EN
登录

葡萄糖代谢控制单核细胞稳态和迁移,但对小鼠动脉粥样硬化的发展没有影响

Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice

Nature 等信源发布 2024-10-19 07:44

可切换为仅中文


AbstractMonocytes directly contribute to atherosclerosis development by their recruitment to plaques in which they differentiate into macrophages. In the present study, we ask how modulating monocyte glucose metabolism could affect their homeostasis and their impact on atherosclerosis. Here we investigate how circulating metabolites control monocyte behavior in blood, bone marrow and peripheral tissues of mice.

摘要单核细胞通过募集到斑块中直接促进动脉粥样硬化的发展,在斑块中它们分化为巨噬细胞。在本研究中,我们询问调节单核细胞葡萄糖代谢如何影响其体内平衡及其对动脉粥样硬化的影响。在这里,我们研究循环代谢物如何控制小鼠血液,骨髓和外周组织中的单核细胞行为。

We find that serum glucose concentrations correlate with monocyte numbers. In diet-restricted mice, monocytes fail to metabolically reprogram from glycolysis to fatty acid oxidation, leading to reduced monocyte numbers in the blood. Mechanistically, Glut1-dependent glucose metabolism helps maintain CD115 membrane expression on monocytes and their progenitors, and regulates monocyte migratory capacity by modulating CCR2 expression.

我们发现血清葡萄糖浓度与单核细胞数量相关。在饮食限制的小鼠中,单核细胞不能从糖酵解代谢重新编程为脂肪酸氧化,导致血液中单核细胞数量减少。从机制上讲,依赖Glut1的葡萄糖代谢有助于维持单核细胞及其祖细胞上的CD115膜表达,并通过调节CCR2表达来调节单核细胞的迁移能力。

Results from genetic models and pharmacological inhibitors further depict the relative contribution of different metabolic pathways to the regulation of CD115 and CCR2 expression. Meanwhile, Glut1 inhibition does not impact atherosclerotic plaque development in mouse models despite dramatically reducing blood monocyte numbers, potentially due to the remaining monocytes having increased migratory capacity.

遗传模型和药理抑制剂的结果进一步描述了不同代谢途径对CD115和CCR2表达调控的相对贡献。同时,尽管血液单核细胞数量显着减少,但Glut1抑制不会影响小鼠模型中动脉粥样硬化斑块的发展,这可能是由于剩余的单核细胞具有增加的迁移能力。

Together, these data emphasize the role of glucose uptake and intracellular glucose metabolism in controlling monocyte homeostasis and functions..

总之,这些数据强调了葡萄糖摄取和细胞内葡萄糖代谢在控制单核细胞稳态和功能中的作用。。

IntroductionMonocytes are innate immune cells generated in the bone marrow compartment1,2. Monocytes differentiate from hematopoietic stem cells (HSCs) in a multistep tightly regulated process. In murine blood, two major monocyte populations have been distinguished according to their expression of the marker of unknown function Ly6C3.

引言单核细胞是在骨髓区室中产生的先天免疫细胞1,2。单核细胞在多步骤严格调控的过程中与造血干细胞(HSC)分化。在小鼠血液中,根据其未知功能Ly6C3标记的表达,已经区分了两个主要的单核细胞群。

Inflammatory Ly6Chigh monocytes, also called classical monocytes, highly express the chemokine receptor CCR2 and can infiltrate peripheral tissues to maintain macrophage pool homeostasis4,5,6. Patrolling Ly6Clow monocytes, also known as non-classical monocytes, sample and heal blood vessels7,8. Counterparts of murine classical and non-classical monocytes are also found in humans and are identified as CD14+ CD16- and CD14- CD16+, respectively.

