EN
登录

对Doigahama遗址的弥生个体的遗传分析为日本列岛移民的起源提供了见解

Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago

Nature 等信源发布 2024-10-15 10:24

可切换为仅中文


AbstractMainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process.

摘要大陆日本人被认为具有双重血统,起源于本土绳文人和来自欧亚大陆东部的移民。尽管从弥生时期到科芬时期,从大陆到日本群岛的移民仍在继续,但由于弥生时期缺乏高质量的基因组样本,我们对这些移民,特别是他们的起源的理解仍然不足,这使得对混合过程的预测复杂化。

To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related.

。对Doigahama弥生个体以及东亚和欧亚大陆东北部的古代和现代种群进行的全面种群遗传分析表明,Doigahama弥生个体与Kofun个体和现代大陆日本人相似,具有三个不同的遗传祖先:绳文相关,东亚相关和东北西伯利亚相关。

Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries.

在非日本人群中,拥有东亚血统和东北西伯利亚血统的韩国人群与Doigahama弥生个体的遗传相似程度最高。弥生个体,Kofun个体和现代日本人的混合模型分析分别支持假设绳文相关和韩国相关血统的双向混合模型。

These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula..

这些结果表明,在弥生和科芬时期,日本列岛的大多数移民主要来自朝鲜半岛。。

IntroductionThe prehistory of the Japanese Archipelago is represented by the “Jomon period”, a Neolithic period. The name “Jomon”, meaning “rope pattern”, reflects the distinctive feature of the Jomon culture, characterized by pottery with a unique pattern created using rope [1]. Although there are various opinions about the duration of the Jomon period, archeological evidence widely supports that it started approximately 16,500 years ago and persisted in isolation from the Eurasian continent for at least 10,000 years [2].

引言日本列岛的史前史以“绳文时期”为代表,这是一个新石器时代。“绳纹”这个名字的意思是“绳纹”,它反映了绳纹文化的鲜明特征,其特征是用绳纹制作的具有独特图案的陶器。虽然关于绳纹时期的持续时间有各种各样的观点,但考古学证据广泛支持绳纹时期大约在16500年前开始,并且与欧亚大陆隔离至少10000年(2)。

The main subsistence activities during the Jomon period were hunting and gathering. Rice cultivation in paddy fields was introduced to northern Kyushu, Japan, at the end of the Final Jomon period, about 3000 years ago, marking the beginning of the Yayoi period. It then gradually spread throughout Japan from the Middle to Late Yayoi period [3].There were various hypotheses to explain the history of the Japanese.

绳文时期的主要生计活动是狩猎和采集。大约3000年前,绳文末期结束时,稻田水稻种植被引入日本九州北部,标志着弥生时期的开始。然后,它从弥生中期到晚期逐渐传播到整个日本(3)。有各种假说可以解释日本人的历史。

For example, the “transformation model” posits that only culture, not people, came from the continent. The “replacement model” suggests a complete replacement of indigenous Jomon people by the Yayoi people, while the “hybridization model” proposes admixture between indigenous Jomon people and continental immigrants [4].

例如,“转型模式”假定只有文化而不是人来自非洲大陆。“替代模型”表明弥生人完全替代了土着绳文人,而“杂交模型”则提出了土着绳文人和大陆移民之间的混合。

Currently, the “dual-structure model,” one of the hybridization models proposed by Hanihara [5] based on the skeletal characteristics of ancient Jomon and Yayoi individuals, is widely accepted.Strong evidence supporting the dual-structure model has been accumulated through population genetic studies.

目前,“双重结构模型”是Hanihara(5)基于古代绳文和弥生个体的骨骼特征提出的杂交模型之一,已被广泛接受。通过种群遗传学研究积累了支持双重结构模型的有力证据。

The presence of not only the mitochondrial DNA (mtDNA) and Y chromosome haplogroups commonly found in continental East Asians, but also the mtDNA haplogroups such as N9b and M7a [6,7,8] and Y chromosome haplogroups such as D-M125 [9.

不仅存在东亚大陆常见的线粒体DNA(mtDNA)和Y染色体单倍群,还存在线粒体DNA单倍群,如N9b和M7a[6,7,8]和Y染色体单倍群,如D-M125[9]。

f-statisticsTo assess the genetic relationships between Doigahama Yayoi individual, D1604, and other East Eurasian populations, we computed f-statistics using the qp3Pop v651 program and the qpDstat v980 program in ADMIXTOOLS v7.0.2 package [63].First, we calculated f3(Mbuti; Doigahama_Yayoi, X), the outgroup f3 with Mbuti pygmy as an outgroup, where X was one of the populations in our dataset (Tables S1 and S2).

f统计量为了评估Doigahama弥生个体,D1604和其他东欧亚种群之间的遗传关系,我们使用ADMIXTOOLS v7.0.2软件包中的qp3Pop v651程序和qpDstat v980程序计算了f统计量。首先,我们计算了f3(Mbuti;Doigahama\u Yayoi,X),这是以Mbuti侏儒为外群的外群f3,其中X是我们数据集中的种群之一(表S1和S2)。

This outgroup f3 was used to identify the modern population with the closest genetic affinity to the Doigahama Yayoi sample. Then, we computed f4-statistics [64] in the form f4(Mbuti, Doigahama_Yayoi; modern Korean or modern Japanese, X) to rigorously test the hypothesis that no population surpasses modern Korean or modern Japanese populations in terms of genetic affinity with Doigahama Yayoi.

