种针对呼吸道合胞病毒的保护性人类抗体,通过靶向病毒融合糖蛋白位点IV和V的融合前表位。《生活》第1期,第12-25页(2023年)。文章

ADS

广告

Google Scholar

谷歌学者

Zhang, W. et al. An airborne transmissible avian influenza h5 hemagglutinin seen at the atomic level. Science 340, 1463–1467 (2013).Article

Zhang,W。等人。在原子水平上观察到的空气传播的禽流感h5血凝素。科学3401463-1467(2013)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Wang, M. et al. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nat. Commun. 6, 5600 (2015).Article

Wang,M.等人。人类感染H10N8禽流感病毒优先结合禽受体的结构基础。国家公社。65600(2015)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Gao, J., Couzens, L. & Eichelberger, M. C. Measuring influenza neuraminidase inhibition antibody titers by enzymelinked lectin assay. J Vis Exp. 54573 (2016).Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).Article .

Gao,J.,Couzens,L。&Eichelberger,M.C。通过酶联凝集素测定法测量流感神经氨酸酶抑制抗体滴度。J Vis Exp.54573(2016)。Zheng,S.Q.等人。MotionCor2:改进低温电子显微镜的束流诱导运动的各向异性校正。自然方法14331-332(2017)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).Article

Bepler,T。等人。用于低温电子显微照片中粒子拾取的阳性未标记卷积神经网络。自然方法161153-1160(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article

Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).Article

Kucukelbir,A.,Sigworth,F.J。和Tagare,H.D。量化低温电磁密度图的局部分辨率。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput. Chem. 25, 1605–1612 (2004).Article

Pettersen,E.F.等人,《UCSF Chimera——探索性研究和分析的可视化系统》。J计算机。化学。251605-1612(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).Article

Emsley,P。&Cowtan,K。Coot:分子图形的模型构建工具。晶体学报。D、 602126-2132(2004)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).Article

Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。D、 66213-221(2010)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).Article

Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。蛋白质科学。27,14-25(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank all the staff members at the Center for Biological Imaging (CBI), Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS) for assistance with data collection. We would like to thank Wenjuan Zhang for her help on negatively stained sampling and imaging at the Cryo-electron Microscopy Platform, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (IGDB).

下载参考文献致谢我们感谢中国科学院生物物理研究所生物成像中心(CBI)的所有工作人员为数据收集提供的帮助。我们要感谢张文娟在中国科学院遗传与发育生物学研究所(IGDB)低温电子显微镜平台上对负染色采样和成像的帮助。

We also thank Zheng Fan, Qian Wang from the Institute of Microbiology, Chinese Academy of Sciences for help in BLI and ELLA assay. This study was supported by National Natural Science Foundation of China (NSFC) (32192452 to Y.S.), the National Key Research and Development Program of China (2023YFC2307800 to M.W.), National Natural Science Foundation of China (NSFC) (81902058 to C.S., and 32100119 to Q.P.), Shenzhen High‐level Hospital Construction Fund (23250G1001 to Y.Y.) and a grant from Sanofi Pasteur company.Author informationAuthor notesThese authors contributed equally: Min Wang, Yuan Gao, Chenguang Shen.Authors and AffiliationsCAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, ChinaMin Wang, Yuan Gao, Qi Peng, Jinlong Cheng, George Fu Gao & Yi ShiShenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, ChinaMin Wang, Chenguang Shen, Yang Yang & Yi ShiFaculty of Health Sciences, University of Macau, Macau, ChinaYuan Gao & Han-Ming ShenBSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Southern Medical University, Guangzhou, ChinaChenguang ShenMedical School, University of Chinese Academy of Sciences, Beijing, ChinaWei Yang, George Fu Gao & Y.

