EN
登录

心血管护理中的数字健康创新和人工智能:基于案例的综述

Digital health innovation and artificial intelligence in cardiovascular care: a case-based review

Nature 等信源发布 2024-10-17 04:53

可切换为仅中文


AbstractThis narrative review aims to equip clinicians with an understanding of how digital health innovations and artificial intelligence can be applied to clinical care pathways for cardiovascular prevention. We describe a case that highlights augmentative AI for the incidental detection of coronary artery calcium, a mobile application to improve patient adherence/engagement, large language models to enhance longitudinal patient communication and care, and limitations and strategies for the successful adoption of these technologies..

摘要本叙述性综述旨在使临床医生了解数字健康创新和人工智能如何应用于心血管预防的临床护理途径。我们描述了一个案例,该案例强调了用于偶然检测冠状动脉钙的增强AI,一个用于改善患者依从性/参与度的移动应用程序,用于增强纵向患者沟通和护理的大型语言模型,以及成功采用这些技术的局限性和策略。。

IntroductionThe World Health Organization (WHO) has encouraged healthcare systems to prioritize the development, evaluation, implementation, and expansion of digital health innovations (DHI) and to integrate these new technologies into existing health system infrastructures1. Similarly, in 2022, the Food and Drug Administration (FDA) commissioned a document focused on advancing the digital health landscape and highlighted the potential of DHI to improve access to care in underserved populations2.

引言世界卫生组织(WHO)鼓励医疗保健系统优先开发,评估,实施和扩展数字健康创新(DHI),并将这些新技术整合到现有的医疗保健系统基础设施中1。同样,在2022年,美国食品和药物管理局(FDA)委托编写了一份文件,重点是推进数字健康领域,并强调了DHI在改善服务不足人群获得护理方面的潜力2。

This has particular relevance for cardiovascular disease (CVD), which remains the leading cause of death worldwide3. A focus on lifestyle modification and adherence to effective preventive therapies is the cornerstone of CVD prevention and management, which can be augmented with advancing technology3.

这与心血管疾病(CVD)特别相关,心血管疾病仍然是全球死亡的主要原因3。关注生活方式的改变和坚持有效的预防性治疗是心血管疾病预防和管理的基石,这可以通过先进的技术来增强3。

DHI refers to healthcare delivered via the internet, wearable devices, mobile applications and emerging computational methods leveraging big data and artificial intelligence. Artificial intelligence (AI) is defined as the capability of a machine to imitate intelligent human behavior or perform tasks that normally require human intelligence (Fig.

DHI是指通过互联网、可穿戴设备、移动应用程序和利用大数据和人工智能的新兴计算方法提供的医疗保健。人工智能(AI)被定义为机器模仿智能人类行为或执行通常需要人类智能的任务的能力(图)。

1). A continuum of AI exists that ranges from situations where machines repeat many human tasks (assisted), enable humans to do more than they are capable of doing (augmented) and fully accomplish tasks on their own without human intervention (autonomous)1. The use of AI to improve medical diagnosis and risk assessment has increased dramatically over the past decade4,5.

1) 。人工智能的连续体存在,范围从机器重复许多人工任务(辅助)的情况,使人类能够做比他们能够做的更多(增强),并且在没有人工干预(自主)的情况下完全独立完成任务1。在过去的十年中,人工智能用于改善医学诊断和风险评估的情况急剧增加4,5。

Since the FDA first began reviewing AI-enabled devices in 1995, over 800 clinical AI-assisted algorithms have been approved, with cardiovascular disease among the top specialities for FDA-approved AI algorithms6.Fig. 1: Artificial intelligence overview.A Deep learning is a .

自1995年FDA首次开始审查人工智能设备以来,已经批准了800多种临床人工智能辅助算法,心血管疾病是FDA批准的人工智能算法的顶级专业6。图1:人工智能概述。深入学习是一种。

Data availability

数据可用性

No datasets were generated or analysed during the current study.