炎性Ly6Chigh单核细胞,也称为经典单核细胞,高度表达趋化因子受体CCR2,可浸润外周组织以维持巨噬细胞库稳态4,5,6。巡逻Ly6Clow单核细胞,也称为非经典单核细胞,取样并愈合血管7,8。在人类中也发现了小鼠经典和非经典单核细胞的对应物,分别被鉴定为CD14+CD16-和CD14-CD16+。

Both monocyte subsets express CD115 (CSF1R) which binds M-CSF (CSF1) and IL-34, the main cytokines responsible for maintenance of tissue macrophages. The mechanisms controlling CD115 and CCR2 expression on monocytes are yet to be fully understood.Monocytes play central roles during acute and chronic inflammation2.

两种单核细胞亚群均表达CD115(CSF1R),其结合M-CSF(CSF1)和IL-34,IL-34是负责维持组织巨噬细胞的主要细胞因子。控制单核细胞上CD115和CCR2表达的机制尚未完全了解。单核细胞在急性和慢性炎症中起着核心作用2。

Their recruitment to the site of inflammation and subsequent differentiation into different subsets of tissue macrophages prevent or amplify inflammation depending on the local microenvironment. High blood monocyte counts positively associate with atherosclerosis progression in humans9,10. Thus, controlling monocyte numbers and fate decisions is of critical importance during infections and cardio-metabolic diseases.

它们募集到炎症部位并随后分化成不同的组织巨噬细胞亚群,根据局部微环境防止或放大炎症。高血单核细胞计数与人类动脉粥样硬化进展呈正相关9,10。因此,在感染和心脏代谢疾病期间,控制单核细胞数量和命运决定至关重要。

In pre-clinical models, monocytes contribute to atherosclerotic plaque growth after being recruited via chemokine receptors such as CCR2, CCR5 and CX3CR111 and differentiating into macrophages. Mice lacking CSF1 barely form plaques, suggesting a crucial role of the CSF1-CSF1R axi.

在临床前模型中,单核细胞通过趋化因子受体如CCR2,CCR5和CX3CR111募集并分化成巨噬细胞后,有助于动脉粥样硬化斑块的生长。缺乏CSF1的小鼠几乎不形成斑块,表明CSF1-CSF1R axi的关键作用。

Data availability

数据可用性

No new transcriptomic, proteomic or metabolomic datasets were generated during the study. All data supporting the findings of the study are presented in the main manuscript or in the supplementary information files. Requests relative to the flow cytometry and imaging data presented herein should be directed to corresponding authors (Stoyan.Ivanov@univ-cotedazur.fr or Alexandre.Gallerand@univ-cotedazur.fr) due to still-ongoing analysis for further exploitation of the data.

在研究期间没有产生新的转录组学,蛋白质组学或代谢组学数据集。支持研究结果的所有数据均在主要手稿或补充信息文件中提供。(Stoyan.Ivanov@univ-cotedazur.fr或Alexandre.Gallerand@univ-cotedazur.fr)由于仍在进行分析以进一步利用数据。

Access to our data shall be granted permanently to researchers who provide written research aims and are affiliated with a recognized institution. We aim to answer and provide access to requested data within 30 days. Source data are provided with this paper..

提供书面研究目标并隶属于公认机构的研究人员应永久获得我们数据的访问权。我们的目标是在30天内回答并提供对所需数据的访问。本文提供了源数据。。

ReferencesJakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 17, 349–362 (2017).CAS

参考文献Jakubzick,C.V.,Randolph,G.J。&Henson,P.M。单核细胞分化和抗原呈递功能。国家免疫修订版。17349-362(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).CAS

Serbina,N.V.,Jia,T.,Hohl,T.M。&Pamer,例如单核细胞介导的对微生物病原体的防御。年。免疫修订版。26421-452(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–19 (2010).CAS

Ingersoll,M.A.等人。人和小鼠单核细胞亚群之间基因表达谱的比较。血液115,e10-19(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).CAS

