商务合作
动脉网APP
可切换为仅中文
AbstractThe aim of this study was to build and validate an artificial neural network (ANN) algorithm to predict sleep using data from a portable monitor (Biologix system) consisting of a high-resolution oximeter with built-in accelerometer plus smartphone application with snoring recording and cloud analysis.
摘要本研究的目的是建立和验证一种人工神经网络(ANN)算法,使用便携式监护仪(Biologix系统)的数据预测睡眠,该监护仪由高分辨率血氧仪和内置加速计以及智能手机应用程序组成,具有打鼾记录和云分析。
A total of 268 patients with suspected obstructive sleep apnea (OSA) were submitted to standard polysomnography (PSG) with simultaneous Biologix (age: \(56\pm 11\) years; body mass index: \(30.9\pm 4.6\)\(\hbox {kg/m}^{2}\), apnea-hypopnea index [AHI]: \(35\pm 30\) events/h). Biologix channels were input features for construction an ANN model to predict sleep.
共有268名疑似阻塞性睡眠呼吸暂停(OSA)患者接受了标准多导睡眠图(PSG),同时进行了Biologix(年龄:\(56 \ pm 11\)年;体重指数:\(30.9 pm 4.6)\(\ hbox{kg/m}^{2}),呼吸暂停低通气指数[AHI]:\(35 pm 30)事件/小时)。Biologix通道是用于构建预测睡眠的ANN模型的输入特征。
A k-fold cross-validation method (k=10) was applied, ensuring that all sleep studies (N=268; 246,265 epochs) were included in both training and testing across all iterations. The final ANN model, evaluated as the mean performance across all folds, resulted in a sensitivity, specificity and accuracy of 91.5%, 71.0% and 86.1%, respectively, for detecting sleep.
应用k倍交叉验证方法(k=10),确保所有睡眠研究(N=268;246265个时期)都包括在所有迭代的训练和测试中。最终的ANN模型被评估为所有折叠的平均性能,用于检测睡眠的敏感性,特异性和准确性分别为91.5%,71.0%和86.1%。
As compared to the oxygen desaturation index (ODI) from Biologix without sleep prediction, the bias (mean difference) between PSG-AHI and Biologix-ODI with sleep prediction (Biologix-Sleep-ODI) decreased significantly (3.40 vs. 1.02 events/h, p<0.001). We conclude that sleep prediction by an ANN model using data from oximeter, accelerometer, and snoring is accurate and improves Biologix system OSA diagnostic precision..
与没有睡眠预测的Biologix的氧饱和度指数(ODI)相比,PSG-AHI和具有睡眠预测的Biologix ODI(Biologix sleep ODI)之间的偏差(平均差异)显着降低(3.40 vs.1.02事件/小时,p<0.001)。我们得出的结论是,使用血氧仪,加速度计和打鼾的数据通过ANN模型进行的睡眠预测是准确的,并提高了Biologix系统OSA的诊断精度。。
IntroductionObstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction, resulting in sleep fragmentation and oxygen desaturation1. OSA is associated with several health consequences, including poor sleep quality, excessive daytime sleepiness, and increased cardiovascular risk2.
引言阻塞性睡眠呼吸暂停(OSA)的特征是上呼吸道阻塞的重复发作,导致睡眠破碎和氧饱和度降低1。OSA与几种健康后果有关,包括睡眠质量差,白天过度嗜睡和心血管风险增加2。
Polysomnography (PSG) is considered the gold standard method for OSA diagnosis3. However, PSG is expensive and inconvenient for patients3. Portable monitoring (PM) is a simplified method that has been validated for OSA diagnosis4. In contrast to PSG, PM does not detect sleep. The consequence of this limitation is that the number of respiratory events in PM devices are reported by hour of monitoring rather than hours of sleep.
多导睡眠图(PSG)被认为是OSA诊断的金标准方法3。然而,PSG对患者来说既昂贵又不方便3。便携式监测(PM)是一种简化的方法,已被验证用于OSA诊断4。与PSG相反,PM不会检测到睡眠。这种限制的结果是PM设备中的呼吸事件数量是按监测小时而不是睡眠小时报告的。
Therefore, the absence of sleep monitoring is a potential source of variability between PSG and PM. Biologix system is a new PM device based on a high-resolution wireless oximeter (\(\hbox {Oxistar}^{\textrm{TM}}\), Biologix Sistemas S.A., Brazil) with built-in accelerometer and a smartphone application (app) that is downloaded to the patient’s smartphone.
