EN
登录

无序连接体中的IGF2BP1磷酸化调节核糖核蛋白缩合物的形成和RNA代谢

IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism

Nature 等信源发布 2024-10-20 13:07

可切换为仅中文


AbstractThe insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown.

摘要胰岛素样生长因子2 mRNA结合蛋白1(IGF2BP1)是一种保守的RNA结合蛋白,可调节RNA的稳定性,定位和翻译。IGF2BP1是各种核糖核蛋白(RNP)缩合物的一部分。然而,调节其组装成冷凝物的机制仍然未知。

By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA.

通过使用蛋白质组学,我们证明了无序接头中S181处IGF2BP1的磷酸化以应激依赖性方式受到调节。两个无序接头S181E和Y396E中的磷酸化突变调节IGF2BP1形成的RNP冷凝物,而不影响其对RNA的结合亲和力。

Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant.

有趣的是,位于接头1中的S181E突变体会损害体外和细胞中IGF2BP1冷凝物的形成,而第二个接头中的Y396E突变体会增加冷凝物的大小和动力学。结构方法表明,第一个接头通过其RGG/RG基序非特异性结合RNA,这种相互作用在S181E突变体中减弱。

Notably, linker 2 interacts with IGF2BP1’s folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1’s interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism..

值得注意的是,接头2与IGF2BP1的折叠结构域相互作用,并且这些相互作用在Y396E突变体中部分受损。重要的是,磷酸化模拟突变体影响IGF2BP1与RNA的相互作用并重塑细胞中的转录组。我们的数据揭示了磷酸化如何调节无序接头中的低亲和力相互作用网络,以调节RNP凝聚物的形成和RNA代谢。。

IntroductionRNA-binding proteins (RBPs) play important roles in post-transcriptional control of RNA1,2,3,4,5,6. IGF2BPs are a conserved family of RBPs that regulate RNA localization, translation and stability7,8,9,10,11. There are three IGF2BP paralogs (IGF2BP1-3) in mammals. Discovered in chicken embryos, IGF2BP1 was the founding member of the IGF2BP family12,13.

引言RNA结合蛋白(RBPs)在RNA1,2,3,4,5,6的转录后控制中起重要作用。IGF2BPs是一个保守的RBPs家族,可调节RNA的定位,翻译和稳定性7,8,9,10,11。哺乳动物中有三个IGF2BP旁系同源物(IGF2BP1-3)。在鸡胚中发现的IGF2BP1是IGF2BP家族的创始成员12,13。

IGF2BP1 is highly conserved in sequence and function across species (Supplemenetary Fig. 1A). It is highly expressed during mid to late embryogenesis and its expression decreases in adult tissues. In line with embryonic functions, Igf2bp1 knockout mice show developmental abnormalities14. However, IGF2BP1 expression is not restricted to early development, and it is detected later in differentiated gonads and the kidneys.

IGF2BP1在物种间的序列和功能上高度保守(补充图1A)。它在胚胎发生的中后期高度表达,在成体组织中表达降低。与胚胎功能一致,Igf2bp1基因敲除小鼠表现出发育异常14。然而,IGF2BP1的表达并不局限于早期发育,它在分化的性腺和肾脏中稍后被检测到。

Consistent with post-developmental functions, loss of IGF2BP1 in intestinal epithelial cells impairs intestinal homeostasis in adults15,16. IGF2BP1 is highly expressed in various tumors and its overexpression correlates with tumor aggressiveness9,17. Importantly, IGF2BP1 depletion impairs tumor growth, indicating that inhibition may have therapeutic potential in cancer cells18,19.

与发育后功能一致,肠上皮细胞中IGF2BP1的缺失会损害成年人的肠道稳态15,16。IGF2BP1在各种肿瘤中高度表达,其过表达与肿瘤侵袭性相关9,17。重要的是,IGF2BP1耗竭会损害肿瘤生长,表明抑制作用可能在癌细胞中具有治疗潜力18,19。

This link to disease underlines the importance of obtaining a mechanistic understanding of how IGF2BP1 exerts its function.IGF2BP1 is a canonical multi-domain RBP, which contains six RNA-binding domains: two RNA recognition motif (RRM) domains and four hnRNP K homology (KH) domains that are linked by two intrinsically disordered regions (Fig. 1A).