该外群f3用于鉴定与Doigahama弥生样本具有最接近遗传亲和力的现代种群。然后,我们以f4(Mbuti,Doigahama\u Yayoi;现代韩国人或现代日本人,X)的形式计算f4统计量,以严格检验没有人口在与Doigahama Yayoi的遗传亲和力方面超过现代韩国人或现代日本人的假设。

In these analyses, Z value, the deviation of the f-statistic from zero in units of the standard error, was also calculated.Additionally, we computed f4(Mbuti, Doigahama_Yayoi; Jomon1, Jomon2) to investigate the Jomon subpopulation demonstrating exceptionally high genetic affinity with the Doigahama Yayoi individual.

在这些分析中,还计算了Z值,即以标准误差为单位的f统计量与零的偏差。此外,我们计算了f4(Mbuti,Doigahama\u Yayoi;Jomon1,Jomon2),以研究绳文亚群与Doigahama Yayoi个体表现出异常高的遗传亲和力。

The Jomon1 and Jomon2 subpopulations were selected from those listed in Table S2.Admixture modelingWe consolidated the data from seven Jomon populations explained in Table S2 into a unified group labeled “Jomon” for our admixture modeling analysis. We assessed the compatibility of the admixture model and estimated the admixture ratio of Doigahama Yayoi using the qpF4ratio v400 program in the ADMIXTOOLS v7.0.2 package [63].

Jomon1和Jomon2亚群选自表S2中列出的亚群。混合建模我们将表S2中解释的七个绳纹种群的数据合并为一个统一的标记为“绳纹”的组,用于我们的混合建模分析。我们评估了混合物模型的相容性,并使用ADMIXTOOLS v7.0.2软件包(63)中的qpF4ratio v400程序估算了Doigahama-Yayoi的混合比。

We configured French as outgroup “o”. We tested the admixture models for both ancient and modern Japanese (“x”) with potential East Eurasian gene flow sources (“b”) and Jomon sources (“c”). Detailed explanations of the assumed model are prov.

我们将法语配置为外群“o”。。对假设模型的详细解释是prov。

ReferencesMizuo H. Jomon pottery. Jpn Q. 1967;14:326.

参考Mizuo H.Jomon陶器。Jpn Q.1967;14: 326页。

Google Scholar

谷歌学者

Habu J. Ancient Jomon of Japan. 4. Cambridge: Cambridge University Press; 2004.

日本古代绳文人。4、剑桥:剑桥大学出版社;2004

Google Scholar

谷歌学者

Nasu H, Momohara A. The beginnings of rice and millet agriculture in prehistoric Japan. Quat Int. 2016;397:504–12.Article

Nasu H,Momohara A.史前日本水稻和小米农业的起源。Quat Int.2016;397:504-12.文章

Google Scholar

谷歌学者

Hudson MJ, Nakagome S, Whitman JB. The evolving Japanese: the dual structure hypothesis at 30. Evol Hum Sci. 2020;2:e6.Article

哈德逊MJ,纳卡戈姆S,惠特曼JB。进化中的日本人:30岁时的双重结构假说。Evol Hum Sci。;2:

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanihara K. Dual structure model for the population history of the Japanese. Jpn Rev. 1991;2:1–33.

Hanihara K.日本人人口历史的双重结构模型。Jpn修订版1991;2: 1–33。

Google Scholar

谷歌学者

Adachi N, Shinoda KI, Umetsu K, Kitano T, Matsumura H, Fujiyama R, et al. Mitochondrial DNA analysis of Hokkaido Jomon skeletons: remnants of archaic maternal lineages at the southwestern edge of former Beringia. Am J Phys Anthropol. 2011;146:346–60.Article

Adachi N,Shinoda KI,Umetsu K,Kitano T,Matsumura H,Fujiyama R等。北海道绳纹骨骼的线粒体DNA分析:前白令吉西南边缘的古代母系血统的残余。我是J Phys Anthropol。2011年;146:346-60.文章

PubMed

PubMed

Google Scholar

谷歌学者

Kanzawa-Kiriyama H, Saso A, Suwa G, Saitou N. Ancient mitochondrial DNA sequences of Jomon teeth samples from Sanganji, Tohoku district, Japan. Anthropol Sci. 2013;121:89–103.Article

