EN
登录

精神分裂症病理反向转化为小鼠表现出海马多动、精神病行为和超同步事件

Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events

Nature 等信源发布 2024-10-16 10:01

可切换为仅中文


AbstractDecades of research into the function of the medial temporal lobe has driven curiosity around clinical outcomes associated with hippocampal dysfunction, including psychosis. Post-mortem analyses of brain tissue from human schizophrenia brain show decreased expression of the NMDAR subunit GluN1 confined to the dentate gyrus with evidence of downstream hippocampal hyperactivity in CA3 and CA1.

摘要数十年来对内侧颞叶功能的研究引起了人们对与海马功能障碍(包括精神病)相关的临床结果的好奇。对人类精神分裂症大脑脑组织的尸检分析显示,局限于齿状回的NMDAR亚基GluN1的表达降低,并有证据表明CA3和CA1下游海马过度活跃。

Little is known about the mechanisms of the emergence of hippocampal hyperactivity as a putative psychosis biomarker. We have developed a reverse-translation mouse to study critical neural features. We had previously studied a dentate gyrus (DG)-specific GluN1 KO, which displays hippocampal hyperactivity and a psychosis-relevant behavioral phenotype.

关于海马过度活跃作为假定的精神病生物标志物出现的机制知之甚少。我们开发了一种反向翻译鼠标来研究关键的神经功能。我们之前曾研究过齿状回(DG)特异性GluN1 KO,它表现出海马活动过度和与精神病相关的行为表型。

Here, we expressed an inhibitory DREADD (pAAV-CaMKIIa-hM4D(Gi)-mCherry) in granule cells of the mouse dentate gyrus, and continuously inhibited the region for 21 days in adolescent (6 weeks) and adult (10 weeks) C57BL/6 J mice with DREADD agonist Compound 21 (C21). Following this period, we quantified activity in the hippocampal subfields by assessing cFos expression, hippocampally mediated behaviors, and hippocampal local field potential with an intracerebral probe with continual monitoring over time.

在这里,我们在小鼠齿状回的颗粒细胞中表达了抑制性DREADD(pAAV-CaMKIIa-hM4D(Gi)-mCherry),并在青少年(6周)和成人(10周)C57BL/6J小鼠中连续抑制该区域21天DREADD激动剂化合物21(C21)。在此期间,我们通过使用脑内探针评估cFos表达,海马介导的行为和海马局部场电位来量化海马亚区的活动,并随着时间的推移进行持续监测。

DG inhibition during adolescence generates an increase in hippocampal activity in CA3 and CA1, impairs social cognition and spatial working memory, as well as shows evidence of increased activity in local field potentials as spontaneous synchronous bursts of activity, which we term hyper-synchronous events (HSEs) in hippocampus.

青春期的DG抑制会导致CA3和CA1的海马活动增加,损害社会认知和空间工作记忆,并显示出局部场电位活动增加的证据,即自发同步爆发的活动,我们称之为超同步事件(HSEs)海马。

The same DG inhibition delivered during adulthood in the mouse lacks these outcomes. These results suggest a sensitive period in development in which the hippocampus is susceptible to DG inhibition resulti.

小鼠成年期间产生的相同DG抑制缺乏这些结果。这些结果表明海马对DG抑制结果敏感的发育敏感期。

IntroductionThe hippocampus is a brain region specialized for learning and memory functions, with a well-described anatomy, molecular functions, and circuit connectivity. Seminal observations regarding human memory have been generated through decades of research into the functions of the medial temporal lobe.

简介海马是一个专门用于学习和记忆功能的大脑区域,具有良好的解剖学,分子功能和电路连通性。通过对内侧颞叶功能的数十年研究,已经产生了关于人类记忆的开创性观察结果。

These data have driven curiosity around clinical conditions associated with hippocampal dysfunction. Learning and memory disorders are associated with hippocampal pathology. Among these are age-related memory loss and dementias [1, 2], anxiety with PTSD [3, 4], depression [5], and, of particular emphasis here, psychotic disorders [6, 7].Increased resting state neural activity in hippocampus, (i.e.

