EN
登录

黑种草植物基因型农业形态特征的探索性分析,以确定诱变剂秋水仙素的改善/非改善作用

Exploratory analysis of agro-morphological characteristics in Nigella sativa L. plant genotypes to determine mutagen colchicine ameliorative/ non-ameliorative impacts

Nature 等信源发布 2024-10-18 02:14

可切换为仅中文


AbstractThis experimental study aimed to elucidate the optimal colchicine concentration for inducing polyploidy and to examine the morphological effects on Nigella sativa L. (family Ranunculaceae) plants recognized as ‘Kalonji’ in India. Here, seeds were exposed with different concentration of colchicine ranging from 0.025 to 0.4% with varying time duration (24–48 h).

摘要本实验研究旨在阐明诱导多倍体的最佳秋水仙碱浓度,并研究其对印度被认为是“卡隆吉”的黑种草(毛茛科)植物的形态学影响。在这里,种子暴露于不同浓度的秋水仙碱,范围从0.025%到0.4%,持续时间不同(24-48小时)。

The agro-morphological attributes and chromosome counts of the putative polyploids were compared with control diploid plants, revealing significant differences. The ploidy level determined by chromosome counts revealed that 0.05–0.1% concentration of colchicine induced tetraploids within both plant genotypes for 24 h and 48 h.

将推定的多倍体的农业形态学属性和染色体计数与对照二倍体植物进行比较,发现显着差异。通过染色体计数确定的倍性水平表明,在两种植物基因型中,0.05–0.1%浓度的秋水仙碱诱导了24小时和48小时的四倍体。

However, results based on agro-morphological trait correlation analysis revealed more significant association among yield traits at 0.1% concentration and the principal component analysis revealed that the maximum possible ameliorative effect of the colchicine dose was the lowest concentration (0.025% for a 48-hour exposure time) for the AN1 genotype; likewise, a 0.05% concentration established a more positive association in terms of growth and yield attributes for the AN20 genotype.

然而,基于农业形态性状相关性分析的结果显示,在0.1%浓度下,产量性状之间存在更显着的相关性,主成分分析显示秋水仙碱剂量的最大可能改善作用是AN1基因型的最低浓度(48小时暴露时间为0.025%);同样,0.05%的浓度在AN20基因型的生长和产量属性方面建立了更积极的关联。

This study demonstrated that low dosages (0.025% and 0.1%) strongly impact plant growth and yield, whereas higher dosages obliterate these positive effects and add destructive characteristics within plants which ultimately reduces yield..

这项研究表明,低剂量(0.025%和0.1%)强烈影响植物的生长和产量,而较高剂量会消除这些积极影响,并增加植物内部的破坏性特征,最终降低产量。。

IntroductionNigella sativa L. (Kalonji) is an important commercial minor seed spice crop that is cultivated in few regions of India. Its distribution expanded from the Mediterranean region through West Asia to the North Indian region. Many tropical and subtropical countries that cultivate Nigella are India, Bangladesh, Pakistan, Egypt, Iraq, Nepal, Saudi Arabia, Turkey, southern Europe, Syria and Sri Lanka1.

引言Nigella sativa L.(Kalonji)是一种重要的商业小型种子香料作物,在印度少数地区种植。其分布范围从地中海地区通过西亚扩展到北印度地区。许多种植尼日利亚的热带和亚热带国家是印度、孟加拉国、巴基斯坦、埃及、伊拉克、尼泊尔、沙特阿拉伯、土耳其、南欧、叙利亚和斯里兰卡。

India is the world’s largest global producer of Nigella, even though its cultivation is limited to a few states, such as Punjab, Assam, Bengal, Bihar, Gangetic Plains, Himachal Pradesh, and Maharashtra2. The genus Nigella comprises approximately 20 species of annual herbs worldwide. However, the only species Nigella sativa is widely popular as an edible species consumed in the form of seeds and as oil worldwide.