ReferencesHassani, H., Silva, E. S., Unger, S., TajMazinani, M. & Mac Feely, S. Artificial intelligence (AI) or intelligence augmentation (IA): what is the future? AI 1, 143–155 (2020).Article

参考文献Hassani,H.,Silva,E.S.,Unger,S.,TajMazinani,M。&Mac Feely,S。人工智能(AI)或智能增强(IA):未来是什么?AI 1143-155(2020)。文章

Google Scholar

谷歌学者

FDA. Spotlight: digital health regulatory science research opportunities. (2022).Martin, S. S. et al. 2024 Heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation 149, e347–e913 (2024).Article

FDA。聚焦:数字健康监管科学研究机会。(2022年)。Martin,S.S.等人,《2024年心脏病和中风统计:美国心脏协会的美国和全球数据报告》。发行量149,e347–e913(2024)。文章

Google Scholar

谷歌学者

Golbus, J. R. et al. Digital technologies in cardiac rehabilitation: a science advisory from the American Heart Association. Circulation 148, 95–107 (2023).Article

Golbus,J.R.等人,《心脏康复中的数字技术:美国心脏协会的科学咨询》。。文章

Google Scholar

谷歌学者

Eng, D. et al. Automated coronary calcium scoring using deep learning with multicenter external validation. npj Digit. Med. 4, 88 (2021).Article

Eng,D。等人。使用深度学习和多中心外部验证的自动冠状动脉钙评分。npj数字。医学杂志4,88(2021)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lessmann, N. et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans. Med. Imaging 37, 615–625 (2018).Article

Lessmann,N。等人。使用具有扩张卷积的深度神经网络在低剂量胸部CT中进行自动钙评分。IEEE Trans。医学影像37615-625(2018)。文章

Google Scholar

谷歌学者

de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaging 38, 2127–2138 (2019).Article

de Vos,B.D.等人。心脏和胸部CT中的直接自动冠状动脉钙评分。IEEE Trans。医学成像382127-2138(2019)。文章

Google Scholar

谷歌学者

Lessmann, N. et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Procc. SPIE (2016).Arad, Y., Goodman, K. J., Roth, M., Newstein, D. & Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St.

Lessmann,N。等人。低剂量胸部CT筛查研究中用于自动冠状动脉钙评分的深度卷积神经网络。Procc。SPIE(2016)。Arad,Y.,Goodman,K.J.,Roth,M.,Newstein,D。&Guerci,A.D。冠状动脉钙化,冠状动脉疾病危险因素,C反应蛋白和动脉粥样硬化性心血管疾病事件:St。

Francis Heart Study. J. Am. Coll. Cardiol. 46, 158–165 (2005).Article .

弗朗西斯心脏研究。J、 美国科罗拉多州。心脏病。46158-165(2005)。文章。

CAS

中科院

Google Scholar

谷歌学者

Lloyd-Jones, D. M. et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 73, 3153–3167 (2019).Article .

Lloyd Jones,D.M.等人,《使用风险评估工具指导动脉粥样硬化性心血管疾病一级预防决策:美国心脏协会和美国心脏病学会的特别报告》。J、 美国科罗拉多州。心脏病。733153-3167(2019)。文章。

Google Scholar

谷歌学者

Munden, R. F. et al. Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J. Am. Coll. Radiol. 15, 1087–1096 (2018).Article

Munden,R.F.等人,《管理胸部CT的偶然发现:纵隔和心血管发现》。ACR偶然发现委员会的白皮书。J、 美国科罗拉多州。。151087-1096(2018)。文章

Google Scholar

谷歌学者

Hecht, H. S. et al. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the society of cardiovascular computed tomography and society of thoracic radiology. J. Cardiovasc. Comput. Tomogr. 11, 74–84 (2017).Article

Hecht,H.S.等人,2016 SCCT/STR非对比非心脏胸部CT扫描冠状动脉钙评分指南:心血管计算机断层扫描学会和胸部放射学会的报告。J、 心血管。计算机。托莫格。11,74-84(2017)。文章

Google Scholar

谷歌学者

Kirsch, J., Martinez, F., Lopez, D., Novaro, G. M. & Asher, C. R. National trends among radiologists in reporting coronary artery calcium in non-gated chest computed tomography. Int. J. Cardiovasc. Imaging 33, 251–257 (2017).Article

Kirsch,J.,Martinez,F.,Lopez,D.,Novaro,G.M。和Asher,C.R。放射科医师在非门控胸部计算机断层扫描中报告冠状动脉钙的国家趋势。国际心血管杂志。成像33251-257(2017)。文章

Google Scholar

谷歌学者

Grant, J. K. et al. Overcoming barriers to implementation: improving incidental coronary calcium reporting on non-EKG gated chest CT scans. J. Clin. Lipidol. https://doi.org/10.1016/j.jacl.2024.04.129 (2024).Weiss, J. et al. Deep learning to estimate cardiovascular risk from chest radiographs.