这些数据引起了人们对与海马功能障碍相关的临床状况的好奇。学习和记忆障碍与海马病理有关。其中包括与年龄有关的记忆丧失和痴呆[1,2],PTSD焦虑[3,4],抑郁症[5],以及这里特别强调的精神病[6,7]。海马静息状态神经活动增加(即。

hippocampal hyperactivity) has been consistently observed in young people with schizophrenia, ascertained in vivo with brain imaging techniques [8,9,10], and localized to CA1 using high resolution MR methods [10,11,12,13]. In human post-mortem tissue analyses, in schizophrenia vs healthy control, we sought potential mechanisms for this hyperactivity [14], and reported reduced expression of GluN1 in dentate gyrus (DG), accompanied by increased markers of excitatory activity in CA3 and CA1.

海马活动过度)在精神分裂症年轻人中一直被观察到,通过脑成像技术在体内确定[8,9,10],并使用高分辨率MR方法定位于CA1[10,11,12,13]。。

Further, subfield-selective transcriptome analysis of this human hippocampal tissue showed an increase in transcription of excitatory genes in CA3 in schizophrenia, while the transcriptome in CA1 was characterized by a compensatory alteration in the expression of genes involved in the excitatory/inhibitory balance [15].

此外,对这种人类海马组织的亚区选择性转录组分析显示,精神分裂症患者CA3中兴奋性基因的转录增加,而CA1中的转录组的特征是参与兴奋性/抑制性平衡的基因表达的补偿性改变〔15〕。

Recent DG transcriptome analysis in schizophrenia, specifically targeting granule cells, further confirms a decrease in genes related to neurotransmission in schizophrenia cases [16]. While there is some evidence that hippocampal hyperactivity in schizophrenia may be asso.

。虽然有证据表明精神分裂症患者的海马活动过度可能是相关的。

(1)

(1)

where \(Y\) is the dependent variable, E(Y) is the expected value, and g(Y) is the logistic link function that connects the expected value to the predictor variables. The terms f1(x1), …, fp(xp) denote smooth, non-parametric functions.The initial predictor in our analysis was the averaged amplitude of the time series raw data (LFP) across 32 channels.

其中\(Y \)是因变量,E(Y)是期望值,g(Y)是将期望值连接到预测变量的逻辑链接函数。术语f1(x1),…,fp(xp)表示平滑的非参数函数。我们分析中的初始预测因子是32个通道中时间序列原始数据(LFP)的平均幅度。

Additionally, animal position data recorded from the head was also used as a predictor. This positional data specifically focused on quiet and stable periods serving as a distinctive factor to discern from artifacts. Within GAMs, it is possible to adjust the influence of each predictor as needed; however, for our analysis, we presumed equal weight for both LFP amplitude and position.

此外,从头部记录的动物位置数据也被用作预测因子。。在GAMs中,可以根据需要调整每个预测变量的影响;但是,对于我们的分析,我们假设LFP振幅和位置的权重相等。

We randomly chose about 100 min of data (time series of varying duration 1–60 min) with fast spikes where we marked HSEs and artifacts in LFP recorded from CA1 and the corresponding position. We used this labeled data from two DG (−) Adolescent mice across 6 days as the training dataset for the GAM (L1).

我们随机选择了大约100分钟的数据(持续时间变化为1-60分钟的时间序列),这些数据具有快速峰值,我们在CA1和相应位置记录的LFP中标记了HSE和伪影。我们使用来自两只DG(-)青春期小鼠的6天标记数据作为GAM(L1)的训练数据集。

While this GAM layer cleaned up the data, we included another layer to further differentiate between HSEs and high amplitude control events. We randomly chose two single channel time series data from each of the 13 animals, specifically from CA1 and DG consisting of amplitude and normalized amplitude but excluding position data.

虽然这个GAM层清理了数据,但我们包括了另一层,以进一步区分HSE和高振幅控制事件。我们从13只动物中随机选择了两个单通道时间序列数据,特别是来自CA1和DG的数据,包括振幅和归一化振幅,但不包括位置数据。

This exclusion was possible because the HSE labels were already preserved from the first layer (L1) (Supplementary Fig. S3a, b). The model consisted of a two-layer processing approach: initially to eliminate artifacts, followed by determining the accurate count of HSEs/h.ResultsDentate gyrus inhibitionTo assess the effectiveness of DREADD-mediated DG inhibition, we first verified the regional specificit.

