商务合作
动脉网APP
可切换为仅中文
AbstractDuckweeds (Spirodela polyrrhiza) are free-floating macrophytes that grow profusely in nutrient-rich waters. Under ideal conditions, they exhibit a rapid growth rate and can absorb a substantial amount of nutrients, macromolecules, and pollutants from bodies of water. Zinc oxide nanoparticles (ZnO NPs) synthesized from plant extracts, particularly under stress conditions, have opened new research avenues in the field of nanotechnology.
摘要浮萍(Spirodela polyrrhiza)是一种自由漂浮的大型植物,在营养丰富的水中大量生长。在理想条件下,它们表现出快速的生长速度,可以从水体中吸收大量的营养物质,大分子和污染物。由植物提取物合成的氧化锌纳米颗粒(ZnO NPs),特别是在胁迫条件下,为纳米技术领域开辟了新的研究途径。
Under salinity stress, the accumulation of flavonoids in duckweeds can affect the structure of ZnO NPs, helping researchers ascertain their antimicrobial role. In our study, we exposed mid-log phase duckweed monocultures to 75 mM NaCl in a full-strength Murashige and Skoog medium for 7 days, followed by a 15-day recovery period.
在盐度胁迫下,浮萍中黄酮类化合物的积累会影响ZnO NPs的结构,有助于研究人员确定其抗菌作用。。
We observed significant overexpression of superoxide and hydrogen peroxide as reactive oxygen species. As a result, chlorophyll and certain metabolites were produced in lesser amounts, while flavonoid and phenol content increased by 12% and 8%, respectively. This overproduction persisted up to 10 days into the recovery treatment period but dropped by 8% and 5%, respectively, by the 15th day.
我们观察到超氧化物和过氧化氢作为活性氧的显着过表达。结果,叶绿素和某些代谢物的产生量较少,而类黄酮和苯酚含量分别增加了12%和8%。这种过量生产持续到恢复治疗期长达10天,但到第15天分别下降了8%和5%。
The flavonoid coating transformed the NPs into rosette clusters, which exhibited reduced antimicrobial activity against Aeromonas hydrophila, a Gram-negative, fish-pathogenic bacterium. Herein, we discuss potential mechanisms for the conformational transformation of ZnO NPs into finer dimensions in response to NaCl-induced oxidative stress in duckweed.
类黄酮涂层将NPs转化为玫瑰花结簇,其对革兰氏阴性鱼病原菌嗜水气单胞菌的抗菌活性降低。在此,我们讨论了响应NaCl诱导的浮萍氧化应激,ZnO NPs构象转变为更精细尺寸的潜在机制。
In this study, the azo dye degradation capacity of salinity-treated plants increased as the flavonoid profile became enriched. Zinc oxide nanoparticles, both prior to and after salinity treatment, were found to be efficient in scavenging azo dye and mitigating its toxicit.
在这项研究中,随着类黄酮谱的富集,盐度处理植物的偶氮染料降解能力增加。在盐度处理之前和之后,发现氧化锌纳米颗粒在清除偶氮染料和减轻其毒性方面是有效的。
BackgroundDuckweed, a free-floating macrophyte of the Lemnaceae family, grows profusely in waters rich in nutrient content. The plant is represented by several species, including Lemna, Wolffia, Spirodela, Wolfiella, and Landoltia1. Under ideal conditions, duckweed exhibits rapid growth and can absorb a substantial amount of nutrients, macromolecules, and pollutants from bodies of water.
背景浮萍是柠檬科的一种自由漂浮的大型植物,在营养丰富的水中大量生长。该植物由几种物种代表,包括Lemna,Wolffia,Spirodela,Wolfiella和Landoltia1。在理想条件下,浮萍生长迅速,可以从水体中吸收大量营养物质、大分子和污染物。
Its resilience to extreme conditions, such as metal toxicity, means it can significantly contribute to the decontamination of polluted bodies of water or wastewater-containing micropollutants2. Duckweed generally prefers stagnant bodies of fresh water, such as ponds, ditches, and lakes, for their luxuriant growth, as these environments favor better solvation of inorganic pollutants.
。浮萍通常喜欢池塘、沟渠和湖泊等停滞的淡水,因为它们生长旺盛,因为这些环境有利于更好地溶解无机污染物。
The growth of duckweed can be notably accelerated by the accumulation of phosphorus and nitrogen within their vacuolar sap in the form of oligocyclic and high-molecular phosphate residues2,3.Spirodela polyrrhiza (L.) Schleid, commonly known as greater duckweed or giant duckweed, is cosmopolitan in its occurrence in eutrophic bodies of water in tropical countries.
浮萍的生长可以通过在其液泡汁液中以寡环和高分子磷酸盐残留物的形式积累磷和氮来显着加速2,3。Spirodela polyrrhiza(L.)Schleid,通常被称为大浮萍或巨型浮萍,在热带国家富营养化水体中广泛存在。
The fronds of S. polyrrhiza (L.) Schleid are characterized by the highest degree of structural reduction, particularly when exposed to diverse environmental pollutants4. Similarly, salt stress impacts plants through osmotic and ionic stress, as high salt concentrations diminish soil’s water-holding potential, leading to reduced water uptake by plant roots5,6.