Grant,J.K.等人,《克服实施障碍:改进非心电图门控胸部CT扫描中偶然的冠状动脉钙报告》。J、 临床。利皮多尔。https://doi.org/10.1016/j.jacl.2024.04.129(2024年)。Weiss,J.等人。从胸部X光片评估心血管风险的深度学习。

Ann. Intern. Med. 177, 409–417 (2024).Ueda, D. et al. Artificial intelligence-based detection of aortic stenosis from chest radiographs. Eur. Heart J. Digit. Health 3, 20–28 (2021).Article .

安,实习生。医学177409-417(2024)。Ueda,D.等人。基于人工智能的胸片主动脉瓣狭窄检测。欧洲心脏病J.数字。健康3,20-28(2021)。文章。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ueda, D. et al. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit. Health 5, e525–e533 (2023).Article

Ueda,D.等人。基于人工智能的胸片心脏功能分类模型:多机构回顾性模型开发和验证研究。柳叶刀数字。健康5,e525–e533(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Khera, R. et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice. J. Am. Coll. Cardiol. 84, 97–114 (2024).Article

Khera,R.等人,《用人工智能改变心血管护理:从发现到实践》。J、 美国科罗拉多州。心脏病。84,97-114(2024)。文章

Google Scholar

谷歌学者

Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digit. Med. 3, 17 (2020).Article

Sutton,R.T.等人,《临床决策支持系统概述:益处、风险和成功策略》。npj数字。医学3,17(2020)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pagidipati, N. J. et al. Coordinated care to optimize cardiovascular preventive therapies in type 2 diabetes: a randomized clinical trial. JAMA 329, 1261–1270 (2023).Article

Pagidipati,N.J.等人,《优化2型糖尿病心血管预防治疗的协调护理:一项随机临床试验》。JAMA 3291261–1270(2023)。文章

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marvel, F. A., Grant, J. K. & Martin, S. S. Clinician decision support tools: advances in lipid-lowering treatment intensification. Circulation 17, e010884 (2024).

Marvel,F.A.,Grant,J.K。&Martin,S.S。临床医生决策支持工具:降脂治疗强化的进展。循环17,e010884(2024)。

Google Scholar

谷歌学者

Adusumalli, S. et al. Effect of passive choice and active choice interventions in the electronic health record to cardiologists on statin prescribing: a cluster randomized clinical trial. JAMA Cardiol. 6, 40–48 (2021).

Adusumalli,S.等人。电子健康记录中被动选择和主动选择干预对心脏病专家他汀类药物处方的影响:一项集群随机临床试验。JAMA Cardiol公司。6,40-48(2021)。

Google Scholar

谷歌学者

Marvel, F. A. et al. Digital health intervention in acute myocardial infarction. Circulation 14, e007741 (2021).

Marvel,F.A.等人,《急性心肌梗死的数字健康干预》。循环14,e007741(2021)。

Google Scholar

谷歌学者

Jain, S. S. et al. Artificial intelligence in cardiovascular care—Part 2: applications. J. Am. Coll. Cardiol. 83, 2487–2496 (2024).Article

Jain,S.S.等人。人工智能在心血管护理中的应用第2部分:应用。J、 美国科罗拉多州。心脏病。832487-2496(2024)。文章

Google Scholar

谷歌学者

Clusmann, J. et al. The future landscape of large language models in medicine. Commun. Med. 3, 141 (2023).Article

Clusmann,J.等人,《医学大型语言模型的未来前景》。Commun公司。医学3141(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Phipps, J. et al. Early adverse physiological event detection using commercial wearables: challenges and opportunities. NPJ Digit. Med. 7, 136 (2024).Article