印度是世界上最大的尼日利亚生产国,尽管其种植仅限于旁遮普、阿萨姆邦、孟加拉、比哈尔邦、恒河平原、喜马偕尔邦和马哈拉施特拉邦等少数几个州。黑种草属在世界范围内约有20种一年生草本植物。然而,唯一的物种Nigella sativa作为一种食用物种在世界范围内以种子和油的形式消费而广受欢迎。

It has a very appealing primitive flower characterized by a colorful bluish white petalloid sepals and small suppressed petals. Its fruit is a capsule, which is the outcome of a superior semicarpous ovary that contains multiple black-colored seeds.The seeds of Nigella species are aromatic, and their oil has a strong pungent odor, which is very peculiar to this plant.

它有一种非常吸引人的原始花,其特征是彩色的蓝白色花瓣状萼片和小的抑制花瓣。它的果实是一个蒴果,它是上半心皮子房的产物,子房含有多个黑色种子。黑种草的种子很芳香,它们的油有强烈的刺鼻气味,这是这种植物所特有的。

Along with its wild species found in India, Nigella sativa has been widely used as a condiment and spice since ancient times in pickles as well as in curry as a panchforan and also for the treatment of various diseases3 and infections, such as asthma, bronchitis, headache, rheumatism, paralysis, inflammation, and hypertension, very traditionally4.

除了在印度发现的野生物种外,自古以来,Nigella sativa就被广泛用作泡菜和咖喱中的调味品和调味品,作为一种煎饼,也被用于治疗各种疾病和感染,如哮喘,支气管炎,头痛,风湿,瘫痪,炎症和高血压,非常传统4。

It is an annual flowering herb that is a combination of various potential enduring properties, such as spice, condiment, seasoning, and flavoring agents. Its oil possesses numerous therapeutic properties5, such as nutritional, healthical, neutraceutica.

它是一种一年生开花草本植物,是各种潜在持久特性的组合,例如香料,调味品,调味品和调味剂。它的油具有许多治疗特性5,例如营养,保健,中性。

Data availability

数据可用性

The datasets analyzed during the current study available from the corresponding author on reasonable request.

本研究期间分析的数据集可根据合理要求从通讯作者处获得。

ReferencesMajeed, A. et al. Nigella sativa L.: Uses in traditional and contemporary medicines – An overview. Acta Ecol. Sin. 41, 253–258 (2021).Article

参考文献Majeed,A。等人。Nigella sativa L.:在传统和现代药物中的用途-概述。经济学学报。罪恶。41253-258(2021)。文章

Google Scholar

谷歌学者

Thakur, S., Kaurav, H. & Chaudhary, G. Nigella sativa (Kaloajblack seedk Semiracleiracle). Int. J. Res. Rev. 8, 342–357 (2021).Article

Thakur,S.,Kaurav,H。&Chaudhary,G。Nigella sativa(Kaloajblack seedk Semiracleiracle)。《国际法院判例汇编》第8342-357版(2021年)。文章

Google Scholar

谷歌学者

Huchchannanavar, S., Yogesh, L. N. & Prashant, S. M. The black seed Nigella sativa: A wonder seed. Int. J. Chem. Stud. 73, 1320–1324 (2019).

Huchchannanavar,S.,Yogesh,L.N。和Prashant,S.M。黑籽黑种草:一种神奇的种子。国际化学杂志。螺柱731320–1324(2019)。

Google Scholar

谷歌学者

Hannan, M. A. et al. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 13, 1784 (2021).Article

Hannan,M.A.等人,《黑孜然(Nigella sativa L.):植物化学,健康益处,分子药理学和安全性的综合评论》。营养素。131784(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahmad, A. et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 3, 337–352 (2013).Article

Ahmad,A。等人。关于黑种草治疗潜力的综述:一种神奇的草药。亚洲太平洋。J、 托普。生物医学。337-352(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Charles, D. J. Nigella. In Antioxidant Properties of Spices, Herbs and Other Sources. 415–426 (Springer, 2012). https://doi.org/10.1007/978-1-4614-4310-0_40Ahmad, M. F. et al. An updated knowledge of black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties.