S.polyrrhiza(L.)Schleid的叶片具有最高程度的结构还原,特别是当暴露于多种环境污染物时4。同样,盐胁迫通过渗透和离子胁迫影响植物,因为高盐浓度会降低土壤的持水潜力,导致植物根系吸水减少5,6。
Conversely, an excessive accumulation of ions such as Na+ and Cl− in plant cells results in toxicity or nutritional disorders7. Salinity tolerance in plants can activate and alter the expression of numerous genes of various functional groups that are responsible for minimizing the effects of ex.
相反,植物细胞中Na+和Cl-等离子的过度积累会导致毒性或营养紊乱7。植物的耐盐性可以激活和改变各种官能团的许多基因的表达,这些基因负责最小化ex的影响。
Data availability
数据可用性
All data generated or analyzed during this study are included in this article.
本文包含了本研究期间生成或分析的所有数据。
AbbreviationsZnO NPs:
缩写ZnO NP:
Zinc oxide nanoparticles
氧化锌纳米颗粒
ROS:
活性氧:
Reactive oxygen species
活性氧类
NPs:
核动力源:
Nanoparticles
纳米颗粒
SEM:
扫描电镜:
Scanning electron microscopy
扫描电子显微镜
TEM:
专业术语:
Transmission electron microscopy
透射电子显微镜
DPPH:
DPPH:
2,2-diphenyl-1-picrylhydrazyl
2,2-二苯基-1-苦基肼
EDX:
EDX公司:
Dispersive X-ray
色散X射线
LC-MS:
液相色谱-质谱联用:
Liquid chromatography-mass spectrometry/mass spectrometry
液相色谱-质谱/质谱
DLS:
数据链接:
Dynamic light scattering
动态光散射
ReferencesOláh, V., Appenroth, K. J., Lam, E. & Sree, K. S. Sixth International Conference on Duckweed Research and Applications presents Lemnaceae as a Model Plant System in the Genomics and Postgenomics Era. Plants. 12, 2134 (2023).PubMed
参考文献Soláh,V.,Appenroth,K.J.,Lam,E。&Sree,K.S。第六届浮萍研究与应用国际会议将Lemnaceae作为基因组学和后基因组学时代的模式植物系统。植物。122134(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ziegler, P., Appenroth, K. J. & Sree, K. S. Survival strategies of Duckweeds, the World’s smallest angiosperms. Plants. 12 (11), 2215 (2023).PubMed
Ziegler,P.,Appenroth,K.J。&Sree,K.S。浮萍(世界上最小的被子植物)的生存策略。植物。12(11),2215(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saini, A. et al. Assessing the effect of soil cultivation methods and genotypes on crop yield components, yield and soil properties in wheat (Triticum aestivum L.) and Rice (Oryza sativa L.) cropping system. BMC Plant. Biol. 24 (1), 349 (2024).PubMed
Saini,A.等人评估了土壤耕作方法和基因型对小麦(Triticum aestivum L.)和水稻(Oryza sativa L.)种植系统中作物产量组成、产量和土壤特性的影响。BMC工厂。生物学24(1),349(2024)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, K. & Kim, I. S. Structural aspects of the reduced free-floating hydrophyte. Spirodelapolyrhiza Korean J. Microsc. 30 (2), 233–240 (2000).ADS
Kim,K.&Kim,I.S.减少自由漂浮水生植物的结构方面。Spirodelapolyrhiza Korean J.Microsc。30(2),233-240(2000)。广告
Google Scholar
谷歌学者
Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22, 4056–4075 (2014).
Parihar,P.,Singh,S.,Singh,R.,Singh,V.P。&Prasad,S.M。盐度胁迫对植物的影响及其耐受策略:综述。环境。科学。污染。第224056–4075号决议(2014年)。
Google Scholar
谷歌学者
Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M. & Hasanuzzaman, M. Balancing yield and antioxidant capacity in Basil microgreens: an exploration of nutrient solution concentrations in a floating system. Agriculture. 13 (9), 1691 (2023).
Fayezizadeh,M.R.,Ansari,N.A.,Sourestani,M.M。&Hasanuzzaman,M。平衡罗勒微绿的产量和抗氧化能力:探索漂浮系统中的营养液浓度。农业。。
Google Scholar
谷歌学者
İbrahimova, U. et al. Progress in understanding salt stress response in plants using biotechnological tools. J. Biotechnol. 329, 180–191 (2021).
İbrahimova,U。等人。使用生物技术工具了解植物盐胁迫反应的进展。J、 生物技术。329180-191(2021)。
Google Scholar
谷歌学者
Hassan, N., Ebeed, H. & Aljaarany, A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol. Mol. Biol. Plants. 26 (2), 233–245 (2020).PubMed
Hassan,N.,Ebeed,H。&Aljaarany,A。外源施用精胺和腐胺通过保护膜和叶绿体超微结构减轻小麦干旱胁迫的逆境。生理学。分子生物学。植物。26(2),233-245(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fayezizadeh, M. R., Ansari, N. A., Albaji, M. & Khaleghi, E. Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars. Agric. Water Manag. 258, 107171 (2021).
