EN
登录

用于监测未来新冠肺炎样疫情的哨点宿主研究

Study on sentinel hosts for surveillance of future COVID-19-like outbreaks

Nature 等信源发布 2024-10-19 21:30

可切换为仅中文


AbstractThe spread of SARS-CoV-2 to animals has the potential to evolve independently. In this study, we distinguished several sentinel animal species and genera for monitoring the re-emergence of COVID-19 or the new outbreak of COVID-19-like disease. We analyzed SARS-CoV-2 genomic data from human and nonhuman mammals in the taxonomic hierarchies of species, genus, family and order of their host.

。在这项研究中,我们区分了几种前哨动物物种和属,用于监测新型冠状病毒肺炎的再次出现或新型冠状病毒肺炎样疾病的新爆发。我们分析了来自人类和非人类哺乳动物的SARS-CoV-2基因组数据,包括物种,属,科和宿主顺序的分类层次。

We find that SARS-CoV-2 carried by domestic dog (Canis lupus familiaris), domestic cat (Felis catus), mink (Neovison vison), and white-tailed deer (Odocoileus virginianus) cluster closely to human-origin viruses and show no differences in the majority of amino acids, but have the most positively selected sites and should be monitored to prevent the re-emergence of COVID-19 caused by novel variants of SARS-CoV-2.

我们发现家犬(犬狼疮)、家猫(猫科动物)、水貂(Neovison vison)和白尾鹿(Odocoileus virginianus)携带的SARS-CoV-2与人类来源的病毒密切相关,大多数氨基酸没有差异,但具有最积极的选择位点,应予以监测,以防止SARS-CoV-2新变异引起的COVID-19再次出现。

Viruses from the genera Panthera (especially lion (Panthera leo)), Manis and Rhinolophus differ significantly from human-origin viruses, and long-term surveillance should be undertaken to prevent the future COVID-19-like outbreaks. Investigation of the variation dynamics of sites 142, 501, 655, 681 and 950 within the S protein may be necessary to predict the novel animal SARS-CoV-2 variants..

。研究S蛋白内位点142、501、655、681和950的变异动力学可能有必要预测新的动物SARS-CoV-2变体。。

IntroductionThe COVID-19 pandemic, which began in 2019, has had a significant impact on the global economy and public health. As of 30 July 2023, more than 768 million confirmed cases and more than 6.9 million deaths had been reported worldwide1. The pathogen, SARS-CoV-2, is a single, positive-stranded, non-segmented RNA virus, and the viral genome can encode at least 29 proteins, of which the spike (S) protein is a critical structural protein involved in recognition and fusion with the host cell receptor angiotensin-converting enzyme 2 (ACE2)2,3.

引言自2019年开始的新型冠状病毒肺炎大流行对全球经济和公共卫生产生了重大影响。截至2023年7月30日,全世界报告的确诊病例超过7.68亿,死亡人数超过690万1。病原体SARS-CoV-2是一种单链正链非节段RNA病毒,病毒基因组可编码至少29种蛋白质,其中棘突蛋白是参与识别的关键结构蛋白。与宿主细胞受体血管紧张素转换酶2(ACE2)2,3融合。

The S protein is composed of two functional regions, S1 and S2. The S1 region contains two crucial structural domains, the N-terminal domain (NTD) and the receptor-binding domain (RBD), which interfere with the immune response of the host cell and recognize and bind to host-associated receptors, respectively, while the S2 region mediates the fusion of the virus with the cell membrane4,5,6.

S蛋白由两个功能区S1和S2组成。S1区域包含两个关键的结构域,即N末端结构域(NTD)和受体结合结构域(RBD),它们分别干扰宿主细胞的免疫应答并识别和结合宿主相关受体,而S2区域介导病毒与细胞膜的融合4,5,6。

It has been demonstrated that the high variability of the RBD and NTD relates to the virus’ immune evasion and host selection7.Coronaviruses have a taxonomically and geographically broad host range and exhibit genetic diversity and frequent gene recombination. Mammals are important potential hosts for cross-species transmission of novel coronaviruses.