例如,细菌感染期间单核细胞从骨髓中迁移需要趋化因子受体CCR2介导的信号。自然免疫。7311-317(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gallerand, A. et al. Brown adipose tissue monocytes support tissue expansion. Nat. Commun. 12, 5255 (2021).ADS

Gallerand,A。等人。棕色脂肪组织单核细胞支持组织扩张。国家公社。125255(2021)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dolfi, B. et al. Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Rep. 39, 110949 (2022).CAS

Dolfi,B.等人揭示肾上腺巨噬细胞的性别特异性多样性和功能。Cell Rep.39110949(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Carlin, L. M. et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).CAS

Carlin,L.M.等人,Nr4a1依赖性Ly6C(低)单核细胞监测内皮细胞并协调其处置。细胞153362-375(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).ADS

Auffray,C。等人。通过具有巡逻行为的单核细胞群监测血管和组织。科学317666-670(2007)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chapman, C. M., Beilby, J. P., McQuillan, B. M., Thompson, P. L. & Hung, J. Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke 35, 1619–1624 (2004).CAS

Chapman,C.M.,Beilby,J.P.,McQuillan,B.M.,Thompson,P.L。&Hung,J。单核细胞计数,但不是C反应蛋白或白细胞介素-6,是亚临床颈动脉粥样硬化的独立风险标志物。中风351619-1624(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Johnsen, S. H. et al. Monocyte count is a predictor of novel plaque formation: a 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromso Study. Stroke 36, 715–719 (2005).PubMed

Johnsen,S.H.等人。单核细胞计数是新斑块形成的预测指标:Tromso研究对2610名基线时无颈动脉斑块的患者进行了为期7年的随访研究。中风36715-719(2005)。

Google Scholar

谷歌学者

Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).CAS

Tacke,F。等人。单核细胞亚群差异性地使用CCR2,CCR5和CX3CR1在动脉粥样硬化斑块内积累。J、 临床。投资。117185-194(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiao, J. H. et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am. J. Pathol. 150, 1687–1699 (1997).CAS

Qiao,J.H.等。巨噬细胞集落刺激因子在动脉粥样硬化中的作用:骨质疏松小鼠的研究。美国J.Pathol。1501687-1699(1997)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Caputa, G., Castoldi, A. & Pearce, E. J. Metabolic adaptations of tissue-resident immune cells. Nat. Immunol. 20, 793–801 (2019).CAS

Caputa,G.,Castoldi,A。&Pearce,E.J。组织驻留免疫细胞的代谢适应。自然免疫。20793-801(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).ADS

Morioka,S。等人。细胞增多症诱导一种新的SLC程序,以促进葡萄糖摄取和乳酸释放。自然563714-718(2018)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Freemerman, A. J. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).CAS

Freemerman,A.J。等人的骨髓Slc2a1缺陷小鼠模型显示巨噬细胞活化和代谢表型由GLUT1促进。J、 免疫。2021265-1286(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flynn, M. C. et al. Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ. Res 127, 877–892 (2020).CAS

Flynn,M.C.等人。短暂间歇性高血糖通过促进骨髓生成加速动脉粥样硬化。保监会。第127877-892号决议(2020年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Y. T. et al. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab. https://doi.org/10.1016/j.cmet.2022.12.005 (2022).Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.

Wang,Y.T.等人。代谢适应支持在有限的氧气环境中增强巨噬细胞的胞吞作用。细胞代谢。https://doi.org/10.1016/j.cmet.2022.12.005(2022年)。sedoheptulose激酶CARKL通过控制葡萄糖代谢来指导巨噬细胞极化。

Cell Metab. 15, 813–826 (2012).CAS .

细胞代谢。15813-826(2012)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e510 (2020).CAS

Yurdagul,A.Jr.等人。凋亡细胞衍生的精氨酸的巨噬细胞代谢促进持续的细胞增多和损伤的消退。细胞代谢。31518–533.e510(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. https://doi.org/10.1038/s42255-022-00551-7 (2022).Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e1117 (2019).CAS .