这种排除是可能的,因为HSE标签已经从第一层(L1)保留下来(补充图S3a,b)。该模型由两层处理方法组成:首先消除伪影,然后确定HSE/h的准确计数。结果齿状回抑制为了评估DREADD介导的DG抑制的有效性,我们首先验证了区域特异性。

Data availability

数据可用性

The data supporting this study are available from the corresponding authors upon reasonable request.

支持这项研究的数据可以根据合理的要求从通讯作者那里获得。

Code availability

代码可用性

The code for analyzing the data is available from the corresponding authors upon reasonable request.

根据合理的要求,通讯作者可以提供分析数据的代码。

ReferencesKaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology. 1997;48:1297–304.

参考文献Kaye JA,Swihart T,Howieson D,Dame A,Moore MM,Karnos T等。注定会发展为痴呆症的健康老年人海马和颞叶的体积损失。神经病学。1997年;48:1297年至304年。

Google Scholar

谷歌学者

Junque C, Ramirez-Ruiz B, Tolosa E, Summerfield C, Marti MJ, Pastor P, et al. Amygdalar and hippocampal MRI volumetric reductions in Parkinson’s disease with dementia. Mov Disord. 2005;20:540–4.

Junque C,Ramirez-Ruiz B,Tolosa E,Summerfield C,Marti MJ,Pastor P等。帕金森病痴呆患者的杏仁核和海马MRI体积减少。Mov不一致。2005年;20: 540–4。

Google Scholar

谷歌学者

Hull AM. Neuroimaging findings in post-traumatic stress disorder. Systematic review. Br J Psychiatry. 2002;181:102–10.

Hull AM。创伤后应激障碍的神经影像学表现。系统评价。Br J精神病学。2002年;181:102-10。

Google Scholar

谷歌学者

Satpute AB, Mumford JA, Naliboff BD, Poldrack RA. Human anterior and posterior hippocampus respond distinctly to state and trait anxiety. Emotion. 2012;12:58–68.

Satpute AB,Mumford JA,Naliboff BD,Poldrack RA。人类前海马和后海马对状态和特质焦虑有明显的反应。情感。2012年;12: 58-68岁。

Google Scholar

谷歌学者

Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol. 2012;22:1–16.

Arnone D,McIntosh AM,Ebmeier KP,Munafo MR,Anderson IM。单极抑郁症的磁共振成像研究:系统评价和荟萃回归分析。Eur Neuropsychopharmacol。2012年;22:1-16。

Google Scholar

谷歌学者

Haukvik UK, Tamnes CK, Soderman E, Agartz I. Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res. 2018;104:217–26.

Haukvik UK,Tamnes CK,Soderman E,Agartz I.精神分裂症和双相情感障碍的神经影像海马亚区:系统评价和荟萃分析。J精神病学研究2018;104:217-26。

Google Scholar

谷歌学者

Ragland JD. Relating basal and phasic hippocampal activity in people with psychosis: a translational bridge to understanding memory deficits? Am J Psychiatry. 2019;176:979–81.

拉格兰法学博士。将精神病患者的基础和阶段性海马活动联系起来:理解记忆缺陷的转化桥梁?Am J精神病学。2019年;176:979年至81年。

Google Scholar

谷歌学者

Medoff DR, Holcomb HH, Lahti AC, Tamminga CA. Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus. 2001;11:543–50.

Medoff DR,Holcomb HH,Lahti AC,Tamminga CA。使用rCBF探测人类海马:精神分裂症的对比。海马。2001年;11: 543年至50年。

Google Scholar

谷歌学者

Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1:318–23.

Heckers S,Rauch SL,Goff D,Savage CR,Schacter DL,Fischman AJ等。精神分裂症有意识回忆期间海马募集受损。Nat Neurosci。1998年;1: 318年至23年。

Google Scholar

谷歌学者

Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry. 2009;66:938–46.