Phipps,J.等人,《使用商用可穿戴设备进行早期不良生理事件检测:挑战与机遇》。NPJ数字。医学杂志7136(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Williams, C. Y. et al. Use of a large language model to assess clinical acuity of adults in the emergency department. JAMA Netw. Open 7, e248895 (2024).Article

Williams,C.Y.等人。使用大型语言模型评估急诊科成年人的临床敏锐度。JAMA网络。开放7,e248895(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patel, T. A. et al. Spending analysis of machine learning–based communication nudges in oncology. NEJM AI 1, AIoa2300228 (2024).Article

Patel,T.A.等人,《肿瘤学中基于机器学习的通信推动的支出分析》。。文章

Google Scholar

谷歌学者

Ayers, J. W. et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 183, 589–596 (2023).Article

Ayers,J.W.等人比较了医生和人工智能聊天机器人对发布在公共社交媒体论坛上的患者问题的反应。JAMA实习生。医学183589-596(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, J. et al. A critical assessment of using ChatGPT for extracting structured data from clinical notes. npj Digit. Med. 7, 106 (2024).Article

Huang,J.等人。使用ChatGPT从临床笔记中提取结构化数据的批判性评估。npj数字。医学杂志7106(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).Article

Singhal,K。等人。大型语言模型编码临床知识。自然620172-180(2023)。文章

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Devaraj, A., Wallace, B. C., Marshall, I. J. & Li, J. J. Paragraph-level simplification of medical texts. In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics (Association for Computational Linguistics, 2021).Haupt, C. E. & Marks, M.

Devaraj,A.,Wallace,B.C.,Marshall,I.J。&Li,J.J。医学文本的段落级简化。在过程中。2021年计算语言学协会北美分会会议(计算语言学协会,2021年)。Haupt,C.E。和Marks,M。

AI-generated medical advice—GPT and beyond. Jama 329, 1349–1350 (2023).Article .

AI产生了GPT及其他医疗建议。Jama 3291349–1350(2023)。文章。

Google Scholar

谷歌学者

Ginsburg, G. S., Picard, R. W. & Friend, S. H. Key issues as wearable digital health technologies enter clinical care. N. Engl. J. Med. 390, 1118–1127 (2024).Article

Ginsburg,G.S.,Picard,R.W。和Friend,S.H。可穿戴数字健康技术进入临床护理的关键问题。N、 英语。J、 医学杂志3901118-1127(2024)。文章

Google Scholar

谷歌学者

Bhardwaj, V. et al. Cost-effectiveness of a digital health intervention for acute myocardial infarction recovery. Med. Care 59, 1023–1030 (2021).Article

Bhardwaj,V。等人。数字健康干预对急性心肌梗死恢复的成本效益。医学护理591023-1030(2021)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, Y. et al. National trends in racial and ethnic disparities in use of recommended therapies in adults with atherosclerotic cardiovascular disease, 1999-2020. JAMA Netw. Open 6, e2345964 (2023).Article

Lu,Y.等人,《1999-2020年动脉粥样硬化性心血管疾病成人推荐治疗中种族和民族差异的国家趋势》。JAMA网络。打开6,e2345964(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, W. E. et al. Strategies for the successful implementation of a novel iPhone loaner system (iShare) in mHealth interventions: prospective study. JMIR Mhealth Uhealth 7, e16391 (2019).Article

Yang,W.E.等人。在mHealth干预中成功实施新型iPhone借贷者系统(iShare)的策略:前瞻性研究。JMIR Mhealth Uhealth 7,e16391(2019)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, T. et al. Bridging the digital divide. JACC Adv. 2, 100587 (2023).Article

Johnson,T.等人,《弥合数字鸿沟》。JACC Adv.2100587(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weng, D. et al. Heart rate trajectories in patients recovering from acute myocardial infarction: A longitudinal analysis of Apple Watch heart rate recordings. Cardiovasc. Digit. Health J.l 2, 270–281 (2021).Article

Weng,D.等人,《急性心肌梗死恢复期患者的心率轨迹:苹果手表心率记录的纵向分析》。心血管。数字。健康J.l 2270-281(2021)。文章

Google Scholar

谷歌学者

Avula, V., Wu, K. C. & Carrick, R. T. Clinical applications, methodology, and scientific reporting of electrocardiogram deep-learning models: a systematic review. JACC Adv. 2, 100686 (2023).Wu, L. et al. Deep learning networks accurately detect ST-segment elevation myocardial infarction and culprit vessel.