查尔斯·D·J·奈杰拉。香料,草药和其他来源的抗氧化特性。415-426(Springer,2012)。https://doi.org/10.1007/978-1-4614-4310-0_40Ahmad,M.F。等人。黑籽(Nigella sativa Linn。)的最新知识:植物化学成分和药理特性的综述。

J. Herb. Med. 25, 100404 (2021).Article .

J、 赫伯。医学25100404(2021)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Ali, B. H. & Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 17, 299–305 (2003).Article

Ali,B.H。&Blunden,G。Nigella sativa的药理学和毒理学特性。植物醚。第17299-305号决议(2003年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mahmoud, H. S. et al. The effect of dietary supplementation with Nigella sativa (black seeds) mediates immunological function in male Wistar rats. Sci. Rep. 11, 7542 (2021).Article

Mahmoud,H.S.等人。膳食中补充黑籽(黑籽)对雄性Wistar大鼠免疫功能的影响。科学。代表117542(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Albakry, Z. et al. Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae. 8, 575 (2022).Article

Albakry,Z.等人。黑孜然(Nigella sativa L.)种子的营养成分和挥发性化合物,脂肪酸成分和生育酚,多酚及其精油的抗氧化活性。园艺学。8575(2022)。文章

Google Scholar

谷歌学者

Burdock, G. A. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul. Toxicol. Pharmacol. 128, 105088 (2022).Article

Burdock,G.A。黑孜然(Nigella sativa L.)作为食品成分和推定治疗剂的评估。规则。。药理学。128105088(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yadav, P., Jaiswal, D. K. & Sinha, R. K. Climate change. In Global Climate Change. 151–174 (Elsevier, 2021).https://doi.org/10.1016/B978-0-12-822928-6.00010-1. Spice Board India. Spice Board, Ministry of Commerce and Industry, Government of India (2015).Gidwani, B., Bhattacharya, R., Shukla, S.

Yadav,P.,Jaiswal,D.K。和Sinha,R.K。气候变化。在全球气候变化中。151-174(Elsevier,2021)。https://doi.org/10.1016/B978-0-12-822928-6.00010-1.印度香料局。印度政府工商部香料委员会(2015年)。吉德瓦尼(Gidwani),巴塔查里亚(Bhattacharya),舒克拉(Shukla)。

S. & Pandey, R. K. Indian spices: Past, present and future challenges as the engine for bio-enhancement of drugs: Impact of COVID‐19. J. Sci. Food Agric. 102, 3065–3077 (2022).Article .

S、 &Pandey,R.K。印度香料:作为药物生物增强引擎的过去,现在和未来的挑战:新型冠状病毒的影响。J、 科学。粮食农业。1023065-3077(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Babu, K. N. et al. Plant biotechnology-its role in improvement of spices. Indian J. Agric. Sci. 68, 8 (1998).

Babu,K.N.等人,《植物生物技术在香料改良中的作用》。印度J.Agric。科学。68,8(1998)。

Google Scholar

谷歌学者

Chaikam, V. et al. Improving the efficiency of colchicine-based chromosomal doubling of Maize haploids. Plants. 9, 459 (2020).Article

Chaikam,V。等人。提高基于秋水仙碱的玉米单倍体染色体加倍的效率。植物。9459(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khan, M. N. E. A. et al. Morphological and anatomical characterization of colchicine-induced polyploids in watermelon. Hortic. Environ. Biotechnol. 64, 461–474 (2023).Article

Khan,M.N.E.A.等人。秋水仙碱诱导的西瓜多倍体的形态学和解剖学特征。霍特语。环境。生物技术。64461-474(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Jeloudar, N. I., Chamani, E., Shokouhian, A. & Zakaria, R. A. Induction and identification of polyploidy by colchicine treatment in Lilium regale. Cytologia. 84, 271–276 (2019).Article

Jeloudar,N.I.,Chamani,E.,Shokouhian,A。&Zakaria,R.A。通过秋水仙碱处理在百合中诱导和鉴定多倍体。细胞学。84271-276(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Sapra, S. et al. Colchicine and its various physicochemical and biological aspects. Med. Chem. Res. 22, 531–547 (2013).Article

Sapra,S。等人。秋水仙碱及其各种物理化学和生物学方面。医学化学。第22531-547号决议(2013年)。文章

CAS

中科院

Google Scholar

谷歌学者

Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants. 26, 271–279 (2020).Article

Bhuvaneswari,G.,Thirugnanasampandan,R。&Gogullamnath,M。秋水仙碱诱导的四倍体对柑橘柠檬(L.)Osbeck的形态,细胞学,精油组成,基因表达和抗氧化活性的影响。生理学。分子生物学。植物。26271-279(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, G. et al. Colchicine induced mutation in Nigella sativa plant for the assessment of morpho-physiological and biochemical parameter vis-a-vis in vitro anti-inflammatory activity. TOBIOTJ 15, 173–182 (2021).Gupta, G. et al. Colchicine induced mutation in Nigella sativa plant for the assessment of morpho-physiological and biochemical parameter vis-a-vis in vitro anti-inflammatory activity.