Fayezizadeh,M.R.,Ansari,N.A.,Albaji,M。&Khaleghi,E。水培系统对温室番茄品种产量,水分生产力和气孔气体交换的影响。农业。水管理。258107171(2021)。
Google Scholar
谷歌学者
Tran, M. T. et al. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant. Cell. Rep. 40, 999–1011 (2020).PubMed
Tran,M.T。等人,基于CRISPR/Cas9的SlHyPRP1结构域的精确切除以获得耐盐胁迫的番茄。工厂。细胞。代表40999-1011(2020)。PubMed出版社
Google Scholar
谷歌学者
Shomali, A. et al. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants. 11 (22), 3158 (2022).PubMed
Shomali,A。等人。黄酮类化合物在植物环境胁迫反应和耐受性中的多种生理作用。植物。11(22),3158(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roy, S. J., Negrão, S. & Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 26, 115–124 (2014).PubMed
Roy,S.J.,Negrão,S。&Tester,M。耐盐作物。货币。奥平。生物技术。26115-124(2014)。PubMed出版社
Google Scholar
谷歌学者
Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant. Physiol. 126 (2), 485–493 (2001).PubMed
Winkel-Shirley,B。类黄酮生物合成。遗传学、生物化学、细胞生物学和生物技术的丰富多彩的模型。工厂。生理学。126(2),485-493(2001)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Swilam, N., Nawwar, M. A. M., Radwan, R. A. & Mostafa, E. S. Antidiabetic activity and in silico molecular docking of polyphenols from Ammannia baccifera L. Subsp. Aegyptiaca (Willd.) Koehne Waste: structure elucidation of undescribed acylated flavonol diglucoside. Plants. 11 (3), 452 (2022).PubMed .
Swilam,N.,Nawwar,M.A.M.,Radwan,R.A。和Mostafa,E.S。抗糖尿病活性和来自Ammannia baccifera L.Subsp的多酚的计算机分子对接。埃及伊蚊(Willd。)Koehne废物:未描述的酰基化黄酮醇二葡萄糖苷的结构阐明。植物。11(3),452(2022)。。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fayezizadeh, M. R., Ansari, N. A., SourestaniMM,Fujita, M. & Hasanuzzaman, M. Management of secondary Metabolite Synthesis and Biomass in Basil (Ocimum basilicum L.) Microgreens using different continuous-spectrum LED lights. Plants. 13, 1394 (2024).PubMed
。植物。131394(2024)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mazur, W. M., Duke, J. A., Wähälä, K., Rasku, S. & Adlercreutz, H. Isoflavonoids and lignans in Legumes: Nutritional and Health aspects in humans. J. Nutr. Biochem. 9 (4), 193–200 (1998).
Mazur,W.M.,Duke,J.A.,Wähälä,K.,Rasku,S。&Adlercreutz,h。豆类中的异黄酮和木脂素:人类的营养和健康方面。J、 营养。生物化学。9(4),193-200(1998)。
Google Scholar
谷歌学者
Fayezizadeh, M. R. et al. Antioxidant capacity, leaf color profile and yield of basil (Ocimum sp.) microgreens in floating system. Plants. 12 (14), 2652 (2023).PubMed
Fayezizadeh,M.R.等人。漂浮系统中罗勒(Ocimum sp.)微绿的抗氧化能力,叶色特征和产量。植物。12(14),2652(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
KassaeeMZ, Buazar, F. & Motamedi, E. Effects of Current on Arc Fabrication of Cu Nanoparticles. J. Nanomater2010, 1–5 (2010).
KassaeeMZ,Buazar,F。和Motamedi,E。电流对铜纳米颗粒电弧制造的影响。J、 Nanomater2010,1-5(2010)。
Google Scholar
谷歌学者
Alavi, M., Thomas, S. & Sreedharan, M. Modification of silica nanoparticles for antibacterial activities: mechanism of action. Micro Nano Bio Asp. 1 (1), 49–58 (2022).
Alavi,M.,Thomas,S。&Sreedharan,M。二氧化硅纳米粒子抗菌活性的修饰:作用机制。微纳米生物Asp。1(1),49-58(2022)。
Google Scholar
谷歌学者
Ahmadi, S., Ahmadi, S. & Ahmadi, H. A review on antifungal and antibacterial activities of some medicinal plants. Micro Nano Bio Asp. 1 (1), 10–17 (2022).
Ahmadi,S.,Ahmadi,S。&Ahmadi,H。一些药用植物抗真菌和抗菌活性的综述。微纳米生物Asp。1(1),10-17(2022)。
Google Scholar
谷歌学者
El-Seedi, H. R. et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 9 (42), 24539–24559 (2019).ADS
。RSC Adv.9(42),24539–24559(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sarraf, M. et al. Metal/Metalloid-Based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plants. 11 (3), 316 (2022).PubMed
Sarraf,M。等人。用于植物非生物胁迫耐受的金属/类金属基纳米材料:机制概述。植物。11(3),316(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joshi, M. D., Patravale, V. & Prabhu, R. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int. J. Nanomed. 10, 1001–1018 (2015).Kothamasu, P. et al. Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts. 2 (2), 71–81 (2012).PubMed
Joshi,M.D.,Patravale,V。&Prabhu,R。用于肿瘤学靶向治疗的聚合物纳米颗粒:当前见解。内景J.Nanomed。101001-1018(2015)。Kothamasu,P。等人。纳米胶囊:新型药物输送系统的武器。生物影响。2(2),71-81(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jain, S., Hirst, D. G. & O’Sullivan, J. M. Gold nanoparticles as novel agents for cancer therapy. Brit J. Radiol. 85 (1010), 101–113 (2012).PubMed
Jain,S.,Hirst,D.G。&O'Sullivan,J.M。金纳米粒子作为癌症治疗的新药。英国J.Radio。85(1010),101-113(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19 (6), 669–675 (2006).