Kanzawa Kiriyama H,Saso A,Suwa G,Saitou N.来自日本东北地区Sanganji的绳纹牙齿样品的古代线粒体DNA序列。人类科学。2013年;121:89–103.文章

Google Scholar

谷歌学者

Mizuno F, Taniguchi Y, Kondo O, Hayashi M, Kurosaki K, Ueda S. Diversity in matrilineages among the Jomon individuals of Japan. Ann Hum Biol. 2023;50:324–31.Article

Mizuno F,Taniguchi Y,Kondo O,Hayashi M,Kurosaki K,Ueda S.日本绳文人中母系血统的多样性。安·亨比奥。2023年;50:324–31.文章

PubMed

PubMed

Google Scholar

谷歌学者

Tajima A, Hayami M, Tokunaga K, Juji T, Matsuo M, Marzuki S, et al. Genetic origins of the Ainu inferred from combined DNA analyses of maternal and paternal lineages. J Hum Genet. 2004;49:187–93.Article

Tajima A,Hayami M,Tokunaga K,Juji T,Matsuo M,Marzuki S等。从母系和父系的DNA分析推断阿伊努人的遗传起源。J哼哼Genet。2004年;49:187–93.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Hammer MF, Chamberlain VF, Kearney VF, Stover D, Zhang G, Karafet T, et al. Population structure of Y chromosome SNP haplogroups in the United States and forensic implications for constructing Y chromosome STR databases. Forensic Sci Int. 2006;164:45–55.Article

。法医科学国际2006;164:45-55.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Watanabe Y, Naka I, Khor SS, Sawai H, Hiomi Y, Tokunaga K, et al. Analysis of whole Y-chromosome sequences reveals the Japanese population history in the Jomon period. Sci Rep. 2019;9:8556.Article

Watanabe Y,Naka I,Khor SS,Sawai H,Hiomi Y,Tokunaga K等。对整个Y染色体序列的分析揭示了绳纹时期的日本人口历史。Sci代表2019;9: 第8556条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jinam TA, Hong LC, Phipps ME, Stoneking M, Ameen M, Edo J, et al. Evolutionary history of continental Southeast Asians:“Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Mol Biol Evol. 2012;29:3513–27.Article

Jinam TA,Hong LC,Phipps ME,Stoneking M,Ameen M,Edo J等。东南亚大陆的进化史:“早期训练”假说基于线粒体和常染色体DNA数据的遗传分析。。2012年;29:3513–27.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Nakagome S, Sato T, Ishida H, Hanihara T, Yamaguchi T, Kimura R, et al. Model-based verification of hypotheses on the origin of modern Japanese revisited by Bayesian inference based on genome-wide SNP data. Mol Biol Evol. 2015;32:1533–43.Article

Nakagome S,Sato T,Ishida H,Hanihara T,Yamaguchi T,Kimura R等。基于全基因组SNP数据的贝叶斯推断重新审视了基于模型的现代日本人起源假说验证。。2015年;32:1533–43.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Matsukusa H, Oota H, Haneji K, Toma T, Kawamura S, Ishida H. A genetic analysis of the Sakishima islanders reveals no relationship with Taiwan aborigines but shared ancestry with Ainu and main‐island Japanese. Am J Phys Anthropol. 2010;142:211–23.Article

。我是J Phys Anthropol。2010年;142:211–23.文章

PubMed

PubMed

Google Scholar

谷歌学者

Jinam T, Nishida N, Hirai M, Kawamura S, Oota H, Umetsu K, et al. The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. J Hum Genet. 2012;1:9.

Jinam T,Nishida N,Hirai M,Kawamura S,Oota H,Umetsu K等。从全基因组SNP数据推断出日本群岛的人口历史,特别是阿伊努人和琉球人。J哼哼Genet。2012年;1: 九。

Google Scholar

谷歌学者

Koganebuchi K, Katsumura T, Nakagome S, Ishida H, Kawamura S, Oota H. Autosomal and Y-chromosomal STR markers reveal a close relationship between Hokkaido Ainu and Ryukyu islanders. Anthropol Sci. 2012;120:199–208.Article

Koganebuchi K,Katsumura T,Nakagome S,Ishida H,Kawamura S,Oota H.常染色体和Y染色体STR标记揭示了北海道阿伊努人和琉球岛民之间的密切关系。人类科学。2012年;120:199–208.文章

Google Scholar

谷歌学者

Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008;83:445–56.Article

Yamaguchi Kabata Y,Nakazono K,Takahashi A,Saito S,Hosono N,Kubo M等。与其他种族相比,基于7003个个体的SNP基因型的日本人口结构:对基于人群的关联研究的影响。我是J Hum Genet。2008年;

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, et al. The fine-scale genetic structure and evolution of the Japanese population. PloS One. 2017;12:e0185487.Article