Schobel SA,Lewandowski NM,Corcoran CM,Moore H,Brown T,Malaspina D等。精神分裂症和相关精神病性疾病对海马结构CA1亚区的差异靶向。Arch Gen精神病学。2009年;66:938-46。

Google Scholar

谷歌学者

Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78:81–93.

Schobel SA,Chaudhury NH,Khan UA,Paniagua B,Styner MA,Asllani I等人。对精神病患者和小鼠模型进行成像,建立了海马功能障碍的扩散模式,并暗示谷氨酸是驱动因素。神经元。2013年;78:81-93。

Google Scholar

谷歌学者

Provenzano FA, Guo J, Wall MM, Feng X, Sigmon HC, Brucato G, et al. Hippocampal pathology in clinical high-risk patients and the onset of schizophrenia. Biol Psychiatry. 2020;87:234–42.

Provenzano FA,Guo J,Wall MM,Feng X,Sigmon HC,Brucato G等。临床高危患者的海马病理学与精神分裂症的发病。生物精神病学。2020年;。

Google Scholar

谷歌学者

McHugo M, Talati P, Armstrong K, Vandekar SN, Blackford JU, Woodward ND, et al. Hyperactivity and reduced activation of anterior hippocampus in early psychosis. Am J Psychiatry. 2019;176:1030–8.

McHugo M,Talati P,Armstrong K,Vandekar SN,Blackford JU,Woodward ND等。早期精神病患者活动过度和前海马激活减少。Am J精神病学。2019年;176:1030年至1038年。

Google Scholar

谷歌学者

Li W, Ghose S, Gleason K, Begovic A, Perez J, Bartko J, et al. Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. Am J Psychiatry. 2015;172:373–82.

Li W,Ghose S,Gleason K,Begovic A,Perez J,Bartko J等。海马突触蛋白表明精神分裂症患者CA3区神经元活性增加。Am J精神病学。2015年;172:373-82。

Google Scholar

谷歌学者

Perez JM, Berto S, Gleason K, Ghose S, Tan C, Kim TK, et al. Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol Psychiatry. 2021;26:2577–89.

Perez JM,Berto S,Gleason K,Ghose S,Tan C,Kim TK等。精神分裂症精神病的海马亚区转录组分析。摩尔精神病学。2021年;26:2577-89。

Google Scholar

谷歌学者

Jaffe AE, Hoeppner DJ, Saito T, Blanpain L, Ukaigwe J, Burke EE, et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat Neurosci. 2020;23:510–9.

Jaffe AE,Hoeppner DJ,Saito T,Blanpain L,Ukaigwe J,Burke EE等。分析人类齿状回颗粒细胞层中的基因表达揭示了对精神分裂症及其遗传风险的见解。Nat Neurosci。2020年;23:510-9。

Google Scholar

谷歌学者

Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, et al. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med. 2023;53:5235–45.

Selvaggi P,Jauhar S,Kotoula V,Pepper F,Veronese M,Santangelo B等。无抗精神病药首发精神病患者皮质脑血流量减少及其与治疗反应的关系。心理医学2023;53:5235-45。

Google Scholar

谷歌学者

Handley R, Mondelli V, Zelaya F, Marques T, Taylor H, Reinders A, et al. Effects of antipsychotics on cortisol, interleukin-6 and hippocampal perfusion in healthy volunteers. Schizophr Res. 2016;174:99–105.

Handley R,Mondelli V,Zelaya F,Marques T,Taylor H,Reinders A等。抗精神病药物对健康志愿者皮质醇,白细胞介素-6和海马灌注的影响。精神分裂症研究2016;174:99-105。

Google Scholar

谷歌学者

Kraguljac NV, White DM, Reid MA, Lahti AC. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry. 2013;70:1294–302.

Kraguljac NV,White DM,Reid MA,Lahti AC.未服药的精神分裂症患者海马谷氨酸和体积缺陷增加。JAMA精神病学。2013年;70:1294年至302年。

Google Scholar

谷歌学者

Gong Q, Lui S, Sweeney JA. A selective review of cerebral abnormalities in patients with first-episode schizophrenia before and after treatment. Am J Psychiatry. 2016;173:232–43.