这种与疾病的联系强调了对IGF2BP1如何发挥其功能进行机械理解的重要性。IGF2BP1是一种典型的多结构域RBP,它包含六个RNA结合结构域:两个RNA识别基序(RRM)结构域和四个hnRNP K同源性(KH)结构域,它们由两个内在无序的区域连接(图1A)。

The KH domains are arranged into pseudodimers (KH1-2, and KH3-4). RNA recognition by IGF2BP1 is mediated by the KH domains, which interact with single-stranded RNAs through 4 nucleotide long recognition motifs20. In contrast, the RRM domains provide little specificity and pr.

KH结构域排列成假二聚体(KH1-2和KH3-4)。IGF2BP1的RNA识别由KH结构域介导,KH结构域通过4个核苷酸长的识别基序与单链RNA相互作用20。相反,RRM结构域几乎没有特异性和pr。

(3)

(3)

δH and δN are the chemical shift differences compared to the apo protein. Peaks unresolved in the concentrations used for the titration experiments were excluded from the analysis.Peaks were assigned by obtaining HNCO, HNCACO, HNCACB, HNCOCACB, HNCANNH and HNCOCANNH spectra of 300 µM 13C-15N-Linker 1 wild-type and 300 µM 13C-15N-Linker 2 wild-type and the respective HSQC spectra.

δH和δN是与载脂蛋白相比的化学位移差异。分析中排除了用于滴定实验的浓度中未解析的峰。通过获得300μM13C-15N-接头1野生型和300μM13C-15N-接头2野生型的HNCO,HNCACO,HNCACB,HNCOCACB,HNCANNH和HNCOCANNH光谱以及相应的HSQC光谱来分配峰。

Peak assignments were performed in CCPNMR. NMR assignments are available in Biological Magnetic Resonance Bank.Stress granule reconstitution in cell lysatesSplit-GFP tagged IGF2BP1 cells were seeded in a 15 cm dish and grown until they reached 90% confluency. Cells were washed with ice cold PBS, and harvested by scraping.

在CCPNMR中进行峰分配。NMR分配可在生物磁共振库中获得。细胞裂解物中的应激颗粒重建将裂解的GFP标记的IGF2BP1细胞接种在15厘米的培养皿中并生长直至达到90%汇合。用冰冷的PBS洗涤细胞,并通过刮擦收获。

Subsequently cells were centrifuged at 1123 g for 4 min. PBS was removed by aspiration, and cell pellet was flash-frozen. In order to lyse the cells, they were thawed and flash-frozen three times. Next, 500ul of lysis buffer, composed of 25 mM Tris pH 7, 0.5% NP-40, 1x Protease inhibitor cocktail, 2,5% murine RNAse inhibitor, 100 mM NaCl and 2 mM DTT, was added.

随后将细胞以1123g离心4分钟。通过抽吸除去PBS,并将细胞沉淀快速冷冻。为了裂解细胞,将它们解冻并速冻三次。接下来,加入500ul裂解缓冲液,其由25mM Tris pH 7,0.5%NP-40,1x蛋白酶抑制剂混合物,2.5%鼠RNAse抑制剂,100mM NaCl和2mM DTT组成。

After the addition of the lysis buffer, the cells were further resuspended using a 25 G needle 10 times. Next, two centrifugation steps ensued, first at 1500 g for 5 min, then 16,000 g for 8 min. Supernatants were transferred to a new tube, lysate concentration was measured using a BCA kit (ThermoFisher) and concentration was adjusted to 5 mg/ml using the lysate buffer.

加入裂解缓冲液后,使用25g针将细胞进一步重悬10次。接下来,进行两个离心步骤,首先以1500克离心5分钟,然后以16000克离心8分钟。将上清液转移到新管中,使用BCA试剂盒(ThermoFisher)测量裂解物浓度,并使用裂解物缓冲液将浓度调节至5毫克/毫升。

20uM of purified G3BP1 were added to induce LLPS followed by a 40 min incubation step. Afterwards, 5uM of mCherry-tagged IGF2BP1 was spiked in, gently mixed and incubated for 20 min. The µ-Slide Angiogenesis with ibiTreat 20 ul was used as an imaging vessel. Fluorescence recovery after photobleaching (FRAP) experiments were performed on .