Avula,V.,Wu,K.C。和Carrick,R.T。心电图深度学习模型的临床应用,方法和科学报告:系统综述。。Wu,L.等人。深度学习网络可准确检测ST段抬高型心肌梗死和罪犯血管。

Front. Cardiovasc. Med. 9, 797207 (2022).Article .

正面。心血管。医学杂志9797207(2022)。文章。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cohen-Shelly, M. et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur. Heart J. 42, 2885–2896 (2021).Article

Cohen Shelly,M.等人。使用人工智能对主动脉瓣狭窄进行心电图筛查。《欧洲心脏杂志》422885-2896(2021)。文章

Google Scholar

谷歌学者

Galloway, C. D. et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 4, 428–436 (2019).Article

Galloway,C.D.等人。从心电图筛查高钾血症的深度学习模型的开发和验证。JAMA Cardiol公司。。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raghunath, S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26, 886–891 (2020).Article

Raghunath,S.等人,《使用深度神经网络从12导联心电图电压数据预测死亡率》,《自然医学》26886-891(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Carrick, R. T. et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: a deep-learning approach. Heart Rhythm. 21, 1390–1397 (2024).Narang, A. et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use.

Carrick,R.T.等人。使用心电图识别肥厚型心肌病的高风险影像学特征:深度学习方法。心律。211390-1397(2024)。Narang,A。等人。深度学习算法的实用性,用于指导新手获取超声心动图以用于有限的诊断用途。

JAMA Cardiol. 6, 624–632 (2021).Article .

JAMA Cardiol公司。6624-632(2021)。文章。

Google Scholar

谷歌学者

Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020).Article

欧阳,D。等。基于视频的人工智能,用于心脏功能的逐搏评估。自然580252-256(2020)。文章

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krishna, H. et al. Fully automated artificial intelligence assessment of aortic stenosis by echocardiography. J. Am. Soc. Echocardiogr. 36, 769–777 (2023).Article

。J、 美国社会超声心动图。36769-777(2023)。文章

Google Scholar

谷歌学者

Milosevic, M., Jin, Q., Singh, A. & Amal, S. Applications of AI in multi-modal imaging for cardiovascular disease. Front. Radiol. 3, 1294068 (2024).Article

Milosevic,M.,Jin,Q.,Singh,A。&Amal,S。AI在心血管疾病多模式成像中的应用。正面。。31294068(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Vos, B. D., Lessmann, N., de Jong, P. A. & Išgum, I. Deep learning–quantified calcium scores for automatic cardiovascular mortality prediction at lung screening low-dose CT. Radiol. Cardiothorac. Imaging 3, e190219 (2021).Article

de Vos,B.D.,Lessmann,N.,DeJong,P.A。&Išgum,I。深度学习-定量钙评分,用于肺部筛查低剂量CT时的自动心血管死亡率预测。放射学。心胸。成像3,e190219(2021)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kotanidis, C. P. et al. Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19. Lancet Digit. Health 4, e705–e716 (2022).Article

Kotanidis,C.P.等人。从常规CT血管造影图构建血管炎症的定制放射转录组学特征:COVID-19的前瞻性结果验证研究。柳叶刀数字。健康4,e705–e716(2022)。文章

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Griffin, W. F. et al. AI evaluation of stenosis on coronary CTA, comparison with quantitative coronary angiography and fractional flow reserve: a CREDENCE trial substudy. JACC Cardiovasc. Imaging 16, 193–205 (2023).Article

Griffin,W.F.等。冠状动脉CTA狭窄的AI评估,与定量冠状动脉造影和血流储备分数的比较:CREDENCE试验子研究。。成像16193-205(2023)。文章

Google Scholar

谷歌学者

Nurmohamed, N. S. et al. Impact of atherosclerosis imaging-quantitative computed tomography on diagnostic certainty, downstream testing, coronary revascularization, and medical therapy: the CERTAIN study. Eur. Heart J. Cardiovasc. Imaging 25, 857–866 (2024).Article