Ampomah,P.B。等人,巨噬细胞在细胞胞吞作用期间使用凋亡细胞衍生的蛋氨酸和DNMT3A来促进组织分辨率。自然代谢。https://doi.org/10.1038/s42255-022-00551-7(2022年)。Jordan,S.等人。饮食摄入调节循环中的炎性单核细胞库。细胞1781102-1114.e1117(2019)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796.e787 (2023).CAS

Janssen,H。等人。单核细胞在禁食期间重新进入骨髓,并改变宿主对感染的反应。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arguello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075.e1067 (2020).CAS

Arguello,R。J。等人。Scentith:一种基于流式细胞术的方法,用于以单细胞分辨率功能性地分析能量代谢。细胞代谢。321063–1075.e1067(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Briseno, C. G. et al. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep. 15, 2462–2474 (2016).CAS

Briseno,C.G。等人。不同的转录程序控制经典和单核细胞衍生的树突状细胞的交叉引发。Cell Rep.152462–2474(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).PubMed

。国家心脏病修订版。16389-406(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Randolph, G. J. Mechanisms that regulate macrophage burden in atherosclerosis. Circ. Res. 114, 1757–1771 (2014).CAS

Randolph,G.J。调节动脉粥样硬化中巨噬细胞负荷的机制。保监会。第1141757-1771号决议(2014年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).CAS

Swirski,F.K.等人Ly-6Chi单核细胞在高胆固醇血症相关的单核细胞增多症中占主导地位,并在动脉粥样硬化中产生巨噬细胞。J、 临床。投资。117195-205(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rogacev, K. S. et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 60, 1512–1520 (2012).CAS

Rogacev,K.S.等人。CD14++CD16+单核细胞独立预测心血管事件:一项针对951名选择性冠状动脉造影患者的队列研究。J、 美国科罗拉多州。心脏病。601512-1520(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Williams, J. W. et al. Thermoneutrality but not UCP1 deficiency suppresses monocyte mobilization into blood. Circ. Res. 121, 662–676 (2017).CAS

Williams,J.W。等人。热中性而非UCP1缺乏抑制单核细胞动员进入血液。保监会。第121662-676号决议(2017年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patterson, M. T. et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. 2, 1015–1031 (2023).PubMed

Patterson,M.T。等人Trem2促进动脉粥样硬化中泡沫巨噬细胞脂质的摄取和存活。自然心血管。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Louwe, P. A. et al. Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nat. Commun. 12, 1770 (2021).ADS

Louwe,P.A.等人招募了在炎症后腹膜生态位定植的巨噬细胞,这些巨噬细胞转化为功能不同的常驻细胞。国家公社。121770(2021)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Siebeneicher, H. et al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11, 2261–2271 (2016).CAS

Siebeneicher,H.等人。第一种高选择性GLUT1抑制剂BAY-876的鉴定和优化。ChemMedChem 11261-2271(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).CAS

Jakubzick,C。等人。经典单核细胞在观察稳态组织和将抗原转运至淋巴结时的最小分化。豁免39599-610(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Potteaux, S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe -/- mice during disease regression. J. Clin. Invest. 121, 2025–2036 (2011).CAS

Potteaux,S。等人在疾病消退期间,抑制单核细胞募集驱动巨噬细胞从Apoe-/-小鼠的动脉粥样硬化斑块中去除。J、 临床。投资。1212025-2036(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Williams, J. W. et al. Limited macrophage positional dynamics in progressing or regressing murine atherosclerotic plaques-brief report. Arterioscler Thromb. Vasc. Biol. 38, 1702–1710 (2018).CAS

Williams,J.W.等人,《进展或消退小鼠动脉粥样硬化斑块的有限巨噬细胞位置动力学简要报告》。动脉硬化血栓。Vasc。生物学381702-1710(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tanner, L. B. et al. Four key steps control glycolytic flux in mammalian cells. Cell Syst. 7, 49–62.e48 (2018).CAS