。PloS One。2017年;12: e0185487。条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jinam T, Kawai Y, Kamatani Y, Sonoda S, Makisumi K, Sameshima H, et al. Genome-wide SNP data of Izumo and Makurazaki populations support inner-dual structure model for origin of Yamato people. J Hum Genet. 2021;66:681–7.Article

Jinam T,Kawai Y,Kamatani Y,Sonoda S,Makisumi K,Sameshima H等。Izumo和Makurazaki种群的全基因组SNP数据支持大和人起源的内部双重结构模型。J哼哼Genet。2021年;66:681–7.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Watanabe Y, Isshiki M, Ohashi J. Prefecture-level population structure of the Japanese based on SNP genotypes of 11,069 individuals. J Hum Genet. 2021;66:431–7.Article

Watanabe Y,Isshiki M,Ohashi J.基于11069个个体的SNP基因型的日本人的县级人口结构。J哼哼Genet。2021年;66:431–7.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Watanabe Y, Ohashi J. Modern Japanese ancestry-derived variants reveal the formation process of the current Japanese regional gradations. iScience. 2023;26:106130.Article

Watanabe Y,Ohashi J.现代日本血统衍生的变体揭示了当前日本地区等级的形成过程。iScience。2023年;26:106130.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Kanzawa-Kiriyama H, Kryukov K, Jinam TA, Hosomichi K, Saso A, Suwa G, et al. A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan. J Hum Genet. 2017;62:213–21.Article

Kanzawa Kiriyama H,Kryukov K,Jinam TA,Hosomichi K,Saso A,Suwa G等。3000年前生活在日本福岛的Jomons的部分核基因组。J哼哼Genet。2017年;62:213-21.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Kanzawa-Kiriyama H, Jinam TA, Kawai Y, Sato T, Hosomichi K, Tajima A, et al. Late Jomon male and female genome sequences from the Funadomari site in Hokkaido, Japan. Anthropol Sci. 2019;127:83–108.Article

Kanzawa Kiriyama H,Jinam TA,Kawai Y,Sato T,Hosomichi K,Tajima A等。来自日本北海道Funadomari站点的绳纹晚期雄性和雌性基因组序列。人类科学。2019年;127:83–108.文章

Google Scholar

谷歌学者

Gakuhari T, Nakagome S, Rasmussen S, Allentoft ME, Sato T, Korneliussen T, et al. Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations. Commun Biol. 2020;3:437.Article

Gakuhari T,Nakagome S,Rasmussen S,Allentoft ME,Sato T,Korneliussen T等。古代绳文基因组序列分析揭示了早期东亚人群的迁移模式。社区生物。;3: 第437条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Stokes CA, Onbe S, et al. Ancient genomics reveals tripartite origins of Japanese populations. Sci Adv. 2021;7:eabh2419.Article

Cooke NP,Mattiangeli V,Cassidy LM,Okazaki K,Stokes CA,Onbe S等。古代基因组学揭示了日本人口的三方起源。;7: eabh2419.条款

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Shinoda KI, Kanzawa-Kiriyama H, Kakuda T, Adachi N. Genetic characteristics of Yayoi people in northwestern Kyushu: ancient genome analysis of human bones excavated from Shimomotoyama rock shelter, Sasebo, Nagasaki prefecture, Japan. Anthropol Sci (Jpn Ser). 2019;127:25–43.

Shinoda KI,Kanzawa-Kiriyama H,Kakuda T,Adachi N.九州西北部弥生人的遗传特征:从日本长崎县佐世保的Shimomotoyama岩石避难所出土的人类骨骼的古代基因组分析。人类科学(Jpn Ser)。2019年;127:25-43。

Google Scholar

谷歌学者

Saiki K, Wakebe T, Nagashima S. Cranial nonmetrical analyses of the Yayoi people in the northwestern Kyushu area. Anthropol Sci. 2000;108:27–44.Article

Saiki K,Wakebe T,Nagashima S.九州西北部弥生人的颅骨非计量分析。人类科学。2000年;108:27–44.文章

Google Scholar

谷歌学者

Watanabe T, Saiki K, Okamoto K, Wakebe T. Metrical and nonmetrical analyses of modern female crania in the northwestern Kyushu area. Anthropol Sci. 2004;112:147–59.Article

Watanabe T,Saiki K,Okamoto K,Wakebe T.九州西北地区现代女性颅骨的测量和非测量分析。人类科学。2004年;112:147-59.文章

Google Scholar

谷歌学者

Naito Y. On the human skeletons of Yayoi period excavated at the sites in north-western Kyushu. J Anthropol Soc Nippon (Jpn Ser). 1971;79:236–48. in JapaneseArticle

奈藤Y.在九州西北部遗址出土的弥生时期的人类骨骼上。J Anthropol Soc Nippon(Jpn Ser)。1971年;。在日本演讲中

Google Scholar

谷歌学者

Naito Y Human skeletal remains of the Yayoi period. In: Ogata T, editor. Jinruigaku-koza, The Japanese I. 1981; 5. Tokyo: Yuzankaku shuppan; p. 57–99 (in Japanese).Naito Y. The transition from the Jomon to the Yayoi skeletons in Kyushu. The Anthropological Society of Nippon (ed.). Tokyo: Nikkei-Science; 1984.