Nurmohamed,N.S.等人,《动脉粥样硬化成像定量计算机断层扫描对诊断确定性、下游检测、冠状动脉血运重建和药物治疗的影响:特定研究》。欧洲心脏杂志Cardiovasc。成像25857-866(2024)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dundas, J. et al. Interaction of AI-enabled quantitative coronary plaque volumes on coronary CT angiography, FFRCT, and clinical outcomes: a retrospective analysis of the ADVANCE registry. Circ. Cardiovasc. Imaging 17, e016143 (2024).Article

Dundas,J.等人。AI的相互作用使冠状动脉CT血管造影,FFRCT和临床结果的定量冠状动脉斑块体积成为可能:ADVANCE登记的回顾性分析。保监会。心血管。。文章

Google Scholar

谷歌学者

Koo, B.-K. et al. Artificial intelligence–enabled quantitative coronary plaque and hemodynamic analysis for predicting acute coronary syndrome. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2024.03.015 (2024).Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y.

Koo,B.-K.等人。人工智能使定量冠状动脉斑块和血流动力学分析能够预测急性冠状动脉综合征。。https://doi.org/10.1016/j.jcmg.2024.03.015(2024年)。塞耶德·卡兰塔里,L.,张,H.,麦克德莫特,MBA,陈,I.Y。

& Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).Article .

&Ghassemi,M。人工智能算法在服务不足的患者群体中应用于胸部X光片的诊断不足偏倚。《自然医学》272176-2182(2021)。文章。

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, J., Galal, G., Etemadi, M. & Vaidyanathan, M. Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Med. Inform. 10, e36388 (2022).Article

Huang,J.,Galal,G.,Etemadi,M。和Vaidyanathan,M。临床机器学习模型中种族偏见的评估和缓解:范围审查。JMIR医学通报。。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, V. et al. Physician-and patient-elicited barriers and facilitators to implementation of a machine learning–based screening tool for peripheral arterial disease: preimplementation study with physician and patient stakeholders. JMIR Cardio 7, e44732 (2023).Article

Ho,V。等人。医生和患者引发了实施基于机器学习的外周动脉疾病筛查工具的障碍和促进者:与医生和患者利益相关者进行的实施前研究。JMIR Cardio 7,e44732(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bottomley, D. & Thaldar, D. Liability for harm caused by AI in healthcare: an overview of the core legal concepts. Front. Pharmacol. 14, 1297353 (2023).Article

Bottomley,D。和Thaldar,D。医疗保健中人工智能造成的伤害责任:核心法律概念概述。正面。药理学。141297353(2023)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsNo funding was provided for data collection, data analysis, manuscript review, writing, preparation, or the decision to submit this manuscript for publication.Author informationAuthor notesThese authors contributed equally: Jelani K. Grant, Aamir Javaid.Authors and AffiliationsJohns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USAJelani K.

下载参考文献致谢没有为数据收集,数据分析,稿件审查,写作,准备或决定提交这份稿件发表提供资金。作者信息作者注意到这些作者做出了同样的贡献:Jelani K.Grant,Aamir Javaid。作者和附属机构约翰·霍普金斯·西卡龙心血管疾病预防中心,马里兰州巴尔的摩,USAJelani K。

Grant, Aamir Javaid, Ali Asghar Kassamali, Chang H. Kim, Nino Isakadze, Michael J. Blaha, Seamus P. Whelton, Roger S. Blumenthal, Seth S. Martin & Francoise A. MarvelDepartment of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USAJelani K. Grant, Aamir Javaid, Richard T. Carrick, Chang H.

格兰特(Grant),艾米尔·贾维德(Aamir Javaid),阿里·阿斯加尔·卡萨马利(Ali Asghar Kassamali),常H.金(Chang H.Kim),尼诺·伊萨卡泽(Nino Isakadze),迈克尔·J·布拉哈(Michael J.Blaha),西莫斯·P·惠尔顿(Seamus P.Whelton),罗杰·S·布卢门塔尔(Roger S.Blumenthal),塞思·S·马丁(Seth S.Martin)和弗朗索瓦·马维尔(Francoise A.Marvel)马里兰州巴尔的摩。

Kim, Nino Isakadze, Katherine C. Wu, Michael J. Blaha, Seamus P. Whelton, Armin Arbab-Zadeh, Roger S. Blumenthal, Seth S. Martin & Francoise A. MarvelDepartment of Internal Medicine, Massachusetts General Hospital, Boston, MA, USAMargaret KoesterNaples Comprehensive Health System Rooney Heart Institute, Naples, FL, USACarl OrringerWelch Center for Prevention, Epidemiology & Clinical Research, Johns Hopkins University, Baltimore, MD, USASeth S.