因此,缺乏睡眠监测是PSG和PM之间变异的潜在来源。Biologix系统是一种基于高分辨率无线血氧仪(\(\ hbox{Oxistar}^{\ textrm{TM}}\),Biologix Sistemas S.a.,巴西)的新型PM设备,带有内置加速度计和下载到患者智能手机上的智能手机应用程序(app)。
The app records snoring, and all information is automatically processed in the cloud. Biologix system has been validated for OSA diagnosis against PSG in the sleep laboratory5 and against traditional PM at home6. However, Biologix system does not monitor sleep and therefore reports oxygen desaturation index (ODI) based on hours of monitoring rather than hours of sleep.
该应用程序记录打鼾,所有信息都在云中自动处理。Biologix系统已在睡眠实验室5中针对PSG进行OSA诊断,并在家中针对传统PM进行了验证6。然而,Biologix系统不监测睡眠,因此根据监测时间而不是睡眠时间报告氧饱和度指数(ODI)。
Therefore, the objective of this study was to build and validate an artificial neural network (ANN) algorithm using data from oximeter, accelerometer and snoring to detect sleep. We also tested the hypothesis that ANN model improves the Biologix system OSA diagnostic precision.MethodsPatients and data collectionThe stud.
因此,本研究的目的是使用血氧计,加速度计和打鼾的数据来建立和验证人工神经网络(ANN)算法,以检测睡眠。我们还测试了ANN模型提高Biologix系统OSA诊断精度的假设。方法参与者和数据收集研究。
Data availability
数据可用性
The data that support the findings of this study are available from Biologix Sistemas S.A., but restrictions apply to the availability of these data, which were used under license for the current study and are not publicly available. Data are, however, available from the authors upon reasonable request and with the permission of Biologix Sistemas S.A..
支持本研究结果的数据可从Biologix Sistemas S.A.获得,但这些数据的可用性受到限制,这些数据是在当前研究的许可下使用的,并且不公开。但是,作者可根据合理要求并经Biologix Sistemas S.A.许可获得数据。。
ReferencesSleep-related breathing disorders in adults. Recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22, 667–689 (1999).Colten, H. R. & Altevogt, B. M. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem (Institute of Medicine, 2006)..
参考成年人睡眠相关的呼吸障碍。临床研究中症状定义和测量技术的建议。Sleep 22667–689(1999)。科尔滕(Colten),H.R.&Altevogt,B.M。睡眠障碍和睡眠剥夺:一个未得到满足的公共卫生问题(医学研究所,2006年)。。
Google Scholar
谷歌学者
Rundo, J. V. & Downey, R. Chapter 25 - polysomnography. In Levin, K. H. & Chauvel, P. (eds.) Clinical Neurophysiology: Basis and Technical Aspects. In Handbook of Clinical Neurology, vol. 160, 381–392 (Elsevier, 2019).Practice Committee of the American Sleep Disorders Association. Practice parameters for the use of portable recording in the assessment of obstructive sleep apnea.
Rundo,J.V.&Downey,R。第25章-多导睡眠图。在莱文,K.H.&Chauvel,P。(编辑)临床神经生理学:基础和技术方面。在《临床神经病学手册》第160381-392卷(Elsevier,2019)中。美国睡眠障碍协会实践委员会。使用便携式记录评估阻塞性睡眠呼吸暂停的实践参数。
Sleep 17, 372–377 (1994)..
睡眠17372-377(1994)。。
Google Scholar
谷歌学者
Do Lago Pinheiro, G. et al. Validation of an overnight wireless high-resolution oximeter plus cloud-based algorithm for the diagnosis of obstructive sleep apnea. Clinics 75, e2414 (2020).Article
Do Lago Pinheiro,G.等人验证了用于诊断阻塞性睡眠呼吸暂停的隔夜无线高分辨率血氧仪加上基于云的算法。诊所75,e2414(2020)。文章
Google Scholar
谷歌学者
Hasan, R. et al. Validation of an overnight wireless high-resolution oximeter for the diagnosis of obstructive sleep apnea at home. Sci. Rep. 12, 15136 (2022).Article
Hasan,R。等人。在家中验证过夜无线高分辨率血氧仪用于诊断阻塞性睡眠呼吸暂停。科学。代表1215136(2022)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnson, K. Supervised Learning for Sequence Prediction Using Keras Sequential Models. Master’s thesis, California State University, Northridge (2018).Poole, D. L. & Mackworth, A. K. Artificial Intelligence: Foundations of Computational Agents (Cambridge University Press, 2010).Book .