龚Q,路易斯,斯威尼JA。对首发精神分裂症患者治疗前后大脑异常的选择性回顾。Am J精神病学。2016年;173:232-43。

Google Scholar

谷歌学者

Lahti AC, Weiler MA, Holcomb HH, Tamminga CA, Cropsey KL. Modulation of limbic circuitry predicts treatment response to antipsychotic medication: a functional imaging study in schizophrenia. Neuropsychopharmacology. 2009;34:2675–90.

Lahti AC,Weiler MA,Holcomb HH,Tamminga CA,Cropsey KL。边缘回路的调节预测抗精神病药物的治疗反应:精神分裂症的功能成像研究。神经精神药理学。2009年;34:2675-90。

Google Scholar

谷歌学者

Lee KJ, Queenan BN, Rozeboom AM, Bellmore R, Lim ST, Vicini S, et al. Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons. Neuron. 2013;77:99–114.

Lee KJ,Queenan BN,Rozeboom AM,Bellmore R,Lim ST,Vicini S等。苔藓纤维CA3突触介导成熟海马神经元的稳态可塑性。神经元。2013年;77:99-114。

Google Scholar

谷歌学者

McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science. 2007;317:94–99.

McHugh TJ,Jones MW,Quinn JJ,Balthasar N,Coppari R,Elmquist JK等。齿状回NMDA受体介导海马网络中的快速模式分离。科学。2007年;317:94-99。

Google Scholar

谷歌学者

Segev A, Yanagi M, Scott D, Southcott SA, Lister JM, Tan C, et al. Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol Psychiatry. 2020;11:2832–43.Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8..

Segev A,Yanagi M,Scott D,Southcott SA,Lister JM,Tan C等。小鼠齿状回中GluN1的减少与CA3活动过度和精神病样行为有关。摩尔精神病学。2020年;11: 2832-43.Dutta S,Sengupta P.男人和老鼠:讲述他们的年龄。生命科学。2016年;152:244-8。。

Google Scholar

谷歌学者

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1–16.

Semple BD,Blomgren K,Gimlin K,Ferriero DM,Noble Haeusslein LJ。啮齿动物和人类的大脑发育:确定物种间成熟和易受伤害的基准。Prog Neurobiol。2013年;106-107:1-16。

Google Scholar

谷歌学者

Osanai H, Kitamura T, Yamamoto J. Hybrid microdrive system with recoverable opto-silicon probe and tetrode for dual-site high density recording in freely moving mice. J Vis Exp. 2019;150:e60028.Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN. Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions.

Osanai H,Kitamura T,Yamamoto J.混合微驱动系统,具有可恢复的光硅探针和四极管,用于在自由移动的小鼠中进行双点高密度记录。J Vis Exp.2019;150:e60028.Bannerman DM,Yee BK,Good MA,Heupel MJ,Iversen SD,Rawlins JN。海马内功能的双重解离:背侧,腹侧和完整海马细胞毒性损伤的比较。

Behav Neurosci. 1999;113:1170–88..

行为神经科学。1999;113:1170–88..

Google Scholar

谷歌学者

Rawlins JN, Olton DS. The septo-hippocampal system and cognitive mapping. Behav Brain Res. 1982;5:331–58.

罗林斯JN,奥尔顿DS。隔海马系统和认知映射。Behav Brain Res.1982;5: 331-58。

Google Scholar

谷歌学者

Montagrin A, Saiote C, Schiller D. The social hippocampus. Hippocampus. 2018;28:672–9.

Montagrin A,Saiote C,Schiller D.社交海马体。海马。2018年;。

Google Scholar

谷歌学者

Wood SJ, Pantelis C, Proffitt T, Phillips LJ, Stuart GW, Buchanan JA, et al. Spatial working memory ability is a marker of risk-for-psychosis. Psychol Med. 2003;33:1239–47.

Wood SJ,Pantelis C,Proffitt T,Phillips LJ,Stuart GW,Buchanan JA等。空间工作记忆能力是精神病风险的标志。心理医学2003;33:1239年至47年。

Google Scholar

谷歌学者

Glahn DC, Bearden CE, Cakir S, Barrett JA, Najt P, Serap Monkul E, et al. Differential working memory impairment in bipolar disorder and schizophrenia: effects of lifetime history of psychosis. Bipolar Disord. 2006;8:117–23.