Gupta,G。等人。秋水仙碱诱导的黑种草植物突变,用于评估形态生理和生化参数的体外抗炎活性。TOBIOTJ 15173-182(2021)。Gupta,G。等人。秋水仙碱诱导的黑种草植物突变,用于评估形态生理和生化参数的体外抗炎活性。

TOBIOTJ 15, 173–182 (2021).Nirmal Babu, K. et al. Biotechnological approaches in improvement of spices: A review. In Plant Biology and Biotechnology (eds Bahadur, B., Rajam, V., Sahijram, M. & Krishnamurthy, K. V.) L. 487–516 (Springer India, 2015). https://doi.org/10.1007/978-81-322-2283-5_25.Chapter .

TOBIOTJ 15173-182(2021)。。《植物生物学与生物技术》(编辑Bahadur,B.,Rajam,V.,Sahijram,M。&Krishnamurthy,K.V。)L.487-516(Springer India,2015)。https://doi.org/10.1007/978-81-322-2283-5_25.Chapter。

Google Scholar

谷歌学者

Gebremedin, B. D., Asfaw, B. T., Mengesha, W. A. & Abebe, K. A. Genetic diversity of Ethiopian black cumin (Nigella sativa L.) based on morpho-agronomic characteristics. Euphytica. 220, 51 (2024).Article

Gebremedin,B.D.,Asfaw,B.T.,Mengesha,W.A。和Abebe,K.A。基于形态农艺特征的埃塞俄比亚黑孜然(Nigella sativa L.)的遗传多样性。Euphytica公司。220,51(2024)。文章

CAS

中科院

Google Scholar

谷歌学者

Cabahug, R. A. M., Ha, M. K. T. T., Lim, K. B. & Hwang, Y. J. LD50 determination and phenotypic evaluation of three Echeveria varieties induced by chemical mutagens. Toxicol. Environ. Health Sci. 12, 1–9 (2020).Article

。。环境。健康科学。12,1-9(2020)。文章

Google Scholar

谷歌学者

Nasirvand, S., Zakaria, R. A., Zare, N. & Esmaeilpoor, B. Polyploidy induction in parsley (Petroselinum crispum L.) by colchicine treatment. Cytologia. 83, 393–396 (2018).Article

Nasirvand,S.,Zakaria,R.A.,Zare,N。和Esmaeilpoor,B。通过秋水仙碱处理在欧芹(Petroselinum crispum L.)中诱导多倍体。细胞学。83393-396(2018)。文章

Google Scholar

谷歌学者

IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. (IBM Corp, 2011).RStudio Team & RStudio RStudio: Integrated Development for R (PBC, 2020).Origin (ed) (Pro), Version 2023b (2023) (OriginLab Corporation, 2023).Mehri, N., Mohebodini, M., Behnamian, M., Farmanpour-Kalalagh, K.

IBM Corp.于2011年发布。。(IBM Corp,2011)。RStudio团队和RStudio RStudio:R的集成开发(PBC,2020)。Origin(ed)(Pro),版本2023b(2023)(OriginLab Corporation,2023)。梅赫里,N.,莫赫博迪尼,M.,贝纳米安,M.,Farmanpour Kalalagh,K。

& Phylogenetic Genetic diversity, and Population Structure Analysis of Iranian Black Cumin (Nigella sativa L.) Genotypes using ISSR molecular markers. Int. J. Hortic. Sci. Technol. 9 (2022).Rabbani, M. A., Ghafoor, A. & Masood, M. S. NARC-kalonji: An early maturing and high yielding variety of Nigella sativa released for cultivation in Pakistan.