加入20uM纯化的G3BP1以诱导LLP,然后进行40分钟的孵育步骤。然后,加入5uM mCherry标记的IGF2BP1,轻轻混合并孵育20分钟。用ibiTreat 20μl的μ-载玻片血管生成用作成像血管。进行光漂白(FRAP)实验后的荧光恢复。

Data availability

数据可用性

The source data are provided with this paper. All raw and processed sequencing data generated in this study have been deposited in the Gene Expression Omnibus database with the accession number GSE272875 (IGF2BP1 RNA-Seq and RIP-Seq data). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository103 with the dataset identifier PXD045761 (mass spectrometry data of IGF2BP1 from HEK293T cells) and PXD056497 (mass spectrometry data of ProAlanase digested IGF2BP1 from HEK293T cells).

本文提供了源数据。本研究中产生的所有原始和处理过的测序数据均已保存在Gene Expression Omnibus数据库中,登录号为GSE272875(IGF2BP1 RNA-Seq和RIP-Seq数据)。质谱蛋白质组学数据已保存到ProteomeXchange Consortium(http://proteomecentral.proteomexchange.org)通过具有数据集标识符PXD045761(来自HEK293T细胞的IGF2BP1的质谱数据)和PXD056497(来自HEK293T细胞的丙氨酸蛋白酶消化的IGF2BP1的质谱数据)的PRIDE partner repository103。

The NMR signal assignments are deposited with BMRB ID 52567 (wild-type IGF2BP1 linker1 157-194) and 52568 (wild-type IGF2BP1 linker2 344-404) Source data are provided with this paper..

NMR信号分配存放在BMRB ID 52567(野生型IGF2BP1接头157-194)和52568(野生型IGF2BP1接头344-404)源数据中。。

ReferencesDreyfuss, G., Kim, V. N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3, 195–205 (2002).Article

参考文献Dreyfuss,G.,Kim,V。N。和Kataoka,N。Messenger RNA结合蛋白及其携带的信息。Nat Rev Mol Cell Biol 3195-205(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582, 1977–1986 (2008).Article

Glisovic,T.,Bachorik,J.L.,Yong,J。&Dreyfuss,G。RNA结合蛋白和转录后基因调控。FEBS Lett 5821977-1986(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kishore, S., Luber, S. & Zavolan, M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct Genomics 9, 391–404 (2010).Article

Kishore,S.,Luber,S。&Zavolan,M。解密RNA结合蛋白在基因表达的转录后控制中的作用。Brief Funct Genomics 9391–404(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gerstberger, S., Hafner, M., Ascano, M. & Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv Exp Med Biol 825, 1–55 (2014).Article

Gerstberger,S.,Hafner,M.,Ascano,M。&Tuschl,T。人类RNA结合蛋白的进化保守性和表达及其在人类遗传疾病中的作用。Adv Exp Med Biol 825,1-55(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat Rev Genet 15, 829–845 (2014).Article

Gerstberger,S.,Hafner,M。&Tuschl,T。人类RNA结合蛋白普查。Nat Rev Genet 15829–845(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schneider-Lunitz, V., Ruiz-Orera, J., Hubner, N. & van Heesch, S. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes. PLoS Comput Biol 17, e1009658 (2021).Article

Schneider-Lunitz,V.,Ruiz-Orera,J.,Hubner,N。&van Heesch,S。多功能RNA结合蛋白影响不同靶基因组的mRNA丰度和翻译效率。PLoS Comput Biol 17,e1009658(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).Article

Huttelmaier,S.等人。通过Src依赖性ZBP1磷酸化对β-肌动蛋白翻译的空间调节。自然438512-515(2005)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20, 285–295 (2018).Article

Huang,H。等人。IGF2BP蛋白对RNA N(6)-甲基腺苷的识别增强了mRNA的稳定性和翻译。Nat Cell Biol 20285–295(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, X. et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 11, 88 (2018).Article