已经证明,RBD和NTD的高变异性与病毒的免疫逃避和宿主选择有关7。冠状病毒具有分类学和地理上广泛的宿主范围,并表现出遗传多样性和频繁的基因重组。哺乳动物是新型冠状病毒跨物种传播的重要潜在宿主。

SARS-CoV-2 is widely believed to have originated in bats8,9,10, and previous studies have suggested that pangolins were likely to be its intermediate host due to their high amino acid sequence similarity11,12,13. However, later studies found that their nucleotide sequence was clearly different, so the conclusion that pangolins are intermediate hosts was not conclusive14.

人们普遍认为SARS-CoV-2起源于蝙蝠8,9,10,以前的研究表明,穿山甲可能是其中间宿主,因为它们具有高氨基酸序列相似性11,12,13。然而,后来的研究发现,它们的核苷酸序列明显不同,因此穿山甲是中间宿主的结论并不确定14。

Since the outbreak of the COVID-19 pandemic, numerous infections have been observed in both domestic and wild mammals. Variou.

自新型冠状病毒肺炎爆发以来,在家养和野生哺乳动物中都观察到了许多感染。瓦里欧。

Data availability

数据可用性

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

研究期间生成或使用的部分或全部数据,模型或代码可根据要求从相应的作者处获得。

ReferencesWHO. COVID-19 Weekly Epidemiological Update. (2023).Kadam, S. B., Sukhramani, G. S., Bishnoi, P., Pable, A. A. & Barvkar, V. T. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J. Basic. Microbiol. 61, 180–202. https://doi.org/10.1002/jobm.202000537 (2021).Article

参考WHO。COVID-19每周流行病学更新。(2023年)。Kadam,S.B.,Sukhramani,G.S.,Bishnoi,P.,Pable,A.A。&Barvkar,V.T。SARS-CoV-2,大流行冠状病毒:分子和结构见解。J、 基本。。61180-202。https://doi.org/10.1002/jobm.202000537(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Q. et al. A unique protease cleavage site predicted in the spike protein of the Novel Pneumonia Coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol. Sin. 35, 337–339. https://doi.org/10.1007/s12250-020-00212-7 (2020).Article

Wang,Q。等人。在新型肺炎冠状病毒(2019-nCoV)的尖峰蛋白中预测的独特蛋白酶切割位点可能与病毒传播有关。维罗尔。罪恶。35337-339。https://doi.org/10.1007/s12250-020-00212-7(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424. https://doi.org/10.1038/s41579-021-00573-0 (2021).Article

Harvey,W.T。等人。SARS-CoV-2变体,尖峰突变和免疫逃逸。自然修订版微生物学。19409-424年。https://doi.org/10.1038/s41579-021-00573-0(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia, X. Domains and functions of spike protein in Sars-Cov-2 in the context of Vaccine Design. Viruses. 13 https://doi.org/10.3390/v13010109 (2021).Zhang, J., Xiao, T., Cai, Y. & Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 50, 173–182. https://doi.org/10.1016/j.coviro.2021.08.010 (2021).Article .

Xia,X。在疫苗设计的背景下,Sars-Cov-2中刺突蛋白的结构域和功能。病毒。13https://doi.org/10.3390/v13010109(2021年)。Zhang,J.,Xiao,T.,Cai,Y。&Chen,B。SARS-CoV-2穗蛋白的结构。货币。奥平。维罗尔。50173-182。https://doi.org/10.1016/j.coviro.2021.08.010(2021年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y. et al. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 23, 189–199. https://doi.org/10.1038/s41577-022-00784-3 (2023).Article

Chen,Y.等人。广泛中和SARS-CoV-2和其他人类冠状病毒的抗体。国家免疫修订版。。https://doi.org/10.1038/s41577-022-00784-3(2023年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xu, X. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 63, 457–460. https://doi.org/10.1007/s11427-020-1637-5 (2020).Article

Xu,X.等人。正在进行的武汉疫情中新型冠状病毒的进化及其棘突蛋白对人类传播风险的建模。科学。中国生命科学。63457-460。https://doi.org/10.1007/s11427-020-1637-5(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paraskevis, D. et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. 79, 104212. https://doi.org/10.1016/j.meegid.2020.104212 (2020).Article

Paraskevis,D。等人。新型冠状病毒(2019-nCoV)的全基因组进化分析拒绝了由于最近的重组事件而出现的假设。。基因。进化。79104212页。https://doi.org/10.1016/j.meegid.2020.104212(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benvenuto, D. et al. The 2019-new coronavirus epidemic: evidence for virus evolution. J. Med. Virol. 92, 455–459. https://doi.org/10.1002/jmv.25688 (2020).Article