弥生时代的奈藤Y人类骨骼遗骸。在:Ogata T,编辑。《日本I.1981年金瑞加库·科扎》;东京:Yuzankaku shuppan;p、 57-99(日语)。奈藤Y.九州从绳文到弥生骨架的转变。日本人类学学会(编辑)。东京:日经科学;1984

p. 52–9. Jinruigakuin Japanese.

p、 52-9岁。。

Google Scholar

谷歌学者

Kanaseki T The question of the Yayoi people. In: Sugihara S, editor. Nippon Koukogaku Koza, Yayoi Culture. Tokyo: Kawade shobou; 1956; 4. p. 238–52 (in Japanese).Kanaseki T The physical characteristic of Japanese in the Yayoi-period. In: Proceedings of 15th General Assembly, 1959; Japan Medical Congress.

金关:弥生人的问题。在:Sugihara S,编辑。日本口口邦子,弥生文化。东京:Kawade shobou;1956年;第238-52页(日语)。金关是弥生时期日本人的身体特征。发表于:1959年第15届大会议事录;日本医学大会。

1: p. 167–74 (in Japanese).Kanaseki T The Yayoi people. In: Wajima S, editor, Nippon no Kokogaku: Yayoi Period. Tokyo: Kawade shobou; 1966; 3. p. 460–71 (in Japanese).Lienkaemper JJ, Ramsey CB. OxCal: Versatile tool for developing paleoearthquake chronologies—A primer. Seismol Res Lett. 2009;80:431–4.Article .

1: 第167-74页(日语)。金关T弥生人。。东京:Kawade shobou;1966年;第460-71页(日语)。Lienkaemper JJ,拉姆齐CB。OxCal:开发古地震年表的通用工具-入门读物。地震研究。2009年;80:431-4。文章。

Google Scholar

谷歌学者

Reimer PJ, Austin WE, Bard E, Bayliss A, Blackwell PG, Ramsey CB, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. 2020;62:725–57.Article

Reimer PJ、Austin WE、Bard E、Bayliss A、Blackwell PG、Ramsey CB等。IntCal20北半球放射性碳年龄校准曲线(0–55 cal kBP)。放射性碳。;62:725–57.文章

CAS

中科院

Google Scholar

谷歌学者

Mizuno F, Gojobori J, Kumagai M, Baba H, Taniguchi Y, Kondo O, et al. Population dynamics in the Japanese Archipelago since the Pleistocene revealed by the complete mitochondrial genome sequences. Sci Rep. 2021;11:12018.Article

Mizuno F,Gojobori J,Kumagai M,Baba H,Taniguchi Y,Kondo O等。完整的线粒体基因组序列揭示了更新世以来日本群岛的种群动态。Sci代表2021;11: 第12018条

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Kihana M, Mizuno F, Sawafuji R, Wang L, Ueda S. Emulsion PCR-coupled target enrichment: an effective fishing method for high-throughput sequencing of poorly preserved ancient DNA. Gene. 2013;528:347–51.Article

Kihana M,Mizuno F,Sawafuji R,Wang L,Ueda S.乳液PCR偶联靶标富集:一种有效的捕鱼方法,用于对保存不良的古代DNA进行高通量测序。基因。2013年;528:347–51.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Mizuno F, Taniguchi Y, Kondo O, Hayashi M, Kurosaki K, Ueda S. A study of 8,300-year-old Jomon human remains in Japan using complete mitogenome sequences obtained by next-generation sequencing. Ann Hum Biol. 2020;47:555–9.Article

Mizuno F,Taniguchi Y,Kondo O,Hayashi M,Kurosaki K,Ueda S.一项使用下一代测序获得的完整线粒体基因组序列对日本8300岁绳纹人遗骸进行的研究。安·亨比奥。;47:555–9.文章

PubMed

PubMed

Google Scholar

谷歌学者

Jónsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L. mapDamage2. 0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–4.Article

Jónsson H,Ginolhac A,Schubert M,Johnson PL,Orlando L.mapDamage2。0:古代DNA损伤参数的快速近似贝叶斯估计。生物信息学。2013年;29:1682–4.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ishiya K, Ueda S. MitoSuite: a graphical tool for human mitochondrial genome profiling in massive parallel sequencing. PeerJ. 2017;5:e3406.Article

Ishiya K,Ueda S.MitoSuite:大规模并行测序中人类线粒体基因组分析的图形工具。PeerJ。2017;5: e3406.条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:1–7.Article