&使用ISSR分子标记对伊朗黑孜然(Nigella sativa L.)基因型进行系统发育多样性和种群结构分析。内景J.霍蒂斯。科学。技术。9(2022年)。Rabbani,M.A.,Ghafoor,A。&Masood,M.S.NARC kalonji:一种早熟高产的尼日利亚品种,在巴基斯坦种植。

Pak J. Bot. 43, 191–195 (2011)..

Pak J.Bot.第43191–195页(2011年)。。

Google Scholar

谷歌学者

Telci, İ. et al. Diversity of black cumin genotypes and their classification based on functional properties. Biochem. Syst. Ecol. 113, 104802 (2024).Article

泰尔奇,İ。黑孜然基因型的多样性及其基于功能特性的分类。生物化学。系统。Ecol公司。113104802(2024)。文章

CAS

中科院

Google Scholar

谷歌学者

Dessie, A. B., Abate, T. M., Adane, B. T., Tesfa, T. & Getu, S. Estimation of technical efficiency of black cumin (Nigella sativa L.) farming in northwest Ethiopia: A stochastic frontier approach. Econ. Struct. 9, 18 (2020).Article

Dessie,A.B.,Abate,T.M.,Adane,B.T.,Tesfa,T。&Getu,S。估计埃塞俄比亚西北部黑孜然(Nigella sativa L.)种植的技术效率:随机前沿方法。经济。结构。9,18(2020)。文章

Google Scholar

谷歌学者

Valadabadi, S. A. & Farahani, H. A. Investigation of biofertilizers influence on quantity and quality characteristics in Nigella sativa L. J. Hortic. For. 3 (3), 88–92 (2011).

Valadabadi,S.A。和Farahani,H.A。生物肥料对Nigella sativa L.J.Hortic数量和质量特征影响的调查。对于。3(3),88-92(2011)。

Google Scholar

谷歌学者

Verma, P., Solanki, R. K., Dashora, A. & Kakani, R. K. Genetic variability and correlation analysis in Nigella (Nigella sativum L.) assessed in South Eastern Rajasthan, India. Int. J. Curr. Microbiol. Appl. Sci. 8, 1858–1864 (2019).Article

Verma,P.,Solanki,R.K.,Dashora,A。&Kakani,R.K。在印度拉贾斯坦邦东南部评估的尼日利亚(Nigella sativum L.)的遗传变异和相关性分析。国际货币。微生物。应用。科学。。文章

Google Scholar

谷歌学者

Jacobo-Velázquez, D. A. & Cisneros‐Zevallos, L. Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. J. Food Sci. 74 (2009).Ansarifar, J., Wang, L. & Archontoulis, S. V. An interaction regression model for crop yield prediction.

Jacobo Velázquez,D.A。&Cisneros-Zevallos,L。重新审视抗氧化活性与酚类含量的相关性:食品和药用植物数据分析的新方法。J、 食品科学。74(2009)。Ansarifar,J.,Wang,L。和Archontoulis,S.V。作物产量预测的交互回归模型。

Sci. Rep. 11, 17754 (2021).Article .

科学。代表1117754(2021)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, C. J. et al. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 124, 833–841 (2011).Article

Lee,C.J.等人。唇形科植物中皮肤护理效果与植物化学成分含量之间的相关性。食品化学。124833-841(2011)。文章

CAS

中科院

Google Scholar

谷歌学者

Nasr, M. & Zahran, H. F. Performance evaluation of agricultural drainage water using modeling and statistical approaches. Egypt J. Aquat. Res. 42, 141–148 (2016).Article

Nasr,M。&Zahran,H.F。使用建模和统计方法对农业排水进行性能评估。埃及J.Aquat。第42141-148号决议(2016年)。文章

Google Scholar

谷歌学者

Farag, M. A., El-Kersh, D. M., Rasheed, D. M. & Heiss, A. G. Volatiles distribution in Nigella species (black cumin seeds) and in response to roasting as analyzed via solid-phase microextraction (SPME) coupled to chemometrics. Ind. Crops Prod. 108, 564–571 (2017).Article

Farag,M.A.,El Kersh,D.M.,Rasheed,D.M。&Heiss,A.G。通过固相微萃取(SPME)结合化学计量学分析,挥发物在尼日利亚物种(黑孜然种子)中的分布以及对烘烤的响应。。文章