Benvenuto,D。等人。2019年新冠状病毒疫情:病毒进化的证据。J、 。92455-459。https://doi.org/10.1002/jmv.25688(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 Associated with the COVID-19 outbreak. Curr. Biol. 30, 1346–1351e1342. https://doi.org/10.1016/j.cub.2020.03.022 (2020).Article

Zhang,T.,Wu,Q。&Zhang,Z。与新型冠状病毒爆发相关的SARS-CoV-2的可能穿山甲起源。货币。生物学301346–1351e1342。https://doi.org/10.1016/j.cub.2020.03.022(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 583, 286–289. https://doi.org/10.1038/s41586-020-2313-x (2020).Article

Xiao,K。等人。从马来西亚穿山甲中分离SARS-CoV-2相关冠状病毒。自然。583286-289。https://doi.org/10.1038/s41586-020-2313-x(2020年)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Li, X. et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. bioRxiv. https://doi.org/10.1101/2020.03.20.000885 (2020).Article

Li,X。等人。通过重组和强纯化选择出现SARS-CoV-2。生物十四。https://doi.org/10.1101/2020.03.20.000885(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schindell, B. G., Allardice, M., McBride, J. A. M., Dennehy, B. & Kindrachuk, J. SARS-CoV-2 and the Missing Link of Intermediate hosts in viral emergence - what we can learn from other Betacoronaviruses. Front. Virol. 2https://doi.org/10.3389/fviro.2022.875213 (2022).Sit, T. H. C. et al.

Schindell,B.G.,Allardice,M.,McBride,J.A.M.,Dennehy,B。&Kindrachuk,J。SARS-CoV-2和病毒出现中中间宿主的缺失环节-我们可以从其他betacoronavirus中学到什么。正面。维罗尔。2https://doi.org/10.3389/fviro.2022.875213(2022年)。Sit,T.H.C.等人。

Infection of dogs with SARS-CoV-2. Nature. 586, 776–778. https://doi.org/10.1038/s41586-020-2334-5 (2020).Article .

犬感染SARS-CoV-2。自然。586776-778。https://doi.org/10.1038/s41586-020-2334-5(2020年)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McAloose, D. et al. From people to Panthera: natural SARS-CoV-2 infection in Tigers and Lions at the Bronx Zoo. mBio. 11 https://doi.org/10.1128/mBio.02220-20 (2020).Gaudreault, N. N. et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg. Microbes Infect. 9, 2322–2332.

《从人到豹:布朗克斯动物园老虎和狮子的SARS-CoV-2自然感染》。mBio公司。11https://doi.org/10.1128/mBio.02220-20(2020年)。Gaudreault,N.N.等人,《家猫SARS-CoV-2感染、疾病和传播》。紧急微生物感染。92322-2332。

https://doi.org/10.1080/22221751.2020.1833687 (2020).Article .

https://doi.org/10.1080/22221751.2020.1833687(2020).第条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McBride, D. S. et al. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat. Commun. 14, 5105. https://doi.org/10.1038/s41467-023-40706-y (2023).Article

McBride,D.S.等人加速了自由放养白尾鹿中SARS-CoV-2的进化。国家公社。145105年。https://doi.org/10.1038/s41467-023-40706-y(2023年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Su, S. et al. Epidemiology, genetic recombination, and Pathogenesis of coronaviruses. Trends Microbiol. 24, 490–502. https://doi.org/10.1016/j.tim.2016.03.003 (2016).Article

Su,S.等人。冠状病毒的流行病学,基因重组和发病机理。趋势微生物。24490-502。https://doi.org/10.1016/j.tim.2016.03.003(2016年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hale, V. L. et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 602, 481–. https://doi.org/10.1038/s41586-021-04353-x (2022).Article

Hale,V.L.等人。自由放养白尾鹿的SARS-CoV-2感染。自然。602481–。https://doi.org/10.1038/s41586-021-04353-x(2022年)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Chandler, J. C. et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. U S A. 118 https://doi.org/10.1073/pnas.2114828118 (2021).Palmer, M. V. et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 95https://doi.org/10.1128/jvi.00083-21 (2021).Bao, L.