Thaipong,K.,Boonprakob,U.,Crosby,K.,Cisneros-Zevallos,L。和Hawkins-Byrne,D。ABTS,DPPH,FRAP和ORAC测定法的比较,用于估计番石榴果实提取物的抗氧化活性。J、 食品成分。肛门。。
Google Scholar
谷歌学者
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16 (3), 144–158 (1965).
Singleton,V.L。和Rossi,J.A。用磷钼磷钨酸试剂比色法测定总酚。美国J.埃诺。葡萄。16(3),144-158(1965)。
Google Scholar
谷歌学者
Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S. & Vaidya, B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today. 22 (12), 1825–1834 (2017).PubMed
Mishra,P.K.,Mishra,H.,Ekielski,A.,Talegonkar,S。&Vaidya,B。氧化锌纳米粒子:一种有前途的生物医学应用纳米材料。药物发现。。22(12),1825-1834(2017)。PubMed出版社
Google Scholar
谷歌学者
Shomali, A. et al. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. Plant. Physiol. Biochem. 206, 108211 (2023).Shankarling, G. S., Deshmukh, P. P. & Joglekar, A. R. Process intensification in azo dyes.
Shomali,A.等人。金属和类金属胁迫期间植物光合过程的调节,以及操纵光合作用相关性状的策略。工厂。生理学。生物化学。206108211(2023)。Shankarling,G.S.,Deshmukh,P.P。和Joglekar,A.R。偶氮染料的过程强化。
J. Environ. Chem. Eng. 5 (4), 3302–3308 (2017)..
J、大约。化学。Eng.5(4),3302-3308(2017)。。
Google Scholar
谷歌学者
Shah, M. Effective treatment systems for azo dye degradation: a joint venture between physico-chemical & microbiological process. Int. J. Environ. Bioremed. Biodegrad. 2 (5), 231–242 (2014).
Shah,M。偶氮染料降解的有效处理系统:物理化学和微生物过程之间的合资企业。内景J.环境。生物医药。生物降解。2(5),231-242(2014)。
Google Scholar
谷歌学者
Berradi, M. et al. Textile finishing dyes and their impact on aquatic environs. Heliyon. 5 (11), e02711 (2019).PubMed
Berradi,M.等人,《纺织染整染料及其对水生环境的影响》。海伦。5(11),e02711(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Benkhaya, S. et al. Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal. Mater. Today Commun. 19, 212–219 (2019).
Benkhaya,S.等人。制备由聚砜/聚醚酰亚胺超滤膜和陶瓷火山灰载体制成的低成本复合膜,用于去除染料。马特。今天是Commun。19212-219(2019)。
Google Scholar
谷歌学者
Baek, G., Saeed, M. & Choi, H. K. Duckweeds: their utilization, metabolites and cultivation. Appl. Biol. Chem. 202164, 73. https://doi.org/10.1186/s13765-021-00644-zAgarwal, H., Kumar, S. V. & Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles - eco-friendly approach.
Baek,G.,Saeed,M。&Choi,H.K。浮萍:它们的利用,代谢产物和栽培。应用。生物化学。202164年,73年。https://doi.org/10.1186/s13765-021-00644-zAgarwal。
Resour. Effic Technol. 3 (4), 406–413 (2017)..
资源。Effic技术。3(4),406–413(2017)。。
Google Scholar
谷歌学者
Mirón-Mérida, V. A., Soria-Hernández, C., Richards-Chávez, A. J. C., Ochoa-García, J. L. & Odríguez-López, C. Chuck-Hernández. The effect of ultrasound on the extraction and functionality of proteins from duckweed (Lemna minor). Molecules. 29 (5), 1195. https://doi.org/10.3390/molecules29051122 (2024).Article .
Mirón-Mérida,V.A.,Soria Hernández,C.,Richards Chávez,A.J.C.,Ochoa GarcíA,J.L.&Odríguez-López,C.Chuck Hernández。超声波对浮萍(Lemna minor)蛋白质提取和功能的影响。分子。29(5),1195年。https://doi.org/10.3390/molecules29051122(2024年)。文章。
Google Scholar
谷歌学者
Mahamuni, P. P. et al. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 17, 71–80 (2018).PubMed
Mahamuni,P。P。等人。通过使用多元醇化学合成和表征氧化锌纳米颗粒的抗菌和抗生物膜活性。生物化学。生物物理。代表17,71-80(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kedare, S. B. & Singh, R. P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48 (4), 412–22. https://doi.org/10.1007/s13197-011-0251-1 (2011).Article
Kedare,S.B。&Singh,R.P。DPPH抗氧化测定方法的产生和发展。J、 食品科学。技术。48(4),412-22。https://doi.org/10.1007/s13197-011-0251-1(2011年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lail, N. U. et al. Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Sci. Rep. 13 (1), 6568. https://doi.org/10.1038/s41598-023-33416-4 (2023).Article
Lail,N.U.等人。使用Nigella sativa对抗商业家禽球虫病的氧化锌纳米颗粒的生物合成和表征。科学。代表13(1),6568。https://doi.org/10.1038/s41598-023-33416-4(2023年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abdelbaky, A. S., Abd El-Mageed, T. A., Babalghith, A. O., Selim, S. & Mohamed, A. M. H. A. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxid.