Glahn DC,Bearden CE,Cakir S,Barrett JA,Najt P,Serap Monkul E等。双相情感障碍和精神分裂症的差异工作记忆障碍:精神病终生史的影响。双极紊乱。2006年;8: 117年至23年。

Google Scholar

谷歌学者

Healey KM, Bartholomeusz CF, Penn DL. Deficits in social cognition in first episode psychosis: a review of the literature. Clin Psychol Rev. 2016;50:108–37.

希利KM,巴塞洛缪斯CF,宾夕法尼亚州DL。首发精神病的社会认知缺陷:文献综述。《临床心理学》2016年版;50:108-37。

Google Scholar

谷歌学者

Mancuso F, Horan WP, Kern RS, Green MF. Social cognition in psychosis: multidimensional structure, clinical correlates, and relationship with functional outcome. Schizophr Res. 2011;125:143–51.

Mancuso F,Horan WP,Kern RS,Green MF。精神病的社会认知:多维结构,临床相关性以及与功能结果的关系。精神分裂症Res.2011;125:143-51。

Google Scholar

谷歌学者

Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell. 2014;157:845–57.

Yamamoto J,Suh J,Takeuchi D,Tonegawa S.成功执行与同步高频伽马振荡相关的工作记忆。细胞。2014年;157:845-57。

Google Scholar

谷歌学者

Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840.

Manvich DF,Webster KA,Foster SL,Farrell MS,Ritchie JC,Porter JH等。DREADD激动剂氯氮平N-氧化物(CNO)被反向代谢为氯氮平,并在大鼠和小鼠中产生氯氮平样的感受间刺激作用。Sci代表2018;8: 3840页。

Google Scholar

谷歌学者

Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int. 1998;33:287–97.

科瓦奇KJ。c-Fos作为转录因子:从功能图的压力(重新)视图。;33:287-97。

Google Scholar

谷歌学者

Pompeiano M, Colonnese MT. cFOS as a biomarker of activity maturation in the hippocampal formation. Front Neurosci. 2023;17:929461.

Pompeiano M,Colonnese MT。cFOS作为海马结构活动成熟的生物标志物。前神经科学。2023年;17: 929461页。

Google Scholar

谷歌学者

Robins MT, Li J, Ryabinin AE. Effects of housing conditions and circadian time on baseline c-Fos immunoreactivity in C57BL/6J mice. Neuroscience. 2020;431:143–51.

Robins MT,Li J,Ryabinin AE。住房条件和昼夜节律时间对C57BL/6J小鼠基线c-Fos免疫反应性的影响。神经科学。2020年;431:143-51。

Google Scholar

谷歌学者

Arguello PA, Gogos JA. Cognition in mouse models of schizophrenia susceptibility genes. Schizophr Bull. 2010;36:289–300.

Arguello PA,Gogos JA。精神分裂症易感基因小鼠模型的认知。精神分裂症公牛。2010年;36:289-300。

Google Scholar

谷歌学者

Green MF, Olivier B, Crawley JN, Penn DL, Silverstein S. Social cognition in schizophrenia: recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr Bull. 2005;31:882–7.

Green MF,Olivier B,Crawley JN,Penn DL,Silverstein S.精神分裂症的社会认知:测量和治疗研究对改善精神分裂症新方法会议认知的建议。精神分裂症公牛。2005年;31:882-7。

Google Scholar

谷歌学者

Castane A, Santana N, Artigas F. PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology. 2015;232:4085–97.

Castane A,Santana N,Artigas F.基于PCP的精神分裂症小鼠模型:急性和亚慢性治疗的不同行为,神经化学和细胞效应。精神药理学。2015年;232:4085-97。

Google Scholar

谷歌学者

O’Tuathaigh CM, Babovic D, O’Sullivan GJ, Clifford JJ, Tighe O, Croke DT, et al. Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience. 2007;147:18–27.