Tanner,L.B.等人。四个关键步骤控制哺乳动物细胞中的糖酵解通量。细胞系统。7,49-62.e48(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).CAS

Sattathy,A.T。等人。依赖Notch2的经典树突状细胞协调肠道免疫以附着和消除细菌病原体。自然免疫。14937-948(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).ADS

Rojo,R。等人。Csf1r增强子的缺失选择性地影响Csf1r的表达和组织巨噬细胞群的发育。国家公社。103215(2019)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gordon, G. B., Bush, D. E. & Weisman, H. F. Reduction of atherosclerosis by administration of dehydroepiandrosterone. A study in the hypercholesterolemic New Zealand white rabbit with aortic intimal injury. J. Clin. Invest 82, 712–720 (1988).CAS

Gordon,G.B.,Bush,D.E。和Weisman,H.F。通过服用脱氢表雄酮减少动脉粥样硬化。高胆固醇血症新西兰大白兔主动脉内膜损伤的研究。J、 临床。投资82712-720(1988)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hamilton, J. A., Vairo, G. & Lingelbach, S. R. CSF-1 stimulates glucose uptake in murine bone marrow-derived macrophages. Biochem. Biophys. Res. Commun. 138, 445–454 (1986).CAS

Hamilton,J.A.,Vairo,G。&Lingelbach,S.R。CSF-1刺激小鼠骨髓来源的巨噬细胞中的葡萄糖摄取。生物化学。生物物理。公共资源。138445-454(1986)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chang, M. et al. Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake. Cell Signal 21, 1361–1369 (2009).CAS

Chang,M。等人。磷脂酰肌醇-3激酶和磷脂酶C通过控制葡萄糖摄取来增强CSF-1依赖性巨噬细胞的存活。细胞信号211361-1369(2009)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guo, S. et al. Gene-dosage effect of Pfkfb3 on monocyte/macrophage biology in atherosclerosis. Br. J. Pharm. 179, 4974–4991 (2022).CAS

郭,S。等。Pfkfb3对动脉粥样硬化中单核细胞/巨噬细胞生物学的基因剂量效应。《英国药学杂志》1794974-4991(2022)。中科院

Google Scholar

谷歌学者

Tillie, R. et al. Partial inhibition of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) enzyme in myeloid cells does not affect atherosclerosis. Front Cell Dev. Biol. 9, 695684 (2021).PubMed

。前细胞发育生物学。9695684(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Poels, K. et al. Inhibition of PFKFB3 hampers the progression of atherosclerosis and promotes plaque stability. Front Cell Dev. Biol. 8, 581641 (2020).PubMed

Poels,K。等人。抑制PFKFB3阻碍动脉粥样硬化的进展并促进斑块的稳定性。前细胞发育生物学。8581641(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schilperoort, M., Ngai, D., Katerelos, M., Power, D. A. & Tabas, I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat. Metab. https://doi.org/10.1038/s42255-023-00736-8 (2023).Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction.

Schilperoort,M.,Ngai,D.,Katerelos,M.,Power,D.A。&Tabas,I。PFKFB2介导的糖酵解促进巨噬细胞乳酸驱动的持续细胞增多。自然代谢。https://doi.org/10.1038/s42255-023-00736-8(2023年)。Collins,N。等人。骨髓在饮食限制期间保护和优化免疫记忆。

Cell 178, 1088–1101.e1015 (2019).CAS .