Chandler,J.C.等人。野生白尾鹿(Odocoileus virginianus)的SARS-CoV-2暴露。程序。纳特尔。阿卡德。科学。美国118https://doi.org/10.1073/pnas.2114828118(2021年)。Palmer,M.V.等人。白尾鹿(Odocoileus virginianus)对SARS-CoV-2的易感性。J、 维罗尔。95https://doi.org/10.1128/jvi.00083-21(2021年)。鲍,L。

et al. Susceptibility and attenuated transmissibility of SARS-CoV-2 in domestic cats. J. Infect. Dis. 223, 1313–1321. https://doi.org/10.1093/infdis/jiab104 (2021).Article .

SARS-CoV-2在家猫中的易感性和减毒传播性。J、 感染。Dis。2231313-1321年。https://doi.org/10.1093/infdis/jiab104(2021年)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Sharun, K., Saied, A. A., Tiwari, R. & Dhama, K. SARS-CoV-2 infection in domestic and feral cats: current evidence and implications. Vet. Q. 41, 228–231. https://doi.org/10.1080/01652176.2021.1962576 (2021).Article

Sharun,K.,Saied,A.A.,Tiwari,R。和Dhama,K。家猫和野猫的SARS-CoV-2感染:目前的证据和影响。兽医。Q、 41228-231。https://doi.org/10.1080/01652176.2021.1962576(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shriner, S. A. et al. SARS-CoV-2 exposure in escaped Mink, Utah, USA. Emerg. Infect. Dis. 27, 988–990. https://doi.org/10.3201/eid2703.204444 (2021).Article

Shriner,S.A。等人。SARS-CoV-2在美国犹他州逃逸水貂中的暴露。紧急感染。Dis。27988-990年。https://doi.org/10.3201/eid2703.204444(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khalid, M., Alshishani, A. & Al-Ebini, Y. Genome similarities between human-derived and mink-derived SARS-CoV-2 make Mink a potential Reservoir of the Virus. Vaccines (Basel). 10https://doi.org/10.3390/vaccines10081352 (2022).Rabalski, L. et al. Severe Acute Respiratory Syndrome Coronavirus 2 in Farmed Mink (Neovison vison), Poland.

Khalid,M.,Alshishani,A。&Al-Ebini,Y。人类来源和水貂来源的SARS-CoV-2之间的基因组相似性使水貂成为病毒的潜在宿主。疫苗(巴塞尔)。10https://doi.org/10.3390/vaccines10081352(2022年)。Rabalski,L。等人。波兰养殖水貂(Neovison vison)中的严重急性呼吸综合征冠状病毒2。

Emerg. Infect. Dis. 27, 2333–2339. https://doi.org/10.3201/eid2709.210286 (2021).Article .

紧急感染。Dis。。https://doi.org/10.3201/eid2709.210286(2021年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammer, A. S. et al. SARS-CoV-2 transmission between Mink (Neovison vison) and humans, Denmark. Emerg. Infect. Dis. 27, 547–551. https://doi.org/10.3201/eid2702.203794 (2021).Article

Hammer,A.S.等人。丹麦水貂(Neovison vison)和人类之间的SARS-CoV-2传播。紧急感染。Dis。27547-551。https://doi.org/10.3201/eid2702.203794(2021年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aguiló-Gisbert, J. et al. First description of SARS-CoV-2 infection in two feral American Mink (Neovison vison) caught in the Wild. Animals. 11, 1422. https://doi.org/10.3390/ani11051422 (2021).Article

Aguiló-Gisbert,J.等人首次描述了在野外捕获的两只野生美洲水貂(Neovison vison)的SARS-CoV-2感染。动物。111422年。https://doi.org/10.3390/ani11051422(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Padilla-Blanco, M. et al. The Finding of the severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in a wild Eurasian River Otter (Lutra lutra) highlights the need for viral surveillance in wild mustelids. Front. Veterinary Sci. 9 https://doi.org/10.3389/fvets.2022.826991 (2022).Nunes, B.