Abdelbaky,A.S.,Abd El Mageed,T.A.,Babalghith,A.O.,Selim,S.&Mohamed,A.M.H.A.使用天竺葵(Pelargonium odoratissimum)水性叶提取物绿色合成和表征ZnO纳米颗粒及其抗氧化,抗菌和抗炎活性。抗氧化剂。
(Basel). 11 (8), 1444. https://doi.org/10.3390/antiox11081444 (2022).Article .
(Basel). 11 (8), 1444. https://doi.org/10.3390/antiox11081444 (2022).Article .
Google Scholar
谷歌学者
Iqbal, J. et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 11, 20988. https://doi.org/10.1038/s41598-021-99839-z (2021).Article
Iqbal,J。等人。使用沙枣叶提取物绿色合成氧化锌纳米颗粒及其多种体外生物学应用。科学。代表1120988。https://doi.org/10.1038/s41598-021-99839-z(2021年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhishen, J., Mengcheng, T. & Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999).
Zhishen,J.,Mengcheng,T。&Jianming,W。桑树中类黄酮含量的测定及其对超氧自由基的清除作用。食品化学。64555-559(1999)。
Google Scholar
谷歌学者
Shi, H. et al. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. BMC Plant Biol. 23 (1), 458. https://doi.org/10.1186/s12870-023-04480-9 (2023).Article
Shi,H.等人。浮萍浮萍的代谢适应机制:综合代谢,转录组学和通量分析。BMC植物生物学。23(1),458。https://doi.org/10.1186/s12870-023-04480-9(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shaikhaldein, H. O. et al. Biosynthesis and characterization of ZnO nanoparticles using Ochradenus arabicus and their effect on growth and antioxidant systems of Maerua Oblongifolia. Plants. 10 (9), 1808. https://doi.org/10.3390/plants10091808 (2021).Article
Shaikhaldein,H.O.等人。使用阿拉伯赭曲霉生物合成和表征ZnO纳米颗粒及其对Maerua Oblongifolia生长和抗氧化系统的影响。植物。10(9),1808年。https://doi.org/10.3390/plants10091808(2021年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chung, K. T. Azo dyes and human health: A review. J. Environ. Sci. Health C: Environ. Carcinog. Ecotoxicol. Rev. 34 (4), 233–261. https://doi.org/10.1080/10590501.2016.1236602 (2016).Article
Chung,K.T。偶氮染料与人类健康:综述。J、 环境。科学。健康C:环境。癌症。生态毒性。修订版34(4),233-261。https://doi.org/10.1080/10590501.2016.1236602(2016年)。文章
ADS
广告
MathSciNet
MathSciNet
PubMed
PubMed
Google Scholar
谷歌学者
Tohidi, B., Rahimmalek, M. & Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220, 153–161 (2017).PubMed
Tohidi,B.,Rahimmalek,M。&Arzani,A。从伊朗不同地区采集的胸腺物种的精油组成,总酚,类黄酮含量和抗氧化活性。食品化学。220153-161(2017)。PubMed出版社
Google Scholar
谷歌学者
Elbeshehy, Essam, K. F., Ahmed, M. & Elazzazy, George, A. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front. Microbiol. 6, 141370 (2015).
Elbeshehy,Essam,K.F.,Ahmed,M。&Elazzazy,George,A。由新分离的芽孢杆菌介导的银纳米颗粒合成,纳米颗粒表征及其对豆黄色花叶病毒和人类病原体的活性。正面。微生物。6141370(2015)。
Google Scholar
谷歌学者
Dat, J. et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779–795 (2000).PubMed
Dat,J。等人。植物应激反应中活性氧的双重作用。细胞。分子生命科学。57779-795(2000)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, Z. et al. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express. 2 (12), 3321–33. https://doi.org/10.1364/BOE.2.003321 (2011).Article
Song,Z.等人。用于透皮转运定量成像的ZnO纳米颗粒光学性质的表征。生物医学。选择。快递。。https://doi.org/10.1364/BOE.2.003321(2011年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fadlelmoula, A. et al. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines (Basel)13(2), 187. https://doi.org/10.3390/mi13020187 (2022) (PMID: 35208311; PMCID: PMC8879834).Article
Fadlelmoula,A.等人,《近20年来用于分析人体血液的傅里叶变换红外(FTIR)光谱:对芯片实验室设备的回顾》。微机械(巴塞尔)13(2),187。https://doi.org/10.3390/mi13020187(2022)(PMID:35208311;PMCID:PMC8879834)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Oelichmann, J. Surface and depth-profile analysis using FTIR spectroscopy. Z. Anal. Chem. 333, 353–359. https://doi.org/10.1007/BF00572327 (1989).Article
Oelichmann,J。使用FTIR光谱的表面和深度剖面分析。Z、 肛门。化学。333353-359。https://doi.org/10.1007/BF00572327(1989年)。文章
Google Scholar
谷歌学者
Kiranmayee, M. et al. Green synthesis of Piper nigrum copper-based nanoparticles: in silico study and ADMET analysis to assess their antioxidant, antibacterial, and cytotoxic effects. Front Chem11, 1218588. https://doi.org/10.3389/fchem.2023.1218588 (2023) (PMID: 37736256; PMCID: PMC10509375).Article .