O'Tuathaigh CM,Babovic D,O'Sullivan GJ,Clifford JJ,Tighe O,Croke DT等。精神分裂症风险基因神经调节蛋白1“敲除”小鼠空间认知和社会行为的表型表征。神经科学。2007年;147:18-27。

Google Scholar

谷歌学者

Zhang XQ, Xu L, Ling Y, Hu LB, Huang J, Shen HW. Diminished excitatory synaptic transmission correlates with impaired spatial working memory in neurodevelopmental rodent models of schizophrenia. Pharmacol Biochem Behav. 2021;202:173103.

张旭强,徐立,凌毅,胡立斌,黄杰,沈浩。在精神分裂症的神经发育啮齿动物模型中,兴奋性突触传递减少与空间工作记忆受损相关。Pharmacol生物化学行为。2021年;202:173103。

Google Scholar

谷歌学者

Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry. 2006;59:1198–207.

Powell CM,Miyakawa T.啮齿动物模型中与精神分裂症相关的行为测试:一种独特的人类疾病?生物精神病学。2006年;59:1198年至207年。

Google Scholar

谷歌学者

Couture SM, Penn DL, Roberts DL. The functional significance of social cognition in schizophrenia: a review. Schizophr Bull. 2006;32:S44–63.

Couture SM,Penn DL,Roberts DL。社会认知在精神分裂症中的功能意义:综述。精神分裂症公牛。2006年;32:S44-63。

Google Scholar

谷歌学者

Penn DL, Spaulding W, Reed D, Sullivan M, Mueser KT, Hope DA. Cognition and social functioning in schizophrenia. Psychiatry. 1997;60:281–91.

Penn DL,Spaulding W,Reed D,Sullivan M,Mueser KT,Hope DA。精神分裂症的认知和社会功能。精神病学。1997年;60:281-91。

Google Scholar

谷歌学者

Dember WN, Fowler H. Spontaneous alternation behavior. Psychol Bull. 1958;55:412–28.

Dember WN,Fowler H.自发交替行为。心理公牛。1958年;55:412-28。

Google Scholar

谷歌学者

Sarmashghi M, Jadhav SP, Eden U. Efficient spline regression for neural spiking data. PLoS ONE. 2021;16:e0258321.

Sarmashghi M,Jadhav SP,Eden U.神经尖峰数据的有效样条回归。PLoS ONE。2021年;16: e0258321。

Google Scholar

谷歌学者

Vinepinsky E, Perchik S, Segev R. A generalized linear model of a navigation network. Front Neural Circuits. 2020;14:56.

Vinepinsky E,Perchik S,Segev R.导航网络的广义线性模型。前神经电路。2020年;14: 。

Google Scholar

谷歌学者

Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, et al. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci. 2013;7:60.

Catts VS,Fung SJ,Long LE,Joshi D,Vercammen A,Allen KM等。在正常神经发育的背景下反思精神分裂症。前细胞神经科学。2013年;7: 六十。

Google Scholar

谷歌学者

ECHRfPW Group, Haas SS, Ge R, Agartz I, Amminger GP, Andreassen OA, et al. Normative modeling of brain morphometry in clinical high risk for psychosis. JAMA Psychiatry. 2023;81:77–88.Chopra S, Segal A, Oldham S, Holmes A, Sabaroedin K, Orchard ER, et al. Network-based spreading of gray matter changes across different stages of psychosis.

ECHRfPW Group,Haas SS,Ge R,Agartz I,Amminger GP,Andreassen OA等。临床高风险精神病患者脑形态计量学的规范建模。JAMA精神病学。2023年;81:77–88。Chopra S,Segal A,Oldham S,Holmes A,Sabaroedin K,Orchard ER等。基于网络的灰质传播在精神病的不同阶段发生了变化。

JAMA Psychiatry. 2023;80:1246–57..

JAMA精神病学。2023年;80:1246-57。。

Google Scholar

谷歌学者

Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72.