Huang,X。等。癌症中的胰岛素样生长因子2 mRNA结合蛋白1(IGF2BP1)。J Hematol Oncol 11,88(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nielsen, J. et al. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19, 1262–1270 (1999).Article

。摩尔细胞生物学191262-1270(1999)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nielsen, J., Kristensen, M. A., Willemoes, M., Nielsen, F. C. & Christiansen, J. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res. 32, 4368–4376 (2004).Article

。核酸研究324368-4376(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kislauskis, E. H., Zhu, X. & Singer, R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol 127, 441–451 (1994).Article

Kislauskis,E.H.,Zhu,X。&Singer,R.H。负责β-肌动蛋白信使RNA细胞内定位的序列也影响细胞表型。J Cell Biol 127441-451(1994)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L. & Singer, R. H. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 17, 2158–2165 (1997).Article

Ross,A.F.,Oleynikov,Y.,Kislauskis,E.H.,Taneja,K.L。和Singer,R.H。β-肌动蛋白mRNA zipcode结合蛋白的表征。摩尔细胞生物学172158-2165(1997)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, T. V. et al. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol Cell Biol 24, 4448–4464 (2004).Article

Hansen,T.V。等人。胰岛素样生长因子II mRNA结合蛋白1缺陷小鼠的侏儒症和肠道发育受损。摩尔细胞生物学244448-4464(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammer, N. A. et al. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer. Reproduction 130, 203–212 (2005).Article

Hammer,N.A.等人。IGF-II mRNA结合蛋白(IMPs)在性腺和睾丸癌中的表达。复制130203-212(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Singh, V. et al. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J Biol Chem 295, 8602–8612 (2020).Article

Singh,V。等人。mRNA结合蛋白IGF2BP1通过上调occludin的表达来维持肠屏障功能。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, V., Walter, V., Elcheva, I., Imamura Kawasawa, Y. & Spiegelman, V. S. Global role of IGF2BP1 in controlling the expression of Wnt/beta-catenin-regulated genes in colorectal cancer cells. Front Cell Dev Biol 11, 1236356 (2023).Article

Singh,V.,Walter,V.,Elcheva,I.,Imamura Kawasawa,Y。&Spiegelman,V.S。IGF2BP1在控制结直肠癌细胞中Wnt/β-连环蛋白调节基因表达中的全球作用。前细胞开发生物学111236356(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wallis, N. et al. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol 19, 26–43 (2022).Article

Wallis,N。等人。Igf2bp1的小分子抑制剂抑制癌细胞中的Kras和促癌表型。RNA生物学19,26-43(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Muller, S. et al. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Res 46, 6285–6303 (2018).Article

Muller,S。等人。IGF2BP1通过损害miRNA指导的致癌因子下调来增强侵袭性肿瘤细胞表型。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korn, S. M., Ulshofer, C. J., Schneider, T. & Schlundt, A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 29, 787–803 (2021).Article

Korn,S.M.,Ulshofer,C.J.,Schneider,T。&Schlundt,A。IGF2BPs RNA结合蛋白家族的结构和靶RNA偏好:概述。结构29787-803(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schneider, T. et al. Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3. Nat Commun 10, 2266 (2019).Article

Schneider,T。等人。多域RNA结合蛋白IMP3对簇状RNA元件的组合识别。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jia, M., Gut, H. & Chao, J. A. Structural basis of IMP3 RRM12 recognition of RNA. RNA 24, 1659–1666 (2018).Article

Jia,M.,Gut,H。&Chao,J.A。IMP3 RRM12识别RNA的结构基础。RNA 241659-1666(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Biswas, J. et al. The structural basis for RNA selectivity by the IMP family of RNA-binding proteins. Nat Commun 10, 4440 (2019).Article

Biswas,J.等人。IMP家族RNA结合蛋白对RNA选择性的结构基础。Nat Commun 104440(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Degrauwe, N. et al. The RNA Binding Protein IMP2 Preserves Glioblastoma Stem Cells by Preventing let-7 Target Gene Silencing. Cell Rep. 15, 1634–1647 (2016).Article