细胞1781088-1101.e1015(2019)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pixley, F. J. & Stanley, E. R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14, 628–638 (2004).CAS

Pixley,F。J。和Stanley,E。R。CSF-1对游荡巨噬细胞的调节:作用的复杂性。趋势细胞生物学。14628-638(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Eckel, R. H., Bornfeldt, K. E. & Goldberg, I. J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 33, 1519–1545 (2021).CAS

Eckel,R.H.,Bornfeldt,K.E。和Goldberg,I.J。糖尿病的心血管疾病,超越葡萄糖。细胞代谢。331519-1545(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).PubMed

De Bock,K。等人。PFKFB3驱动的糖酵解在血管发芽中的作用。细胞154651-663(2013)。PubMed出版社

Google Scholar

谷歌学者

Wall, V. Z. et al. Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight https://doi.org/10.1172/jci.insight.96544 (2018).Pyla, R., Poulose, N., Jun, J. Y. & Segar, L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells.

Wall,V.Z.等人。在代谢综合征的小鼠模型中,平滑肌葡萄糖代谢促进单核细胞募集和动脉粥样硬化。JCI洞察https://doi.org/10.1172/jci.insight.96544(2018年)。Pyla,R.,Poulose,N.,Jun,J.Y。&Segar,L。常规和新型葡萄糖转运蛋白GLUT1,-9,-10和-12在血管平滑肌细胞中的表达。

Am. J. Physiol. Cell Physiol. 304, C574–589 (2013).CAS .

Am.J.Physiol。细胞生理学。304,C574–589(2013)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).CAS

Niwa,H.,Yamamura,K。&Miyazaki,J。用新型真核载体有效选择高表达转染子。基因108193-199(1991)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank the C3M Animal facility for technical support and the GIS-IBISA multi-sites platform Microscopie Imagerie Côte d’Azur (MICA), and particularly the imaging site of C3M (INSERM U1065) supported by Conseil Régional, Conseil Départemental, and IBISA.

下载参考文献致谢我们要感谢C3M动物设施的技术支持和GIS-IBISA多站点平台Microscope Imagerie Côte d'Azur(MICA),特别是由Conseil Régional,Conseil département和IBISA支持的C3M成像站点(INSERM U1065)。

We would also like to thank the C3M flow Cytometry Core Facility financed by Conseil Général CG06 and Conseil Régional PACA. We would like to thank Dr. David Hume for kindly sharing Csf1rΔFIRE mice, and Dr. Marc Bajénoff for providing access to them. S.I. is funded by Institut National de la Sante et de la Recherche Medicale (INSERM), Agence Nationale de la Recherche (ANR-17-CE14-0017-01 and ANR-19-ECVD-0005-01) and Fondation de France.

我们还要感谢由Conseil Général CG06和Conseil Régional PACA资助的C3M流式细胞仪核心设施。我们要感谢David Hume博士与我们分享Csf1rΔFIRE小鼠,感谢Marc Bajénoff博士提供了对它们的访问。S、 。

A.G. was supported by the French government through the UCAJedi Investments in the Future projects managed by the National Research Agency (ANR) (ANR-15-IDEX-01). A.H. and C.C. are supported by ERA-CVD and FWF Austrian Science Funds (I 4646). D.D. is supported by a grant from Fondation pour la Recherche Médicale, France (EQU202303016719).Author informationAuthors and AffiliationsUniversité Côte d’Azur, CNRS, LP2M, Nice, FranceAlexandre Gallerand, Bastien Dolfi, Zakariya Caillot, Alexia Castiglione, Axelle Strazzulla, Fairouz N.

A、 G.通过UCAJedi对国家研究机构(ANR)(ANR-15-IDEX-01)管理的未来项目的投资得到了法国政府的支持。A、 H.和C.C.得到了ERA-CVD和FWF奥地利科学基金(I 4646)的支持。D、 D.得到了法国医学研究基金会(EQU202303016719)的资助。作者信息作者和附属机构蓝色大学,CNRS,LP2M,Nice,FranceAlexandre Gallerand,Bastien Dolfi,Zakariya Caillot,Alexia Castiglione,Axelle Strazzulla,Fairouz N。

Zair, Adeline Bertola, Denis Doyen, Rodolphe R. Guinamard & Stoyan IvanovUniversité Côte d’Azur, INSERM, C3M, Nice, FranceAlexandre Gallerand, Bastien Dolfi, Marion I. Stunault, Alexia Castiglione, Flora Batoul, Nathalie Vaillant, Adélie Dumont, Johanna Merlin, Jerome Gilleron, Laurent Yvan-Charvet, Rodolphe R.