Lieberman JA,Girgis RR,Brucato G,Moore H,Provenzano F,Kegeles L等。精神分裂症病理生理学中的海马功能障碍:早期发现和干预的选择性综述和假设。摩尔精神病学。2018年;23:1764-72年。

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors acknowledge support from Dr. Wei Li for assistance in the execution of the immunohistochemistry, Mr. Paolo Chio for support in the behavioral analyses, and Dr. Pietro Scaduto for assistance in the collection of in vivo electrophysiological data.FundingThese studies were funded by NIMH R01 grants (5R01MH123479, CT; R01MH120135, JY), NARSAD Young Investigator Grant (27821, JY), and funding from the Sumitomo Foundation (170456, JY), and the Whitehall Foundation (20190851, JY).Author informationAuthors and AffiliationsDepartment of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USADaniel S.

。资助这些研究由NIMH R01拨款(5R01MH123479,CT;R01MH120135,JY),NARSAD青年研究者拨款(27821,JY)以及住友基金会(170456,JY)和白厅基金会(20190851,JY)资助。作者信息作者和附属机构美国德克萨斯州达拉斯德克萨斯大学西南医学中心精神病学系Daniel S。

Scott, Muthumeenakshi Subramanian, Jun Yamamoto & Carol A. TammingaO’Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USADaniel S. Scott, Jun Yamamoto & Carol A. TammingaDepartment of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USAJun YamamotoAuthorsDaniel S.

Scott,Muthumeenakshi Subramanian,Jun Yamamoto&Carol A.TammingaO'Donnell Brain Institute,德克萨斯大学西南医学中心,德克萨斯州达拉斯,美国Daniel S.Scott,Jun Yamamoto&Carol A.Tamminga Department of Neuroscience,德克萨斯大学西南医学中心,德克萨斯州达拉斯,美国Jun Yamamoto作者Daniel S。

ScottView author publicationsYou can also search for this author in.

ScottView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarMuthumeenakshi SubramanianView author publicationsYou can also search for this author in

PubMed Google Scholarmauthumenakshi SubramanianView作者出版物您也可以在

PubMed Google ScholarJun YamamotoView author publicationsYou can also search for this author in

PubMed Google ScholarJun YamamotoView作者出版物您也可以在

PubMed Google ScholarCarol A. TammingaView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsThe conception and design of the study, as well as acquisition, analysis, and interpretation of data were performed by DSS, in addition to the drafting of the article JY performed the acquisition and analysis of the in vivo electrophysiology.

PubMed谷歌学术贡献这项研究的概念和设计,以及数据的获取,分析和解释都是由DSS进行的,除了起草文章之外,JY还进行了体内电生理学的获取和分析。

MS developed and analyzed the large data set from the in vivo electrophysiology using the machine learning algorithm. CAT participated in the conceptual basis and design of the study and assisted in the analysis and interpretation of data, revision of the article, and final approval of the version to be submitted.

MS使用机器学习算法开发并分析了来自体内电生理学的大量数据集。CAT参与了该研究的概念基础和设计,并协助分析和解释数据,修订文章以及最终批准提交的版本。

All authors have no conflict of interest to report.Corresponding authorsCorrespondence to.

。通讯作者通讯。

Jun Yamamoto or Carol A. Tamminga.Ethics declarations

山本郡或卡罗尔·A·塔明加。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments were performed with the relevant guidelines and regulations in accordance with protocols approved by the UT Southwestern Animal Resource Center (APN 2015-100852) and Institutional Animal Care and Use Committee.

所有实验均按照UT西南动物资源中心(APN 2015-100852)和机构动物护理和使用委员会批准的方案,按照相关指南和法规进行。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary MaterialRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料权利和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleScott, D.S., Subramanian, M., Yamamoto, J. et al. Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events.

转载和许可本文引用本文Scott,D.S.,Subramanian,M.,Yamamoto,J。等人。精神分裂症病理学反向翻译为小鼠显示海马活动过度,精神病行为和超同步事件。

Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02781-5Download citationReceived: 20 December 2023Revised: 27 September 2024Accepted: 01 October 2024Published: 16 October 2024DOI: https://doi.org/10.1038/s41380-024-02781-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

摩尔精神病学(2024)。https://doi.org/10.1038/s41380-024-02781-5Downloadhttps://doi.org/10.1038/s41380-024-02781-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供