Kiranmayee,M.等人。胡椒铜基纳米颗粒的绿色合成:计算机研究和ADMET分析,以评估其抗氧化,抗菌和细胞毒性作用。前化学111218588。https://doi.org/10.3389/fchem.2023.1218588(2023)(PMID:37736256;PMCID:PMC10509375)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 48 (12), 909–930 (2010).PubMed
Gill,S.S.&Tuteja,N。活性氧和抗氧化机制在作物非生物胁迫耐受性中的作用。工厂。生理学。生物化学。48(12),909-930(2010)。PubMed出版社
Google Scholar
谷歌学者
Arzani, A. & Ashraf, M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant. Sci. 35 (3), 146–189 (2016).
Arzani,A。&Ashraf,M。用于增强作物耐盐性的遗传资源智能工程。暴击。版本工厂。科学。35(3),146-189(2016)。
Google Scholar
谷歌学者
Boukid, F. et al. Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. Eur. Food Res. Technol. 245, 73–82 (2018).
Boukid,F.等人。地方品种、古老和现代突尼斯硬粒小麦的酚类成分和抗氧化能力。欧洲食品研究技术。245,73-82(2018)。
Google Scholar
谷歌学者
Anitha, J. & Miruthul, S. Traditional medicinal uses, phytochemical profile and pharmacological activities of Luffa acutangular L. Int. J. Pharmacogn. 1 (3), 174–183 (2014).
Anitha,J。&Miruthul,S。丝瓜的传统药用,植物化学特征和药理活性。Int。J。Pharmacogn。1(3),174-183(2014)。
Google Scholar
谷歌学者
Asha, A. B. & Narain, R. Nanomaterial properties. In Polymer Science and Nanotechnology (ed. Narain, R.) 343–359 (Elsevier, Amsterdam, The Netherlands, 2020).
Asha,A.B。和Narain,R。纳米材料特性。《聚合物科学与纳米技术》(编辑:Narain,R.)343-359(爱思唯尔,荷兰阿姆斯特丹,2020)。
Google Scholar
谷歌学者
Balogun, S. W., James, O. O., Sanusi, Y. K. & Olayinka, O. H. Green synthesis and characterization of zinc oxide nanoparticles using bashful (Mimosa pudica), leaf extract: a precursor for organic electronics applications. SN Appl. Sci. 2, 1–8 (2020).
Balogun,S.W.,James,O.O.,Sanusi,Y.K。和Olayinka,O.H。使用bashful(含羞草)绿色合成和表征氧化锌纳米颗粒,叶提取物:有机电子应用的前体。序号应用。科学。2,1-8(2020)。
Google Scholar
谷歌学者
Abedini, M., Shariatmadari, F., KarimiTorshizi, M. A. & Ahmadi, H. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. J. Anim. Physiol. Anim. Nutr. 102 (3), 736–745 (2018).
Abedini,M.,Shariatmadari,F.,KarimiTorshizi,M.A。&Ahmadi,H。氧化锌纳米颗粒对产蛋后期蛋鸡蛋品质,免疫反应,锌保留和血液参数的影响。J、 动画。生理学。动画。营养。102(3),736-745(2018)。
Google Scholar
谷歌学者
Mazhar, M. W., Ishtiaq, M., Maqbool, M. & Akram, R. Seed priming with zinc oxide nanoparticles improves growth, osmolyte accumulation, antioxidant defence and yield quality of water-stressed mung bean plants. Arid Land. Res. Manag. 37 (2), 222–246 (2022).
Mazhar,M.W.,Ishtiaq,M.,Maqbool,M。&Akram,R。用氧化锌纳米颗粒引发种子可以改善水分胁迫下绿豆植物的生长,渗透压积累,抗氧化防御和产量质量。干旱的土地。资源管理。37(2),222-246(2022)。
Google Scholar
谷歌学者
Noori, A. et al. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant. Physiol. Biochem. 208, 108538 (2024).Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021).
Noori,A。等。植物健康中的银纳米颗粒:对植物毒性和氧化应激的生理反应。工厂。生理学。生物化学。208108538(2024)。Gudkov,S.V.等人。ZnO纳米颗粒抗菌性能的小型综述。正面。物理。9641481(2021)。
Google Scholar
谷歌学者
Qing, Y. et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 13, 3311–3327 (2018).