扎尔(Zair)、阿德琳·贝托拉(AdelineBertola)、丹尼斯·道恩(DenisDoyen)、鲁道夫·R·吉尼亚马(RodolpheR.Guinamard)和斯托扬·伊万诺夫大学(StoyanIvanovUniversitéCôd'Azur)、INSERM、C3M、尼斯(Nice)、弗朗西娅·亚历山大·加莱兰德(FranceAlexandreGallerand)、巴斯蒂安·多尔菲(BastienDolfi)、马里恩·斯特劳特(MarionI.Stunault)、亚历克西亚·卡斯蒂格利翁(AlexiaCastiglione)、弗洛拉·巴图。

Guinamard & Stoyan IvanovDepartment of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, AustriaChuqiao Chen & Arvand HaschemiDepartment of Radiology, Washington University Sch.

Guinamard&Stoyan IvanovDepartment of Laboratory Medicine,维也纳医科大学,1090,Australiachuqiao Chen&Arvand HaschemiDepartment of Radiology,Washington University Sch。

PubMed Google ScholarBastien DolfiView author publicationsYou can also search for this author in

PubMed Google ScholarBastien DolfiView作者出版物您也可以在

PubMed Google ScholarMarion I. StunaultView author publicationsYou can also search for this author in

PubMed Google ScholarMarion I.StunaultView作者出版物您也可以在

PubMed Google ScholarZakariya CaillotView author publicationsYou can also search for this author in

PubMed Google ScholarZakariya CaillotView作者出版物您也可以在

PubMed Google ScholarAlexia CastiglioneView author publicationsYou can also search for this author in

PubMed Google ScholarAlexia CastiglioneView作者出版物您也可以在

PubMed Google ScholarAxelle StrazzullaView author publicationsYou can also search for this author in

PubMed Google ScholarChuqiao ChenView author publicationsYou can also search for this author in

PubMed Google ScholarChuqiao ChenView作者出版物您也可以在

PubMed Google ScholarGyu Seong HeoView author publicationsYou can also search for this author in

PubMed Google ScholarGyu Seong HeoView作者出版物您也可以在

PubMed Google ScholarHannah LuehmannView author publicationsYou can also search for this author in

PubMed Google ScholarHannah LuehmannView作者出版物您也可以在

PubMed Google ScholarFlora BatoulView author publicationsYou can also search for this author in

PubMed Google ScholarFlora BatoulView作者出版物您也可以在

PubMed Google ScholarNathalie VaillantView author publicationsYou can also search for this author in

PubMed Google ScholarNathalie VaillantView作者出版物您也可以在

PubMed Google ScholarAdélie DumontView author publicationsYou can also search for this author in

PubMed Google ScholarAdélie DumontView作者出版物您也可以在

PubMed Google ScholarThomas PilotView author publicationsYou can also search for this author in

PubMed Google ScholarThomas PilotView作者出版物您也可以在

PubMed Google ScholarJohanna MerlinView author publicationsYou can also search for this author in

PubMed Google ScholarJohannaMerlinview作者出版物您也可以在

PubMed Google ScholarFairouz N. ZairView author publicationsYou can also search for this author in

PubMed Google ScholarFairouz N.ZairView作者出版物您也可以在

PubMed Google ScholarJerome GilleronView author publicationsYou can also search for this author in

PubMed Google ScholarJerome GillenView作者出版物您也可以在

PubMed Google ScholarAdeline BertolaView author publicationsYou can also search for this author in

PubMed Google ScholarAdeline BertolaView作者出版物您也可以在

PubMed Google ScholarPeter CarmelietView author publicationsYou can also search for this author in