Schubert M,Lindgreen S,Orlando L.AdapterRemoval v2:快速适配器修剪,识别和读取合并。BMC Res注释。;9: 1-7.文章

Google Scholar

谷歌学者

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.Article

Li H,Durbin R.使用Burrows-Wheeler变换进行快速准确的短读比对。生物信息学。2009年;25:1754–60.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Martiniano R, Garrison E, Jones ER, Manica A, Durbin R. Removing reference bias and improving indel calling in ancient DNA data analysis by mapping to a sequence variation graph. Genome Biol. 2020;21:1–18.Article

Martiniano R,Garrison E,Jones ER,Manica A,Durbin R.通过映射到序列变异图来消除参考偏差并改进古代DNA数据分析中的插入缺失调用。基因组生物学。;21:1–18.文章

Google Scholar

谷歌学者

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.Article

Li H,Handsaker B,Wysoker A,Fennell T,Ruan J,Homer N等。序列比对/图谱格式和SAMtools。生物信息学。2009年;25:2078–9.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.Article

。基因组研究2010;20: 1297-303.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–25.Article

Jun G,Wing MK,Abecasis GR,Kang HM.一种有效且可扩展的分析框架,用于从种群规模的DNA序列数据中提取和优化变体。;25:918–25.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503.Article

Mathieson I,Lazaridis I,Rohland N,Mallick S,Patterson N,Roodenberg SA等。230名古代欧亚人的全基因组选择模式。自然。2015年;528:499–503.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.Article

Purcell S,Neale B,Todd Brown K,Thomas L,Ferreira MA,Bender D等。PLINK:用于全基因组关联和基于人群的连锁分析的工具集。我是J Hum Genet。2007年;81:559–75.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Skoglund P, Storå J, Götherström A, Jakobsson M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J Archaeol Sci. 2013;40:4477–82.Article

Skoglund P,StoråJ,Götherström A,Jakobsson m.使用DNA鸟枪测序对古代人类遗骸进行准确的性别鉴定。J Archaeol Sci。2013年;40:4477–82.文章

CAS

中科院

Google Scholar

谷歌学者

Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data. 2024;11:182.Article

Mallick S,Micco A,Mah M,Ringbauer H,Lazaridis I,Olalde I等。艾伦古代DNA资源(AADR)是古代人类基因组的策划纲要。。;11: 第182条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367:eaay5012.Article

Bergström A,McCarthy SA,Hui R,Almarri MA,Ayub Q,Danecek P等。从929个不同基因组中洞察人类遗传变异和种群历史。科学。;367:eaay5012.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature. 2016;538:201–6.Article

Mallick S,Li H,Lipson M,Mathieson I,Gymrek M,Racimo F等。西蒙斯基因组多样性项目:来自142个不同种群的300个基因组。自然。;538:201–6.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.Article

Manichaikul A,Mychaleckyj JC,Rich SS,Daly K,Sale M,Chen WM。全基因组关联研究中的稳健关系推断。生物信息学。2010年;26:2867–73.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:s13742–015.Article

Chang CC,Chow CC,Tellier LC,Vattikuti S,Purcell SM等。第二代PLINK:迎接更大更丰富数据集的挑战。Gigascience公司。2015年;4: s13742–015.文章

Google Scholar

谷歌学者

Gelabert P, Blazyte A, Chang Y, Fernandes DM, Jeon S, Hong JG, et al. Northeastern Asian and Jomon-related genetic structure in the Three Kingdoms period of Gimhae, Korea. Curr Biol. 2022;32:3232–44.Article

Gelabert P,Blazyte A,Chang Y,Fernandes DM,Jeon S,Hong JG等。韩国金海三国时期东北亚和绳文相关的遗传结构。货币生物学。;32:3232–44.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Robbeets M, Bouckaert R, Conte M, Savelyev A, Li T, An DI, et al. Triangulation supports agricultural spread of the Transeurasian languages. Nature. 2021;599:616–21.Article

Robbeets M,Bouckaert R,Conte M,Savelyev A,Li T,An DI等。三角测量支持跨欧语言的农业传播。自然。2021年;599:616-21.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Wang CC, Yeh HY, Popov AN, Zhang HQ, Matsumura H, Sirak K, et al. Genomic insights into the formation of human populations in East Asia. Nature. 2021;591:413–9.Article

Wang CC,Yeh HY,Popov AN,Zhang HQ,Matsumura H,Sirak K等。东亚人群形成的基因组学见解。自然。2021年;591:413-9.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Lee DN, Jeon CL, Kang J, Burri M, Krause J, Woo EJ, et al. Genomic detection of a secondary family burial in a single jar coffin in early Medieval Korea. Am J Biol Anthropol. 2022;179:585–97.Article

Lee DN,Jeon CL,Kang J,Burri M,Krause J,Woo EJ等。中世纪早期韩国单罐棺材中二次家族埋葬的基因组检测。我是J Biol Anthropol。;179:585-97.文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.Article