CAS

中科院

Google Scholar

谷歌学者

Tian, Y., Yao, H. & Li, Z. Plant-wide process monitoring by using weighted copula–correlation based multiblock principal component analysis approach and online-horizon Bayesian method. ISA Trans. 96, 24–36 (2020).Article

Tian,Y.,Yao,H。&Li,Z。使用基于加权copula相关的多块主成分分析方法和在线地平线贝叶斯方法进行全厂过程监测。ISA事务处理。96,24-36(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Miyagi, A. et al. Principal component and hierarchical clustering analysis of metabolites in destructive weeds; Polygonaceous plants. Metabolomics. 6, 146–155 (2010).Article

Miyagi,A。等人。破坏性杂草代谢物的主成分和层次聚类分析;多角形植物。代谢组学。6146-155(2010)。文章

CAS

中科院

Google Scholar

谷歌学者

Füzy, A. et al. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiol. Plant. 41, 56 (2019).Article

Füzy,A.等人。使用主成分分析在盆栽实验中选择植物生理参数以检测胁迫效应。生理学报。工厂。41,56(2019)。文章

Google Scholar

谷歌学者

Singh, S. P. et al. Assessment of genetic diversity in Nigella (Nigella sativa L.) collections using principle component analysis. CJAST 1–11 (2019). https://doi.org/10.9734/cjast/2019/v36i330234Herbs, spices and essential oils. Post-Harvest Operations in Developing Countries. (United Nations Industrial Development Organization (UNIDO), Food and Agriculture Organization of the United Nations (FAO), 2022).Verma, S., Hariwal, M., Patel, P., Shah, P.

Singh,S.P.等人。使用主成分分析评估尼日利亚(Nigella sativa L.)种质的遗传多样性。。https://doi.org/10.9734/cjast/2019/v36i330234Herbs,香料和精油。发展中国家的收获后作业。(联合国工业发展组织(工发组织)、联合国粮食及农业组织(粮农组织),2022年)。维尔马,S.,哈里瓦尔,M.,帕特尔,P.,沙阿,P。

& Kumar, S. Studies on variability of some morphological traits in Nigella sativa L. varieties AN1 and AN20. Preprint. https://doi.org/10.21203/rs.3.rs-3747101/v1 (2023)Kant, K., Anwer, M. M., Meena, S. R. & Mehta, R. S. Advance production technology of Nigella. ICAR-National Research Centre on Seed Spices Tabiji Ajmer- Rajasthan, 2009)..

&Kumar,S。关于黑种草品种AN1和AN20某些形态性状变异性的研究。预印本。https://doi.org/10.21203/rs.3.rs-3747101/v1(2023)Kant,K.,Anwer,M.M.,Meena,S.R。&Mehta,R.S。奈杰拉的先进生产技术。ICAR国家种子香料研究中心Tabiji Ajmer-拉贾斯坦邦,2009年)。。

Google Scholar

谷歌学者

Guntukula, R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J. Public. Affairs. 20, e2040 (2020).Article

Guntukula,R。评估气候变化对印度农业的影响:来自主要作物产量的证据。J、 公众。事务。20,e2040(2020)。文章

Google Scholar

谷歌学者

Głowacka, K., Jeżowski, S. & Kaczmarek, Z. In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind. Crops Prod. 32, 88–96 (2010).Article

Głowacka,K.,Jeżowski,S。&Kaczmarek,Z。通过秋水仙碱处理芽体外诱导多倍体,并对两种芒属植物诱导的多倍体进行初步表征。《工业作物》第32期,第88-96页(2010年)。文章

Google Scholar

谷歌学者

Asefa, G., Beriso, M., Asefa, G. & Beriso, M. Evaluation of black cumin genotypes for yield and yield related parameters in bale mid altitude, southeastern Ethiopia. https://doi.org/10.22004/AG.ECON.309448 (2020).Ślusarkiewicz-Jarzina, A., Pudelska, H., Woźna, J. & Pniewski, T. Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants.