PubMed谷歌学者CarmelitView作者出版物您也可以在

PubMed Google ScholarJesse W. WilliamsView author publicationsYou can also search for this author in

PubMed Google ScholarJesse W.WilliamsView作者出版物您也可以在

PubMed Google ScholarRafael J. ArguelloView author publicationsYou can also search for this author in

PubMed Google Scholarafael J.ArguelloView作者出版物您也可以在

PubMed Google ScholarDavid MassonView author publicationsYou can also search for this author in

PubMed Google ScholarDavid MassonView作者出版物您也可以在

PubMed Google ScholarDavid DombrowiczView author publicationsYou can also search for this author in

PubMed Google ScholarDavid DombrowiczView作者出版物您也可以在

PubMed Google ScholarLaurent Yvan-CharvetView author publicationsYou can also search for this author in

PubMed Google ScholarLaurent Yvan CharvetView作者出版物您也可以在

PubMed Google ScholarDenis DoyenView author publicationsYou can also search for this author in

PubMed Google ScholarDenis DoyenView作者出版物您也可以在

PubMed Google ScholarArvand HaschemiView author publicationsYou can also search for this author in

PubMed Google ScholarArvand HaschemiView作者出版物您也可以在

PubMed Google ScholarYongjian LiuView author publicationsYou can also search for this author in

PubMed Google ScholaryYongjian Liu查看作者出版物您也可以在

PubMed Google ScholarRodolphe R. GuinamardView author publicationsYou can also search for this author in

PubMed Google ScholarRodolphe R.GuinamardView作者出版物您也可以在

PubMed Google ScholarStoyan IvanovView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsA.G. and S.I. designed the study. A.G. and S.I. wrote the manuscript and prepared the figures. A.G., B.D., M.I.S., Z.C., A.S., C.C., G.S.H., H.L., F.B., A.C., N.V., A.D., T.P., J.M., F.N.Z., J.G., A.B., R.R.G., and S.I. performed experiments.

PubMed谷歌学术贡献。G、 和S.I.设计了这项研究。A、 G.和S.I.撰写了手稿并准备了数字。A、 G.,B.D.,M.I.S.,Z.C.,A.S.,C.C.,G.S.H.,H.L.,F.B.,A.C.,N.V.,A.D.,T.P.,J.M.,F.N.Z.,J.G.,A.B.,R.R.G。和S.I.进行了实验。

P.C. and R.J.A. provided tools and expertise. A.G., B.D., A.B., J.W.W., D.M., D.D., L.Y.C., A.H., D.D., Y.L., R.R.G., and S.I. analyzed data and edited the manuscript. S.I. obtained funding for the project.Corresponding authorsCorrespondence to.

P、 C.和R.J.A.提供了工具和专业知识。A、 。S、 I.获得项目资金。通讯作者通讯。

Alexandre Gallerand or Stoyan Ivanov.Ethics declarations

Alexandre Gallerand或Stoyan Ivanov。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummarySource dataSource DataTransparent Peer Review fileRights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要源数据源数据透明同行评审文件权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleGallerand, A., Dolfi, B., Stunault, M.I. et al. Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice.

转载和许可本文引用本文Gallerand,A.,Dolfi,B.,Stunault,M.I。等人。葡萄糖代谢控制单核细胞稳态和迁移,但对小鼠动脉粥样硬化的发展没有影响。

Nat Commun 15, 9027 (2024). https://doi.org/10.1038/s41467-024-53267-5Download citationReceived: 05 December 2023Accepted: 08 October 2024Published: 19 October 2024DOI: https://doi.org/10.1038/s41467-024-53267-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159027(2024)。https://doi.org/10.1038/s41467-024-53267-5Download引文接收日期:2023年12月5日接收日期:2024年10月8日发布日期:2024年10月19日OI:https://doi.org/10.1038/s41467-024-53267-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供