Johnson,K。使用Keras序列模型进行序列预测的监督学习。加利福尼亚州立大学北岭分校硕士论文(2018)。Poole,D.L.&Mackworth,A.K.《人工智能:计算代理的基础》(剑桥大学出版社,2010)。书。
Google Scholar
谷歌学者
Camacho, M. et al. Smartphone apps for snoring. J. Laryngol. Otol. 129, 974–979 (2015).Article
Camacho,M.等人,《用于打鼾的智能手机应用程序》。J.喉。奥托尔。129974-979(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 77, 534–540 (2020).Article
Poldrack,R.A.,Huckins,G。&Varoquaux,G。建立预测证据的最佳实践:综述。JAMA Psychiat。77534-540(2020)。文章
Google Scholar
谷歌学者
Mencar, C. et al. Application of machine learning to predict obstructive sleep apnea syndrome severity. Health Inform. J. 26, 298–317 (2020).Article
Mencar,C.等人。应用机器学习预测阻塞性睡眠呼吸暂停综合征的严重程度。健康信息。J、 26298-317(2020)。文章
Google Scholar
谷歌学者
Leung, H. & Haykin, S. The complex backpropagation algorithm. IEEE Trans. Signal Process. 39, 2101–2104 (1991).Article
Leung,H。&Haykin,S。复杂反向传播算法。IEEE Trans。。392101-2104(1991)。文章
ADS
广告
Google Scholar
谷歌学者
Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the trade 55–69 (Springer, 2002).
普雷切尔特,L。提前停止,但什么时候?。
Google Scholar
谷歌学者
Rasamoelina, A. D., Adjailia, F. & Sinčák, P. A review of activation function for artificial neural network. In 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), 281–286 (IEEE, 2020).Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J.
拉萨莫埃利纳,公元前。,Adjailia,F.&Sinčák,P.《人工神经网络激活函数综述》。2020年IEEE第18届应用机器智能和信息学世界研讨会(SAMI),281-286(IEEE,2020)。Pedregosa,F.等人,《Scikit learn:Python中的机器学习》。J。
Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet .
机器。学习。第122825-2830号决议(2011年)。MathSciNet。
Google Scholar
谷歌学者
Buitinck, L. et al. API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–122 (2013).Kim, S. & Lee, W. Does Mcnemar’s test compare the sensitivities and specificities of two diagnostic tests?.
机器学习软件的API设计:来自scikit学习项目的经验。在ECML PKDD研讨会:数据挖掘和机器学习语言,108-122(2013)。Kim,S。&Lee,W。Mcnemar的测试是否比较了两种诊断测试的敏感性和特异性?。
Stat. Methods Med. Res. 26, 142–154 (2017).Article .
《统计方法医学》第26142-154号决议(2017年)。文章。
MathSciNet
MathSciNet
PubMed
PubMed
Google Scholar
谷歌学者
Khor, Y. H. et al. Portable evaluation of obstructive sleep apnea in adults: A systematic review. Sleep Med. Rev. 101743 (2023).Collop, N. A. et al. Obstructive sleep apnea devices for out-of-center (ooc) testing: technology evaluation. J. Clin. Sleep Med. 7, 531–548 (2011).Article
霍尔,Y.H。成人阻塞性睡眠呼吸暂停的便携式评估:系统综述。《睡眠医学》第101743版(2023年)。Collop,N.A.等人。用于中心外(ooc)测试的阻塞性睡眠呼吸暂停装置:技术评估。J、 临床。睡眠医学7531-548(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marino, M. et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 36, 1747–1755 (2013).Article
Marino,M.等人,《测量睡眠:与多导睡眠图相比,手腕活动图的准确性、敏感性和特异性》。睡眠361747-1755(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Montgomery-Downs, H. E., Insana, S. P. & Bond, J. A. Movement toward a novel activity monitoring device. Sleep Breath. 16, 913–917 (2012).Article
Montgomery Downs,H.E.,Insana,S.P。和Bond,J.A。走向新型活动监测设备。睡眠呼吸。16913-917(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Banfi, T. et al. Efficient embedded sleep wake classification for open-source actigraphy. Sci. Rep. 11, 345 (2021).Article
Banfi,T。等人。用于开源活动描记术的有效嵌入式睡眠-觉醒分类。科学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chinoy, E. D. et al. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 44 (2020).Redmond, S. J. et al. Sleep staging using cardiorespiratory signals. Somnologie 11 (2007).Kalkbrenner, C. et al. Automated sleep stage classification based on tracheal body sound and actigraphy.