Asefa,G.,Beriso,M.,Asefa,G。&Beriso,M。评估埃塞俄比亚东南部贝尔中海拔地区黑孜然基因型的产量和产量相关参数。https://doi.org/10.22004/AG.ECON.309448(2020)。Ślusarkiewicz-Jarzina,A.,Pudelska,H.,Woźna,J。&Pniewski,T。通过对花药和再生植株进行秋水仙碱处理的组合,提高了冬小麦和春小麦杂种的双单倍体产量。

J. Appl. Genet. 58, 287–295 (2017).Article .

J、 应用。基因。58287-295(2017)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lepcha, P. et al. Elevation determines the productivity of large cardamom (Amomum Subulatum Roxb.) cultivars in Sikkim Himalaya. Sci. Rep. 13, 21673 (2023).Article

Lepcha,P。等人。海拔决定了锡金喜马拉雅地区大豆蔻(Amomum Subulatum Roxb。)品种的生产力。科学。代表1321673(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sabzehzari, M., Hoveidamanesh, S., Modarresi, M. & Mohammadi, V. Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of ispaghul (Plantago ovata Forsk). Genet. Resour. Crop Evol. 67, 129–137 (2020).Article

Sabzehzari,M.,Hoveidamanesh,S.,Modarresi,M。&Mohammadi,V。ispaghul(Plantago ovata Forsk)二倍体和四倍体植物的形态学,解剖学,生理学和细胞学研究。基因。资源。作物进化。67129-137(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Uhlarik, A. et al. Phenotypic and genotypic characterization and correlation analysis of pea (Pisum sativum L.) diversity panel. Plants. 11, 1321 (2022).Article

Uhlarik,A。等人。豌豆(Pisum sativum L.)多样性面板的表型和基因型表征及相关性分析。植物。11321(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sinha, R. et al. Low soil moisture predisposes field-grown chickpea plants to dry root rot disease: Evidence from simulation modeling and correlation analysis. Sci. Rep. 11, 6568 (2021).Article

Sinha,R。等人。低土壤水分使田间生长的鹰嘴豆植物易患干根腐病:来自模拟建模和相关分析的证据。科学。代表116568(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol. Biofuels. 8, 152 (2015).Article

Liu,Y。等人。使用生理和形态参数评估49种柳枝稷(Panicum virgatum)基因型的耐旱性。生物技术。生物燃料。8152(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uddin, M. N. et al. Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Appl. Geogr. 102, 47–57 (2019).Article

Uddin,M.N.等人。使用主成分分析绘制孟加拉国沿海地区的气候脆弱性图。应用。Geogr公司。102,47-57(2019)。文章

Google Scholar

谷歌学者

Ibrahim, S. I., Naawe, E. K. & Çaliskan, M. E. Morpho-physiological evaluation of potato genotypes reveals differential responses to drought stress under field conditions. Am. J. Potato Res. 100, 382–398 (2023).Article

Ibrahim,S.I.,Naawe,E.K。和Çaliskan,M.E。马铃薯基因型的形态生理学评估揭示了田间条件下对干旱胁迫的不同反应。《美国马铃薯杂志》第100382-398号(2023年)。文章

CAS

中科院

Google Scholar

谷歌学者

Liu, Z. Y. et al. Hyperspectral discrimination of foliar biotic damages in rice using principal component analysis and probabilistic neural network. Precis. Agric. 19, 973–991 (2018).Article

。农业。19973-991(2018)。文章

Google Scholar

谷歌学者

Ullah, I., Mehboob-ur-Rahman, Ashraf, M. & Zafar, Y. Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): Leaf gas exchange and productivity. Flora - Morphol. Distrib. Funct. Ecol. Plants. 203, 105–115 (2008).Article

Ullah,I.,Mehboob-ur-Rahman,Ashraf,M。&Zafar,Y。棉花(陆地棉)耐旱性的基因型变异:叶片气体交换和生产力。植物-吗啉。分发功能。Ecol公司。植物。203105-115(2008)。文章

Google Scholar

谷歌学者

Ullah, A. et al. Genetic basis and principal component analysis in cotton (Gossypium hirsutum L.) grown under water deficit condition. Front. Plant. Sci. 13, 981369 (2022).Article