Patterson N,Price AL,Reich D.人口结构和特征分析。PLoS Genet。2006年;2: e190.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.Article

Alexander DH,Novenbre J,Lange K.基于模型的无关个体祖先的快速估计。基因组研究2009;19: 1655-64.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Pickrell J, Pritchard J. Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. Plos Genet. 2012;8:e1002967.Article

Pickrell J,Pritchard J.从全基因组等位基因频率数据推断种群分裂和混合物。Plos Genet。2012年;8: e1002967。条款

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. Ancient admixture in human history. Genetics. 2012;192:1065–93.Article

Patterson N,Moorjani P,Luo Y,Mallick S,Rohland N,Zhan Y等。人类历史上的古代混合物。遗传学。2012年;192:1065-93.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009;461:489–94.Article

Reich D,Thangaraj K,Patterson N,Price AL,Singh L.重建印度人口历史。自然。2009年;461:489–94.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Harney É, Patterson N, Reich D, Wakeley J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics. 2021;217:iyaa045.Article

HarneyÉ,Patterson N,Reich D,Wakeley J.评估qpAdm的性能:研究人口混合的统计工具。遗传学。2021年;217:iyaa045.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, et al. The genetic history of ice age Europe. Nature. 2016;534:200–5.Article

Fu Q,Posth C,Hajdinjak M,Petr M,Mallick S,Fernandes D等。欧洲冰河期的遗传史。自然。;534:200–5.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–24.Article

Lazaridis I,Nadel D,Rollefson G,Merrett DC,Rohland N,Mallick S等。对古代近东农业起源的基因组学见解。自然。;536:419–24.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr Biol. 2017;27:3202–8.Article

Yang MA,Gao X,Theunert C,Tong H,Aximu Petri A,Nickel B等。来自亚洲的40000岁个体提供了对欧亚大陆早期人口结构的洞察。货币生物学。2017年;27:3202–8.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Moreno-Mayar JV, Potter BA, Vinner L, Steinrücken M, Rasmussen S, Terhorst J, et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature. 2018;553:203–7.Article

Moreno Mayar JV,Potter BA,Vinner L,Steinrücken M,Rasmussen S,Terhorst J等。更新世末期阿拉斯加基因组揭示了美洲原住民的第一个创始种群。自然。2018年;553:203–7.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Yang MA, Fan X, Sun B, Chen C, Lang J, Ko YC, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science. 2020;369:282–8.Article

杨马,范X,孙B,陈C,朗J,柯玉春,等。古代DNA表明中国南北地区的人口迁移和混合。科学。;369:282–8.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, et al. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep. 2023;42:112413.Article

Li YC,Gao ZL,Liu KJ,Tian JY,Yang BY,Rahman ZU等。有丝分裂基因组证据表明,两次辐射事件和母系血统从中国北部沿海扩散到美洲和日本。细胞代表2023;42:112413.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Liu X, Koyama S, Tomizuka K, Takata S, Ishikawa Y, Ito S, et al. Decoding triancestral origins, archaic introgression, and natural selection in the Japanese population by whole-genome sequencing. Sci Adv. 2024;10:eadi8419.Article

Liu X,Koyama S,Tomizuka K,Takata S,Ishikawa Y,Ito S等。通过全基因组测序解码日本人群中的三叉起源,古基因渗入和自然选择。Sci Adv.2024;10: 第8419条

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Jin HJ, Kwak KD, Hammer MF, Nakahori Y, Shinka T, Lee JW, et al. Y-chromosomal DNA haplogroups and their implications for the dual origins of the Koreans. Hum Genet. 2003;114:27–35.Article

Jin HJ,Kwak KD,Hammer MF,Nakahori Y,Shinka T,Lee JW等。Y染色体DNA单倍群及其对韩国人双重起源的影响。哼哼Genet。2003年;114:27–35.文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Kim J, Jeon S, Choi JP, Blazyte A, Jeon Y, Kim JI, et al. The origin and composition of Korean ethnicity analyzed by ancient and present-day genome sequences. Genome Biol Evol. 2020;12:553–65.Article

Kim J,Jeon S,Choi JP,Blazyte A,Jeon Y,Kim JI等。通过古代和现代基因组序列分析朝鲜族的起源和组成。基因组生物学进化。;12: 553-65.条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chu JY, Huang W, Kuang SQ, Wang JM, Xu JJ, Chu ZT, et al. Genetic relationship of populations in China. PNAS. 1998;95:11763–8.Article

朱建元,黄伟,匡思凯,王建民,徐建杰,朱志泰,等。中国人群的遗传关系。。1998年;95:11763–8.文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

He GL, Li YX, Wang MG, Zou X, Yeh HY, Yang XM, et al. Fine‐scale genetic structure of Tujia and central Han Chinese revealing massive genetic admixture under language borrowing. J Syst Evol. 2021;59:1–20.Article