Padilla Blanco,M.等人在野生欧亚河獭(Lutra Lutra)中发现了严重急性呼吸综合征冠状病毒(SARS-CoV-2),这突出表明需要对野生鼬进行病毒监测。正面。兽医科学。9https://doi.org/10.3389/fvets.2022.826991(2022年)。努内斯,B。

et al. Heterogeneous selective pressure acting on influenza B Victoria- and Yamagata-like hemagglutinins. J. Mol. Evol. 67, 427–435. https://doi.org/10.1007/s00239-008-9154-9 (2008).Article .

等。作用于B型流感维多利亚和山形样血凝素的异质选择性压力。J、 分子进化。67427-435。https://doi.org/10.1007/s00239-008-9154-9(2008年)。文章。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Torresi, J., Johnson, D. & Wedemeyer, H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J. Hepatol. 54, 1273–1285. https://doi.org/10.1016/j.jhep.2010.09.040 (2011).Article

Torresi,J.,Johnson,D。和Wedemeyer,H。丙型肝炎病毒预防和治疗疫苗的开发进展。J、 。541273-1285年。https://doi.org/10.1016/j.jhep.2010.09.040(2011年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences 102, 14040–14045, doi: (2005). https://doi.org/10.1073/pnas.0506735102Siegrist, A. A. et al. Probable transmission of SARS-CoV-2 from African Lion to Zoo employees, Indiana, USA, 2021.

Lau,S.K.P.等人。中国马蹄蝠中的严重急性呼吸综合征冠状病毒样病毒。美国国家科学院院刊10214040-14045,doi:(2005)。https://doi.org/10.1073/pnas.0506735102Siegrist,A.A.等人。SARS-CoV-2可能从非洲狮传播给动物园员工,美国印第安纳州,2021年。

Emerg. Infect. Dis. 29, 1102–1108. https://doi.org/10.3201/eid2906.230150 (2023).Article .

紧急感染。Dis。291102-1108年。https://doi.org/10.3201/eid2906.230150(2023年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Colella, J. P. et al. Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network. PLoS Pathog. 17, e1009583. https://doi.org/10.1371/journal.ppat.1009583 (2021).Article

Colella,J.P.等人,《利用自然历史生物储存库作为全球分散的病原体监测网络》,《公共科学图书馆·病理学》。17,e1009583。https://doi.org/10.1371/journal.ppat.1009583(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goraichuk, I. V., Arefiev, V., Stegniy, B. T. & Gerilovych, A. P. Zoonotic and reverse zoonotic transmissibility of SARS-CoV-2. Virus Res. 302, 198473. https://doi.org/10.1016/j.virusres.2021.198473 (2021).Article

Goraichuk,I.V.,Arefiev,V.,Stegney,B.T。和Gerilovych,A.P。SARS-CoV-2的人畜共患和反向人畜共患传播性。Virus Res.302198473。https://doi.org/10.1016/j.virusres.2021.198473(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over alpha variant. Cell. Rep. 39https://doi.org/10.1016/j.celrep.2022.110829 (2022).Jeong, B. S. et al. Structural basis for the broad and potent cross-reactivity of an N501Y-centric antibody against sarbecoviruses.

Liu,Y。等人。δ尖峰P681R突变增强了SARS-CoV-2对α变体的适应性。细胞。代表39https://doi.org/10.1016/j.celrep.2022.110829(2022年)。Jeong,B.S.等人。以N501Y为中心的抗沙伯病毒抗体广泛而有效的交叉反应性的结构基础。

Front. Immunol. 13, 1049867. https://doi.org/10.3389/fimmu.2022.1049867 (2022).Article .

Front. Immunol. 13, 1049867. https://doi.org/10.3389/fimmu.2022.1049867 (2022).Article .

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S., Huynh, T., Stauft, C. B., Wang, T. T. & Luan, B. Structure-function analysis of resistance to Bamlanivimab by SARS-CoV-2 variants Kappa, Delta, and Lambda. J. Chem. Inf. Model. 61, 5133–5140. https://doi.org/10.1021/acs.jcim.1c01058 (2021).Article

Liu,S.,Huynh,T.,Stauft,C.B.,Wang,T.T。&Luan,B。SARS-CoV-2变体Kappa,Delta和Lambda对bamlanimab抗性的结构-功能分析。J、 化学。Inf.模型。615133-5140。https://doi.org/10.1021/acs.jcim.1c01058(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tan, C. C. S. et al. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat. Commun. 13, 2988. https://doi.org/10.1038/s41467-022-30698-6 (2022).Article