我们还要感谢中国科学院微生物研究所的郑凡,钱旺在BLI和ELLA检测方面的帮助。这项研究得到了国家自然科学基金(NSFC)(32192452至Y.S.),国家重点研究发展计划(2023YFC2307800至M.W.),国家自然科学基金(NSFC)(81902058至C.S.,32100119至Q.P.),深圳市高水平医院建设基金(23250G1001至Y.Y.)和赛诺菲巴斯德公司的资助。作者信息作者注意到这些作者做出了同样的贡献:王敏,袁高,沈晨光。作者和所属单位中国科学院微生物研究所病原体微生物学和免疫学重点实验室,北京,王华民,袁高,齐鹏,程金龙,高志福和易世深圳深圳市第三人民医院病原体和免疫重点实验室,深圳,王华民,沈晨光,杨洋和易世深圳,澳门大学,澳门大学,中国元高和韩明ShenBSL-3实验室(广东),广东省热带病研究重点实验室,公共卫生学院;。

PubMed Google ScholarYuan GaoView author publicationsYou can also search for this author in

PubMed Google ScholarYuan GaoView作者出版物您也可以在

PubMed Google ScholarChenguang ShenView author publicationsYou can also search for this author in

PubMed Google ScholarChenguang ShenView作者出版物您也可以在

PubMed Google ScholarWei YangView author publicationsYou can also search for this author in

PubMed Google ScholarWei YangView作者出版物您也可以在

PubMed Google ScholarQi PengView author publicationsYou can also search for this author in

PubMed Google ScholarQi PengView作者出版物您也可以在

PubMed Google ScholarJinlong ChengView author publicationsYou can also search for this author in

PubMed Google ScholarJinlong ChengView作者出版物您也可以在

PubMed Google ScholarHan-Ming ShenView author publicationsYou can also search for this author in

PubMed Google ScholarHan Ming ShenView作者出版物您也可以在

PubMed Google ScholarYang YangView author publicationsYou can also search for this author in

PubMed Google ScholarYang YangView作者出版物您也可以在

PubMed Google ScholarGeorge Fu GaoView author publicationsYou can also search for this author in

PubMed Google ScholarGeorge Fu GaoView作者出版物您也可以在

PubMed Google ScholarYi ShiView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsY.S., G.F.G. and Y.Y. conceived the study. M.W., Y.G., C.S., W.Y., Q.P., and J.C performed the experiments. Y.S., M.W., C.S., and Y.Y. conducted the analysis. M.W., Y.G., C.S., H.S., Y.Y., and Y.S. wrote the manuscript. All authors participated in the discussion and manuscript editing.

PubMed谷歌学术贡献。S、 ,G.F.G.和Y.Y.构思了这项研究。M、 W.,Y.G.,C.S.,W.Y.,Q.P。和J.C进行了实验。Y、 S.,M.W.,C.S。和Y.Y.进行了分析。M、 W.,Y.G.,C.S.,H.S.,Y.Y。和Y.S.撰写了手稿。所有作者都参加了讨论和稿件编辑。

Y.S. supervised all the work.Corresponding authorsCorrespondence to.

Y、 美国监督了所有的工作。通讯作者通讯。

Yang Yang, George Fu Gao or Yi Shi.Ethics declarations

杨扬,乔治·富高或伊始。道德宣言

Competing interests

相互竞争的利益

A patent describing potential treatments for influenza using 18_14D was in application, and the authors listed on the application are Y.S., G.F.G., M.W., Y.G., Q.P., Y.Y., C.S. The remaining authors declare no competing interests.

一项描述使用18'U 14D治疗流感的潜在治疗方法的专利正在申请中,申请中列出的作者是Y.S.,G.F.G.,M.W.,Y.G.,Q.P.,Y.Y.,C.S。其余作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review fileReporting summarySource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleWang, M., Gao, Y., Shen, C. et al. A human monoclonal antibody targeting the monomeric N6 neuraminidase confers protection against avian H5N6 influenza virus infection.

转载和许可本文引用本文Wang,M.,Gao,Y.,Shen,C。等人。靶向单体N6神经氨酸酶的人单克隆抗体赋予针对禽H5N6流感病毒感染的保护作用。

Nat Commun 15, 8871 (2024). https://doi.org/10.1038/s41467-024-53301-6Download citationReceived: 17 May 2024Accepted: 09 October 2024Published: 15 October 2024DOI: https://doi.org/10.1038/s41467-024-53301-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158871(2024)。https://doi.org/10.1038/s41467-024-53301-6Download引文接收日期:2024年5月17日接受日期:2024年10月9日发布日期:2024年10月15日OI:https://doi.org/10.1038/s41467-024-53301-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供