Qing,Y。等人。银纳米颗粒的潜在抗菌机制和先进改性技术对骨科植入物的优化。内景J.Nanomed。133311-3327(2018)。
Google Scholar
谷歌学者
Ifeanyichukwu, U. L., Fayemi, O. E. & Ateba, C. N. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules. 25 (19), 4521 (2020).PubMed
Ifeanyichukwu,U.L.,Fayemi,O.E。和Ateba,C.N。从石榴(Punica granatum)提取物中绿色合成氧化锌纳米颗粒及其抗菌活性的表征。分子。25(19),4521(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Agarwal, H. & Shanmugam, V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: mechanism-based approach. Bioorg. Chem. 94, 103423 (2020).PubMed
Agarwal,H。&Shanmugam,V。绿色合成氧化锌纳米颗粒抗炎活性的综述:基于机制的方法。生物组织化学。94103423(2020)。PubMed出版社
Google Scholar
谷歌学者
Al-Jaber, H. I., Shakya, A. K. & Elagbar, Z. A. HPLC profiling of selected phenolic acids and flavonoids in Salvia eigii, Salvia hierosolymitana and Salvia viridis growing wild in Jordan and their in vitro antioxidant activity. PeerJ8, e9769 (2020).PubMed
Al Jaber,H.I.,Shakya,A.K。&Elagbar,Z.A。约旦野生鼠尾草,鼠尾草和绿色鼠尾草中所选酚酸和类黄酮的HPLC分析及其体外抗氧化活性。PeerJ8,e9769(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, W. et al. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Sci. Nutr. 7 (2), 779–787 (2019).PubMed
。食品科学。营养。7(2),779-787(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nizam, N. U. M., Hanafiah, M. M., Mahmoudi, E., Halim, A. A. & Mohammad, A. W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 11 (1), 8623 (2021).PubMed
Nizam,N.U.M.,Hanafiah,M.M.,Mahmoudi,E.,Halim,A.A。&Mohammad,A.W。使用生物质基活性炭从水溶液中去除阴离子和阳离子染料。科学。代表11(1),8623(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kannan, K. et al. Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater. Sci. Energy Technol. 3, 853–861 (2020).
Kannan,K.等人。新型稀土金属氧化物基纳米杂化材料的光催化、抗菌和电化学性能。马特。科学。能源技术。3853-861(2020)。
Google Scholar
谷歌学者
Khan, A. U., Rehman, M. U., Zahoor, M., Shah, A. B. & Zekker, I. Biodegradation of Brown 706 dye by bacterial strain Pseudomonas aeruginosa. Water. 13, 2959 (2021).
Khan,A.U.,Rehman,M.U.,Zahoor,M.,Shah,A.B。&Zekker,I.铜绿假单胞菌对棕色706染料的生物降解。水。132959(2021)。
Google Scholar
谷歌学者
Zafar, S., Bukhari, D. A. & Rehman, A. Azo dyes degradation by microorganisms – an efficient and sustainable approach. Saudi J. Biol. Sci. 29 (12), 103437 (2022).PubMed
Zafar,S.,Bukhari,D.A。&Rehman,A。微生物降解偶氮染料-一种有效且可持续的方法。沙特J.Biol。科学。29(12),103437(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mansour, A. T. et al. Dried Brown Seaweed’s phytoremediation potential for Methylene Blue Dye removal from aquatic environments. Polymers. 14 (7), 1375 (2022).PubMed
Mansour,A.T.等人,《干褐藻对水生环境中亚甲基蓝染料去除的植物修复潜力》。聚合物。14(7),1375(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abdul Aziz, NIH, Mohd Hanafiah, M., Halim, N. H. & Fidri, PAS. Phytoremediation of TSS, NH3-N and COD from sewage wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica. Appl. Sci. 10 (16), 5397 (2020).
阿卜杜勒·阿齐兹(Abdul Aziz),美国国立卫生研究院(NIH),穆罕默德·哈纳菲亚(Mohd Hanafiah),马萨诸塞州哈利姆(Halim),宾夕法尼亚州菲德里(Fidri)。Lemna minor L.,Salvinia minima,Ipomea aquatica和Centella asiatica对污水中TSS,NH3-N和COD的植物修复。应用。科学。。
Google Scholar
谷歌学者
Nazir, R. et al. Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca Buxifolia waste seeds. Soil. Water Res. 15, 166–172 (2020).ADS
Nazir,R.等人。用来自单叶鞘废种子的活性炭从水溶液中吸附选定的偶氮染料。土壤。Water Res.15166–172(2020)。广告
Google Scholar
谷歌学者
Vaiano, V., Matarangolo, M. & Sacco, O. UV-LEDs floating-bed photoreactor for the removal of caffeine and Paracetamol using ZnO supported on polystyrene pellets. Chem. Eng. J. 350, 703–713 (2018).
Vaiano,V.,Matarangolo,M。&Sacco,O。UV LED浮动床光反应器,用于使用聚苯乙烯颗粒负载的ZnO去除咖啡因和对乙酰氨基酚。化学。《工程杂志》350703-713(2018)。
Google Scholar
谷歌学者
Hillyer, M. B., Jordan, J. H., Nam, S., Easson, M. W. & Condon, B. D. Silver nanoparticle-intercalated cotton fiber for catalytic degradation of aqueous organic dyes for water pollution mitigation. Nanomaterials. 12 (10), 1621. https://doi.org/10.3390/nano12101621 (2022).Download referencesAcknowledgementsThe authors are thankful to Samiul Alam and Faomida Sinthi for critical reading and proofreading.FundingThis research received no external funding.Author informationAuthors and AffiliationsDepartment of Botany, Malda College, Malda, 732101, West Bengal, IndiaSantanu Gupta & Kuhely GanguliDepartment of Botany, University of Kalyani, Kalyani, 7431235, West Bengal, IndiaAbir Das, Nilakshi Chakraborty & Malay Kumar AdakDepartment of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357- 43311, IranMohammad Reza FayezizadehDepartment of Botany, University of Gour Banga, Malda, 732103, West Bengal, IndiaSudipta Kumar SilDepartmentof Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, BangladeshMirza HasanuzzamanKyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of KoreaMirza HasanuzzamanAuthorsSantanu GuptaView author publicationsYou can also search for this author in.