Tan,C.C.S.等人。SARS-CoV-2从人到动物的传播和潜在的宿主适应。国家公社。132988年。https://doi.org/10.1038/s41467-022-30698-6(2022年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X. et al. Evaluating the effect of SARS-CoV-2 spike mutations with a linear doubly robust learner. Front. Cell. Infect. Microbiol. 13, 1161445. https://doi.org/10.3389/fcimb.2023.1161445 (2023).Article

Wang,X。等人。用线性双稳健学习者评估SARS-CoV-2尖峰突变的影响。正面。细胞。。。13161445年。https://doi.org/10.3389/fcimb.2023.1161445(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, J., Gao, K., Wang, R. & Wei, G. W. Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies. J. Mol. Biol. 433, 167155. https://doi.org/10.1016/j.jmb.2021.167155 (2021).Article

Chen,J.,Gao,K.,Wang,R。&Wei,G.W。揭示了新出现的SARS-CoV-2突变对抗体治疗的威胁。J、 分子生物学。433167155。https://doi.org/10.1016/j.jmb.2021.167155(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347. https://doi.org/10.1038/s41591-022-02162-x (2023).Article

Kurhade,C.等人。通过亲本mRNA疫苗或BA.5二价加强剂对SARS-CoV-2 Omicron BA.2.75.2,BQ.1.1和XBB.1的低中和作用。《自然医学》29344-347。https://doi.org/10.1038/s41591-022-02162-x(2023年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Weaver, S. et al. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777. https://doi.org/10.1093/molbev/msx335 (2018).Article

Weaver,S.等人,《Datamonkey 2.0:用于表征选择性和其他进化过程的现代web应用程序》。分子生物学。进化。35773-777。https://doi.org/10.1093/molbev/msx335(2018年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis research was funded by the Shanghai New Three-year Action Plan for Public Health (2023-2025, Grant No. GWVI-11.1-03), the National Natural Science Foundation of China (Grants 81872673) and the Three-Year Action Plan of Shanghai Public Health System Construction-Key Discipline Construction (2020-2022, Grant No.

下载参考文献致谢本研究由上海市公共卫生新三年行动计划(2023-2025,批准号GWVI-11.1-03),国家自然科学基金(批准号81872673)和上海市公共卫生系统建设重点学科建设三年行动计划(2020-2022,批准号:。

GWV-10.1-XK03). The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report.Author informationAuthor notesYanjiao Li, Jingjing Hu, Jingjing Hou and Shuiping Lu contributed equally to this work.Authors and AffiliationsDepartment of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, ChinaYanjiao Li, Jingjing Hu, Shuiping Lu, Yuxi Wang, Weijie Chen, Yue Pan, Qingwu Jiang, Weibing Wang & Chenglong XiongKey Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, ChinaYanjiao Li, Jingjing Hu, Shuiping Lu, Yuxi Wang, Weijie Chen, Yue Pan, Qingwu Jiang, Weibing Wang & Chenglong XiongDepartment of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, ChinaJingjing HouDivision of Emergency Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, ChinaJiasheng XiongDepartment of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, MalaysiaZhong Sun & Karuppiah ThilakavathyDepartment of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, ChinaYi FengAuthorsYanjiao LiView author publicationsYou can also search for this author in.

GWV-10.1-XK03)。资助者在研究设计,数据收集,数据分析,数据解释或撰写报告方面没有任何作用。作者信息作者注:李安娇、胡晶晶、侯晶晶和陆水平对这项工作做出了同样的贡献。作者和所属单位复旦大学公共卫生学院流行病学系,上海,200433,中国李燕娇、胡晶晶、陆水平、王玉溪、陈伟杰、潘岳、蒋清武、王卫兵和成龙熊复旦大学公共卫生学院教育部公共卫生安全重点实验室,上海,200433,李燕娇、胡晶晶、陆水平、王玉溪、陈伟杰、潘岳、蒋清武、王卫兵和熊成龙同济大学医学院同济医院肺与重症监护医学系,上海,200065,中国南京后上海市疾病预防控制中心应急管理处,上海,200336,中国熊家生马来西亚塞尔当普特拉大学医学与健康科学学院生物医学科学系,43400,MalaysiaZhong Sun&Karuppiah ThilakavathyDepartment of Integrative Medicine and Neurobiology,School of Basic Medical Sciences,复旦大学,上海,200032,ChinaYi Feng作者Yanjiao LiView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarJingjing HuView author publicationsYou can also search for this author in