Kim,Nino Isakadze,Katherine C.Wu,Michael J.Blaha,Seamus P.Whelton,Armin Arbab Zadeh,Roger S.Blumenthal,Seth S.Martin&Francoise A.Marvel马萨诸塞州总医院内科,马萨诸塞州波士顿,美国马萨诸塞州马格丽特·科斯特·那不勒斯综合卫生系统鲁尼心脏研究所,佛罗里达州那不勒斯,美国卡尔·奥林格·韦尔奇预防,流行病学和临床研究中心,约翰·霍普金斯大学,巴尔的摩,马里兰州,美国塞思·S。

MartinAuthorsJelani K. GrantView author publicationsYou can also search for this author in.

MartinAuthorsJelaniK.GrantView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarAamir JavaidView author publicationsYou can also search for this author in

PubMed谷歌学者JavaidView作者出版物您也可以在

PubMed Google ScholarRichard T. CarrickView author publicationsYou can also search for this author in

PubMed Google ScholarRichard T.CarrickView作者出版物您也可以在

PubMed Google ScholarMargaret KoesterView author publicationsYou can also search for this author in

PubMed Google ScholarMargaret Koestreview作者出版物您也可以在

PubMed Google ScholarAli Asghar KassamaliView author publicationsYou can also search for this author in

PubMed Google ScholarAli Asghar KassamaliView作者出版物您也可以在

PubMed Google ScholarChang H. KimView author publicationsYou can also search for this author in

PubMed Google ScholarChang H.KimView作者出版物您也可以在

PubMed Google ScholarNino IsakadzeView author publicationsYou can also search for this author in

PubMed Google ScholarKatherine C. WuView author publicationsYou can also search for this author in

PubMed Google ScholarKatherine C.WuView作者出版物您也可以在

PubMed Google ScholarMichael J. BlahaView author publicationsYou can also search for this author in

PubMed Google Scholarmamichael J.BlahaView作者出版物您也可以在

PubMed Google ScholarSeamus P. WheltonView author publicationsYou can also search for this author in

PubMed Google ScholarSeamus P.WheltonView作者出版物您也可以在

PubMed Google ScholarArmin Arbab-ZadehView author publicationsYou can also search for this author in

PubMed Google ScholarArmin Arbab ZadehView作者出版物您也可以在

PubMed Google ScholarCarl OrringerView author publicationsYou can also search for this author in

PubMed Google ScholarCarl OrringerView作者出版物您也可以在

PubMed Google ScholarRoger S. BlumenthalView author publicationsYou can also search for this author in

PubMed Google ScholarRoger S.BlumenthalView作者出版物您也可以在

PubMed Google ScholarSeth S. MartinView author publicationsYou can also search for this author in

PubMed Google ScholarSeth S.MartinView作者出版物您也可以在

PubMed Google ScholarFrancoise A. MarvelView author publicationsYou can also search for this author in

PubMed Google ScholarFrancoise A.MarvelView作者出版物您也可以在

PubMed Google ScholarContributionsJ.K.G., A.J., and R.T.C. wrote the main manuscript. J.K.G. and A.J. contributed equally as co-first authors. M.K. prepared Figs. 2 and 5. A.K. prepared Figs. 3 and 4. C.H.K., N.I., K.C.W., M.J.B., S.P.W., A.A.-Z., C.O., R.S.B., S.S.M., and F.A.M.

PubMed谷歌学术贡献。K、 G.,A.J。和R.T.C.撰写了主要手稿。J、 K.G.和A.J.作为共同第一作者做出了同样的贡献。M、 K.准备图2和图5。A、 K.准备图3和图4。C、 H.K.,N.I.,K.C.W.,M.J.B.,S.P.W.,A.A.-Z.,C.O.,R.S.B.,S.S.M。和F.A.M。

reviewed the manuscript and provided feedback and suggestions. F.A.M. supervised the manuscript and was the senior author.Corresponding authorCorrespondence to.