Hillyer,M.B.,Jordan,J.H.,Nam,S.,Easson,M.W。&Condon,B.D。银纳米颗粒嵌入棉纤维,用于催化降解水性有机染料以缓解水污染。。12(10),1621年。https://doi.org/10.3390/nano12101621(2022年)。下载参考文献致谢作者感谢Samiul Alam和Faomida Sinthi的批判性阅读和校对。资助这项研究没有得到外部资助。作者信息作者和附属机构马尔达学院植物学系,马尔达,732101,西孟加拉邦,印度桑塔努·古普塔和库赫利·甘古利加里亚尼大学植物学系,7431235,西孟加拉邦,印度亚比尔达斯,尼拉基·查克拉博蒂和马来·库马尔·阿达克农业系,阿瓦兹沙希德·查姆兰大学,阿瓦兹,61357-43311,伊拉姆·穆罕默德·雷扎·法耶齐扎德,古尔班加大学植物学系,马尔达,732103,西孟加拉邦Al,IndiaSudipta Kumar Sildepartment of Agronomy,Faculty of Agriculture,Sher-e-Bangla Agricultural University,达卡,1207,Bangadeshmirza HasanuzzamanKyung Hee University,26 Kyungheedae ro,Dongdaemun gu,Seoul,02447,Republic of KoreaMirza HasanuzzamanAuthorsSantanu GuptaView Author Publications你也可以在中搜索这位作者。
PubMed Google ScholarAbir DasView author publicationsYou can also search for this author in
PubMed Google ScholarAbir DasView作者出版物您也可以在
PubMed Google ScholarKuhely GanguliView author publicationsYou can also search for this author in
PubMed Google ScholarKuhely GanguliView作者出版物您也可以在
PubMed Google ScholarNilakshi ChakrabortyView author publicationsYou can also search for this author in
PubMed Google ScholarMohammad Reza FayezizadehView author publicationsYou can also search for this author in
PubMed Google Scholarmahammad Reza FayezizadehView作者出版物您也可以在
PubMed Google ScholarSudipta Kumar SilView author publicationsYou can also search for this author in
PubMed Google ScholarSudipta Kumar SilView作者出版物您也可以在
PubMed Google ScholarMalay Kumar AdakView author publicationsYou can also search for this author in
PubMed Google ScholarMalay Kumar AdakView作者出版物您也可以在
PubMed Google ScholarMirza HasanuzzamanView author publicationsYou can also search for this author in
PubMed Google Scholarmarirza HasanuzzamanView作者出版物您也可以在
PubMed Google ScholarContributionsS.G: Investigation. A.D: Investigation. K.G: Investigation. N.C: Investigation. S.K.S: Conceptualization, Methodology, Writing – original draft, Supervision, Project administration, Funding acquisition. M.K.A: Data curation, Formal analysis, Validation.
PubMed谷歌学术贡献。G: 调查。A、 D:调查。K、 G:调查。N、 C:调查。S、 K.S:概念化,方法论,写作-原稿,监督,项目管理,资金获取。M、 K.A:数据管理,正式分析,验证。
M.R.F and M.H: Writing – review & editing, Software, Formal analysis, Visualization.Corresponding authorsCorrespondence to.
M、 R.F和M.H:写作-评论和编辑,软件,形式分析,可视化。通讯作者通讯。
Mohammad Reza Fayezizadeh, Sudipta Kumar Sil or Mirza Hasanuzzaman.Ethics declarations
Mohammad Reza Fayezizadeh、Sudipta Kumar Sil或Mirza Hasanuzzaman。道德宣言
Ethics approval and consent to participate
道德批准和同意参与
Not applicable.
不适用。
Consent for publication
同意出版
Not applicable.
不适用。
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleGupta, S., Das, A., Ganguli, K. et al. Salinity-responsive hyperaccumulation of flavonoids in Spirodela polyrrhiza, resultant maneuvering in the structure and antimicrobial as well as azo dye decontamination profile of biofabricated zinc oxide nanoentities..
转载和许可本文引用本文Gupta,S.,Das,A.,Ganguli,K。等人。多根螺旋藻中类黄酮的盐响应性超积累,由此产生的结构操纵和抗菌以及生物制造的氧化锌纳米实体的偶氮染料去污概况。。
Sci Rep 14, 24554 (2024). https://doi.org/10.1038/s41598-024-75232-4Download citationReceived: 05 July 2024Accepted: 03 October 2024Published: 19 October 2024DOI: https://doi.org/10.1038/s41598-024-75232-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1424554(2024)。https://doi.org/10.1038/s41598-024-75232-4Download引文收到日期:2024年7月5日接受日期:2024年10月3日发布日期:2024年10月19日OI:https://doi.org/10.1038/s41598-024-75232-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsAquatic weedsPhytoremediationNanotechnologySecondary metabolismPlant metabolomics, xenobiotics
关键词水生杂草植物修复纳米技术次生代谢植物代谢组学,异生素