Ullah,A.等人。缺水条件下生长的棉花(Gossypium hirsutum L.)的遗传基础和主成分分析。正面。工厂。科学。13981369(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sivakumar, J., Prashanth, J. E. P., Rajesh, N., Reddy, S. M. & Pinjari, O. B. Principal component analysis approach for comprehensive screening of salt stress-tolerant tomato germplasm at the seedling stage. J. Biosci. 45, 141 (2020).Article

Sivakumar,J.,Prashanth,J.E.P.,Rajesh,N.,Reddy,S.M。&Pinjari,O.B。主成分分析方法,用于苗期耐盐番茄种质的综合筛选。J、 生物科学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sivakumar, J. et al. Principal component analysis-assisted screening and selection of salt-tolerant tomato genotypes. Plant. Physiol. Rep. 28, 272–288 (2023).Article

Sivakumar,J.等人。主成分分析辅助筛选和选择耐盐番茄基因型。工厂。生理学。代表28272–288(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Kumar, V., Sharma, A., Bhardwaj, R. & Thukral, A. K. Elemental composition of plants and multivariate analysis. Natl. Acad. Sci. Lett. 42, 45–50 (2019).Article

Kumar,V.,Sharma,A.,Bhardwaj,R。&Thukral,A.K。植物的元素组成和多变量分析。纳特尔。。科学。利特。42,45-50(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe first author gratefully acknowledges the support provided by Director, National Research Centre on Seed Spices, Ajmer, Rajasthan, India for facilitating the required amount of Nigella sativa genotype seeds and IMD (Indian Meteorological Department), BHU, Varanasi for providing meteorological data during research period.Author informationAuthors and AffiliationsLaboratory of Cytogenetics, Centre of Advance Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, IndiaShweta Verma, Manisha Hariwal & Sanjay KumarAuthorsShweta VermaView author publicationsYou can also search for this author in.

下载参考文献致谢第一作者非常感谢印度拉贾斯坦邦Ajmer国家种子香料研究中心主任提供的支持,以促进所需数量的Nigella sativa基因型种子和瓦拉纳西州BHU IMD(印度气象局)在研究期间提供气象数据。作者信息作者和附属机构巴纳拉斯印度教大学科学研究所植物学高级研究中心细胞遗传学实验室,瓦拉纳西,印度维塔维玛,马尼沙·哈里瓦尔和桑杰·库马拉·奥瑟斯维塔·维玛查看作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarManisha HariwalView author publicationsYou can also search for this author in

PubMed Google ScholarManisha HariwalView作者出版物您也可以在

PubMed Google ScholarSanjay KumarView author publicationsYou can also search for this author in

PubMed Google ScholarSanjay KumarView作者出版物您也可以在

PubMed Google ScholarContributions1st author i.e. SV, designed the experiment, collected the data, prepared all the figures & tables and also wrote the whole manuscript. All authors SV, MH and SK read and reviewed the whole manuscript.Corresponding authorCorrespondence to

PubMed谷歌学术贡献第一作者即SV设计了实验,收集了数据,准备了所有的图表,并撰写了整个手稿。所有作者SV,MH和SK都阅读并审阅了整个手稿。对应作者对应

Shweta Verma.Ethics declarations

。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleVerma, S., Hariwal, M. & Kumar, S. Exploratory analysis of agro-morphological characteristics in Nigella sativa L. plant genotypes to determine mutagen colchicine ameliorative/ non-ameliorative impacts.

转载和许可本文引用本文Verma,S.,Hariwal,M。&Kumar,S。对Nigella sativa L.植物基因型的农业形态特征进行探索性分析,以确定诱变剂秋水仙碱的改善/非改善作用。

Sci Rep 14, 24521 (2024). https://doi.org/10.1038/s41598-024-75755-wDownload citationReceived: 08 May 2024Accepted: 08 October 2024Published: 18 October 2024DOI: https://doi.org/10.1038/s41598-024-75755-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1424521(2024)。https://doi.org/10.1038/s41598-024-75755-wDownload引文接收日期:2024年5月8日接受日期:2024年10月8日发布日期:2024年10月18日OI:https://doi.org/10.1038/s41598-024-75755-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Keywords

关键词

Nigella sativa

黑种草

RanunculaceaeColchicinePolyploidsChromosome count

毛茛科多倍体染色体计数