奇诺伊,E.D。等。与多导睡眠图相比,七种消费者睡眠跟踪设备的性能。睡眠44(2020)。雷蒙德,S.J。。睡眠学11(2007)。Kalkbrenner,C。等人。基于气管体声波和活动描记术的睡眠阶段自动分类。
GMS German Med. Sci. 17 (2019).Dafna, E., Tarasiuk, A. & Zigel, Y. Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds. PLoS One 10, e0117382 (2015).Article .
。17(2019)。Dafna,E.,Tarasiuk,A。&Zigel,Y。通过整夜非接触式呼吸声音录音进行睡眠-觉醒评估。PLoS One 10,e0117382(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schade, M. M. et al. Sleep validity of a non-contact bedside movement and respiration-sensing device. J. Clin. Sleep Med. 15, 1051–1061 (2019).Article
Schade,M.M.等人。非接触床边运动和呼吸感应装置的睡眠有效性。J、 临床。睡眠医学杂志151051-1061(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aktaruzzaman, M. et al. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification. Comput. Biol. Med. 89, 212–221 (2017).Article
Aktaruzzaman,M.等人。手腕和胸部活动描记术结合心率变异性进行睡眠分类的性能比较。计算机。生物学杂志89212-221(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
García-Díaz, E. et al. Respiratory polygraphy with actigraphy in the diagnosis of sleep apnea-hypopnea syndrome. Chest 131, 725–732 (2007).Article
García-Díaz,E.等。呼吸多导图与活动图在睡眠呼吸暂停低通气综合征诊断中的应用。胸部131725-732(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fonseca, P. et al. Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults. Sleep 40, zsx097 (2017).Article
Fonseca,P。等人。与健康中年人的多导睡眠图相比,基于光体积描记术的睡眠分期的验证。睡眠40,zsx097(2017)。文章
Google Scholar
谷歌学者
Devot, S., Dratwa, R. & Naujokat, E. Sleep/wake detection based on cardiorespiratory signals and actigraphy. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 5089–5092 (IEEE, 2010).Montazeri Ghahjaverestan, N. et al. Sleep/wakefulness detection using tracheal sounds and movements.
Devot,S.,Dratwa,R。&Naujokat,E。基于心肺信号和活动描记术的睡眠/觉醒检测。在2010年IEEE医学和生物学工程国际年会上,5089-5092(IEEE,2010)。Montazeri Ghahjaverestan,N。等人。使用气管声音和运动进行睡眠/觉醒检测。
Nat. Sci. Sleep 1009–1021 (2020).Download referencesAcknowledgementsSleep laboratory of the Heart Institute (where PSG were performed), study participants and each coauthor are acknowledged.Author informationAuthors and AffiliationsBiologix Sistemas S.A., São Paulo, SP, BrazilDiego Munduruca Domingues, Paloma Rodrigues Rocha, Ana Cláudia M.
自然科学。睡眠1009-1021(2020)。。作者信息作者和附属机构Biologix Sistemas S.A.,圣保罗,SP,巴西Munduruca Domingues,Paloma Rodrigues Rocha,Ana Cláudia M。
V. Miachon & Filipe SoaresLaboratório do Sono, LIM 63, Divisão de Pneumologia, Instituto do Coração, InCor, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Eneas de Carvalho Aguiar 44, 8º andar, São Paulo, SP, 05403-900, BrazilSara Quaglia de Campos Giampá, Pedro R. Genta & Geraldo Lorenzi-FilhoAuthorsDiego Munduruca DominguesView author publicationsYou can also search for this author in.