审阅了稿件并提供了反馈和建议。F、 上午监督了手稿,是资深作者。对应作者对应。

Francoise A. Marvel.Ethics declarations

弗朗索瓦·马维尔。道德宣言

Competing interests

相互竞争的利益

Under a license agreement between Corrie Health and the Johns Hopkins University, the university owns equity in Corrie Health. F.A.M. and S.S.M. are entitled to royalty distributions related to the technology. Additionally, S.S.M. and F.A.M. are cofounders of and hold equity in Corrie Health. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies.

根据科里健康和约翰·霍普金斯大学之间的许可协议,该大学拥有科里健康的股权。F、 A.M.和S.S.M.有权获得与技术相关的版税分配。此外,S.S.M.和F.A.M.是Corrie Health的共同创始人并持有其股权。约翰·霍普金斯大学已根据其利益冲突政策审查并批准了这一安排。

In addition, F.A.M. and S.S.M. have received material support for research from Apple and iHealth. S.S.M. is on the Advisory Board for Care Access and reports personal consulting fees from Amgen, Arrowhead, AstraZeneca, BMS, Chroma, HeartFlow, Kaneka, New Amsterdam, Novartis, Novo Nordisk, Pfizer, Premier, Sanofi, 89bio, and Verve Therapeutics.

此外,F.A.M.和S.S.M.还获得了苹果和iHealth的物质支持。S、 S.M.是护理访问咨询委员会的成员,并报告了安进(Amgen)、箭头(Arrowhead)、阿斯利康(AstraZeneca)、BMS、Chroma、HeartFlow、卡内卡(Kaneka)、新阿姆斯特丹(New Amsterdam)、诺华(Novartis)、诺和诺德(Novo Nordisk)、辉瑞(Pfizer)、Premier、赛诺菲(Sanofi)、89bio和Verve Therapeutics)的。

S.S.M. reports research support from the American Heart Association Health Technologies and Innovation Strategically Focused Research Network (20SFRN35380046, 20SFRN35490003), a collaborative project of this network (#878924), and additional American Heart Association support (#882415, #946222). He also reports support from the Patient-Centered Outcomes Research Institute (ME-2019C1-15 328, IHS-2021C3-24147), the National Institutes of Health (NIH) (P01 HL108800 and R01AG071032), the David and June Trone Family Foundation, the Pollin Digital Innovation Fund, Sandra and Larry Small, Google, and Merck.

S、 S.M.报告了美国心脏协会健康技术与创新战略重点研究网络(20SFRN3538004620SFRN35490003)的研究支持,该网络是该网络的一个合作项目(#878924),以及美国心脏协会的额外支持(#882415,#946222)。他还报告了以患者为中心的成果研究所(ME-2019C1-15 328,IHS-2021C3-24147),美国国立卫生研究院(NIH)(P01 HL108800和R01AG071032),David和June Trone家庭基金会,Pollin数字创新基金,Sandra和Larry Small,谷歌和默克的支持。

F.A.M. reports personal consulting fees from Apple, Amgen, and Kaneka. The other authors declare no competing interests..

F、 A.M.报告了苹果、安进和卡内卡的个人咨询费。其他作者声明没有利益冲突。。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleGrant, J.K., Javaid, A., Carrick, R.T. et al. Digital health innovation and artificial intelligence in cardiovascular care: a case-based review.

转载和许可本文引用本文Grant,J.K.,Javaid,A.,Carrick,R.T。等人。心血管护理中的数字健康创新和人工智能:基于案例的评论。

npj Cardiovasc Health 1, 26 (2024). https://doi.org/10.1038/s44325-024-00020-yDownload citationReceived: 09 July 2024Accepted: 22 August 2024Published: 17 October 2024DOI: https://doi.org/10.1038/s44325-024-00020-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

npj心血管健康1,26(2024)。https://doi.org/10.1038/s44325-024-00020-yDownload引文收到日期:2024年7月9日接受日期:2024年8月22日发布日期:2024年10月17日OI:https://doi.org/10.1038/s44325-024-00020-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供