。J系统进化。2021年;59:1-20.文章

CAS

中科院

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported partly by grants from JSPS KAKENHI (Grant Number 19H05737 to FM; 20H05822, 21H04358, 23K14279, and 24H01589 to KI; 23H04838 to IN; 21H04983 to SU; 18H02514, 19H05341, 21H00336, 21H04779, 21H04983, 22H00421, 23H04840 to JO) and AMED (Grant Number JP20km0405211 to JO).FundingOpen Access funding provided by The University of Tokyo.Author informationAuthors and AffiliationsDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, JapanJonghyun Kim, Koji Ishiya, Mami Kamio, Izumi Naka, Shintaroh Ueda & Jun OhashiDepartment of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, JapanFuzuki Mizuno, Michiko Hayashi, Kunihiko Kurosaki & Shintaroh UedaThe Doigahama Site Anthropological Museum, Yamaguchi, 759-6121, JapanTakayuki Matsushita & Masami MatsushitaMedical Genome Center, National Research Institute for Child Health and Development, Tokyo, 157-8535, JapanSaki AotoAuthorsJonghyun KimView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了JSPS KAKENHI(授予FM的授权号19H05737;授予KI的授权号20H058221H04358223K14279和24H01589;授予IN的授权号23H04838;授予SU的授权号21H04983;授予JO的授权号18H02514、19H05341、21H00336、21H04779、21H04983、22H00421、23H04840)和AMED(授予JO的授权号JP20km0405211)的部分支持。资金东京大学提供的开放获取资金。作者信息作者和所属机构东京大学科学研究生院生物科学系,东京,113-0033,日本正玄金,石屋小二,妈咪神户,Izumi Naka,上田信太郎和大岛纯俊日本东洋大学医学院法律医学系,东京,143-8540,日本水津美子,林美子,黑坂国彦和上田信太郎日本国立研究院人类博物馆,山口,759-6121,日本松下和松下正美医学基因组中心东京儿童健康与发展研究所,157-8535,JapanSaki AotoAuthorsJonghyun KimView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarFuzuki MizunoView author publicationsYou can also search for this author in

PubMed谷歌学者Fuzuki MizunoView作者出版物您也可以在

PubMed Google ScholarTakayuki MatsushitaView author publicationsYou can also search for this author in

PubMed Google ScholarTakayuki MatsushitaView作者出版物您也可以在

PubMed Google ScholarMasami MatsushitaView author publicationsYou can also search for this author in

PubMed Google ScholarMasami MatsushitaView作者出版物您也可以在

PubMed Google ScholarSaki AotoView author publicationsYou can also search for this author in

PubMed Google ScholarSaki AotoView作者出版物您也可以在

PubMed Google ScholarKoji IshiyaView author publicationsYou can also search for this author in

PubMed Google ScholarKoji IshiyaView作者出版物您也可以在

PubMed Google ScholarMami KamioView author publicationsYou can also search for this author in

PubMed Google ScholarMami KamioView作者出版物您也可以在

PubMed Google ScholarIzumi NakaView author publicationsYou can also search for this author in

PubMed Google ScholarIzumi NakaView作者出版物您也可以在

PubMed Google ScholarMichiko HayashiView author publicationsYou can also search for this author in

PubMed Google Scholarmachiko HayashiView作者出版物您也可以在

PubMed Google ScholarKunihiko KurosakiView author publicationsYou can also search for this author in

PubMed Google ScholarKunihiko KurosakiView作者出版物您也可以在

PubMed Google ScholarShintaroh UedaView author publicationsYou can also search for this author in

PubMed Google ScholarShintaroh UedaView作者出版物您也可以在

PubMed Google ScholarJun OhashiView author publicationsYou can also search for this author in

PubMed Google ScholarJun OhashiView作者出版物您也可以在

PubMed Google ScholarCorresponding authorsCorrespondence to

PubMed谷歌学者通讯作者通讯

Fuzuki Mizuno or Jun Ohashi.Ethics declarations

Fuzuki Mizuno或Jun Ohashi。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleKim, J., Mizuno, F., Matsushita, T. et al. Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago.

转载和许可本文引用本文Kim,J.,Mizuno,F.,Matsushita,T。等人。对来自Doigahama遗址的弥生个体的遗传分析提供了对日本列岛移民起源的见解。

J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01295-wDownload citationReceived: 31 May 2024Revised: 09 September 2024Accepted: 09 September 2024Published: 15 October 2024DOI: https://doi.org/10.1038/s10038-024-01295-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

J Hum Genet(2024)。https://doi.org/10.1038/s10038-024-01295-wDownload引文收到日期:2024年5月31日修订日期:2024年9月9日接受日期:2024年9月9日发布日期:2024年10月15日OI:https://doi.org/10.1038/s10038-024-01295-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供