PubMed Google ScholarJingjing HuView作者出版物您也可以在

PubMed Google ScholarJingjing HouView author publicationsYou can also search for this author in

PubMed Google ScholarJingjing HouView作者出版物您也可以在

PubMed Google ScholarShuiping LuView author publicationsYou can also search for this author in

PubMed Google ScholarShuiping LuView作者出版物您也可以在

PubMed Google ScholarJiasheng XiongView author publicationsYou can also search for this author in

PubMed谷歌学者Jiasheng XiongView作者出版物您也可以在

PubMed Google ScholarYuxi WangView author publicationsYou can also search for this author in

PubMed Google ScholarYuxi WangView作者出版物您也可以在

PubMed Google ScholarZhong SunView author publicationsYou can also search for this author in

PubMed Google ScholarZhong SunView作者出版物您也可以在

PubMed Google ScholarWeijie ChenView author publicationsYou can also search for this author in

PubMed Google ScholarWeijie ChenView作者出版物您也可以在

PubMed Google ScholarYue PanView author publicationsYou can also search for this author in

PubMed Google ScholarYue PanView作者出版物您也可以在

PubMed Google ScholarKaruppiah ThilakavathyView author publicationsYou can also search for this author in

PubMed Google ScholarKaruppiah ThilakavathyView作者出版物您也可以在

PubMed Google ScholarYi FengView author publicationsYou can also search for this author in

PubMed Google ScholarYi FengView作者出版物您也可以在

PubMed Google ScholarQingwu JiangView author publicationsYou can also search for this author in

PubMed Google ScholarQingwu JiangView作者出版物您也可以在

PubMed Google ScholarWeibing WangView author publicationsYou can also search for this author in

PubMed Google ScholarWeibing WangView作者出版物您也可以在

PubMed Google ScholarChenglong XiongView author publicationsYou can also search for this author in

PubMed Google ScholarChenglong XiongView作者出版物您也可以在

PubMed Google ScholarContributionsY. L., S. L., J. X. and C. X. wrote the first draft of the paper; Y. L., J. Hou, Y. W. and W. C. performed the literature search; J. Hu, J. X., Z. S. and Y. P. performed the data processing; K. T., Y. F., Q. J., W. W. and C. X. performed the systems review.

PubMed谷歌学术贡献。五十、 ,S.L.,J.X.和C.X.撰写了论文的初稿;Y、 L.,J.Hou,Y.W.和W.C.进行了文献检索;J、 Hu,J.X.,Z.S.和Y.P.进行了数据处理;K、 T.,Y.F.,Q.J.,W.W.和C.X.进行了系统审查。

C.X. and W. W. supervised the study. All authors made substantial revisions and critical review, and all authors have seen and approved the final version.Corresponding authorsCorrespondence to.

C、 X.和W.W.监督了这项研究。所有作者都进行了重大修订和批判性审查,所有作者都看到并批准了最终版本。。

Weibing Wang or Chenglong Xiong.Ethics declarations

王卫兵或熊成龙。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleLi, Y., Hu, J., Hou, J. et al. Study on sentinel hosts for surveillance of future COVID-19-like outbreaks.

转载和许可本文引用本文Li,Y.,Hu,J.,Hou,J。等人关于监测未来COVID-19样疫情的哨兵宿主的研究。

Sci Rep 14, 24595 (2024). https://doi.org/10.1038/s41598-024-76506-7Download citationReceived: 12 April 2024Accepted: 14 October 2024Published: 19 October 2024DOI: https://doi.org/10.1038/s41598-024-76506-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1424595(2024)。https://doi.org/10.1038/s41598-024-76506-7Download引文收到日期:2024年4月12日接受日期:2024年10月14日发布日期:2024年10月19日OI:https://doi.org/10.1038/s41598-024-76506-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsSARS-CoV-2Sentinel hostSpike proteinPhylogenetic treeAmino acid polymorphismPositively selected site

关键词SARS-CoV-2Sentinel hostSpike蛋白植物生成树氨基酸多态性阳性选择位点