V.Miachon&Filipe Soares睡眠实验室,LIM 63,心脏研究所肺病科,InCor,Hospital das Clínicas HCFMUSP,圣保罗大学,Eneas de Carvalho Aguiar 44,8ºandar,圣保罗,SP,05403-900,巴西Sara Quaglia de Campos Giampá,Pedro R.Genta&Geraldo Lorenzi Filho作者Diego Munduruca Domingues查看作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarPaloma Rodrigues RochaView author publicationsYou can also search for this author in
PubMed Google ScholarPaloma Rodrigues RochaView作者出版物您也可以在
PubMed Google ScholarAna Cláudia M. V. MiachonView author publicationsYou can also search for this author in
PubMed Google ScholarAna Cláudia M.V.MiachonView作者出版物您也可以在
PubMed Google ScholarSara Quaglia de Campos GiampáView author publicationsYou can also search for this author in
PubMed Google ScholarSara Quaglia de Campos GiampáView作者出版物您也可以在
PubMed Google ScholarFilipe SoaresView author publicationsYou can also search for this author in
PubMed Google ScholarFilipe SoaresView作者出版物您也可以在
PubMed Google ScholarPedro R. GentaView author publicationsYou can also search for this author in
PubMed Google ScholarPedro R.GentaView作者出版物您也可以在
PubMed Google ScholarGeraldo Lorenzi-FilhoView author publicationsYou can also search for this author in
PubMed Google ScholarGeraldo Lorenzi FilhoView作者出版物您也可以在
PubMed Google ScholarContributionsD.M.D., A.C.M.V.M., and F.S. led the development and validation of the artificial neural network algorithm. D.M.D and P.R.R. analyzed the results. D.M.D, P.R.R, A.C.M.V.M., S.Q.C.G and G.L.F wrote the initial manuscript draft with input from all authors.
PubMed谷歌学术贡献SD。M、 D.,A.C.M.V.M.和F.S.领导了人工神经网络算法的开发和验证。D、 M.D和P.R.R.分析了结果。D、 M.D,P.R.R,A.C.M.V.M.,S.Q.C.G和G.L.F在所有作者的意见下撰写了初稿。
P.R.G contributed substantially to the data analysis, interpretation of the data, or a combination thereof. All authors reviewed the manuscript.Corresponding authorCorrespondence to.
P、 R.G为数据分析,数据解释或其组合做出了重大贡献。所有作者都审阅了手稿。对应作者对应。
Diego Munduruca Domingues.Ethics declarations
迭戈·蒙杜鲁卡·多明格斯。道德宣言
Competing interests
相互竞争的利益
Authors Diego Munduruca Domingues, Paloma Rodrigues Rocha, Ana Cláudia M. V. Miachon and Filipe Soares are employees of Biologix. Geraldo Lorenzi-Filho is co-founder of Biologix. This research was funded by Biologix Sistemas S.A., Brazil.
作者Diego Munduruca Domingues、Paloma Rodrigues Rocha、Ana Cláudia M.V.Miachon和Filipe Soares是Biologix的员工。Geraldo Lorenzi Filho是Biologix的联合创始人。这项研究由巴西Biologix Sistemas S.A.资助。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleDomingues, D.M., Rocha, P.R., Miachon, A.C.M.V. et al. Sleep prediction using data from oximeter, accelerometer and snoring for portable monitor obstructive sleep apnea diagnosis.
转载和许可本文引用本文Domingues,D.M.,Rocha,P.R.,Miachon,A.C.M.V。等人。使用血氧仪,加速度计和打鼾数据进行睡眠预测,用于便携式监护仪阻塞性睡眠呼吸暂停的诊断。
Sci Rep 14, 24562 (2024). https://doi.org/10.1038/s41598-024-75935-8Download citationReceived: 19 February 2024Accepted: 09 October 2024Published: 19 October 2024DOI: https://doi.org/10.1038/s41598-024-75935-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
。https://doi.org/10.1038/s41598-024-75935-8Download引文收到日期:2024年2月19日接受日期:2024年10月9日发布日期:2024年10月19日OI:https://doi.org/10.1038/s41598-024-75935-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsArtificial neural networkSleep predictionObstructive sleep apnea
关键词人工神经网络睡眠预测阻塞性睡眠呼吸暂停