RNA结合蛋白IMP2通过阻止let-7靶基因沉默来保护胶质母细胞瘤干细胞。Cell Rep.151634–1647(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Glass, M. et al. IGF2BP1, a Conserved Regulator of RNA Turnover in Cancer. Front Mol Biosci 8, 632219 (2021).Article

Glass,M。等人。IGF2BP1,癌症中RNA周转的保守调节剂。Front Mol Biosci 8632219(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Noubissi, F. K. et al. CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441, 898–901 (2006).Article

Noubissi,F.K。等人,CRD-BP介导β-catenin信号传导对β-ATRCP1和c-myc mRNA的稳定作用。《自然》441898-901(2006)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Lederer, M., Bley, N., Schleifer, C. & Huttelmaier, S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 29, 3–12 (2014).Article

Lederer,M.,Bley,N.,Schleifer,C。&Huttelmaier,S。癌胚IGF2 mRNA结合蛋白3(IGF2BP3)在癌症中的作用。Semin Cancer Biol 29,3-12(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Conway, A. E. et al. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival. Cell Rep. 15, 666–679 (2016).Article

Conway,A.E.等人的增强型CLIP揭示了人类多能干细胞中对细胞粘附和存活至关重要的IMP蛋白RNA靶标。Cell Rep.15666–679(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).Article

Hafner,M.等人。通过PAR-CLIP在转录组范围内鉴定RNA结合蛋白和microRNA靶位点。细胞141129-141(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammerle, M. et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 58, 1703–1712 (2013).Article

Hammerle,M.等人。IGF2 mRNA结合蛋白1(IGF2BP1)对肝脏特异性长非编码RNA HULC的转录后去稳定化。肝病581703-1712(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dai, N. et al. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 25, 1159–1172 (2011).Article

Dai,N。等人。mTOR通过内部核糖体进入磷酸化IMP2以促进IGF2 mRNA翻译。Genes Dev 251159–1172(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dai, N., Christiansen, J., Nielsen, F. C. & Avruch, J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev 27, 301–312 (2013).Article

Dai,N.,Christiansen,J.,Nielsen,F.C。&Avruch,J。mTOR复合物2共翻译磷酸化IMP1以促进IGF2的产生和小鼠胚胎成纤维细胞的增殖。Genes Dev 27301–312(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Urbanska, A. S. et al. ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Sci Rep. 7, 1876 (2017).Article

Urbanska,A.S.等人。丝氨酸181处的ZBP1磷酸化调节其树突运输和海马神经元树突树的发育。Sci Rep.71876(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lambrianidou, A. et al. mTORC2 deploys the mRNA binding protein IGF2BP1 to regulate c-MYC expression and promote cell survival. Cell Signal 80, 109912 (2021).Article

Lambrianidou,A。等人,mTORC2部署mRNA结合蛋白IGF2BP1来调节c-MYC表达并促进细胞存活。细胞信号80109912(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stohr, N. et al. ZBP1 regulates mRNA stability during cellular stress. J Cell Biol. 175, 527–534 (2006).Article

Stohr,N。等人,ZBP1在细胞应激期间调节mRNA的稳定性。J细胞生物学。175527-534(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kamiyama, D. et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun 7, 11046 (2016).Article

Kamiyama,D。等人。用分裂荧光蛋白在细胞中进行多功能蛋白质标记。Nat Commun 711046(2016)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).Article

Johnson,J.L.等人,《人类丝氨酸/苏氨酸激酶组底物特异性图谱》。自然613759-766(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernstein, P. L., Herrick, D. J., Prokipcak, R. D. & Ross, J. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev 6, 642–654 (1992).Article

Bernstein,P.L.,Herrick,D.J.,Prokipcak,R.D。&Ross,J。通过能够结合编码区稳定性决定簇的蛋白质在体外控制c-myc mRNA半衰期。Genes Dev 6642-654(1992)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chao, J. A. et al. ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 24, 148–158 (2010).Article

Chao,J.A。等人。ZBP1识别β-肌动蛋白zipcode诱导RNA环化。Genes Dev 24148–158(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev 26, 43–53 (2012).Article

Patel,V.L.等人。RNA zipcode的空间排列可识别转录后控制下的mRNA。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nicastro, G. et al. Mechanism of beta-actin mRNA Recognition by ZBP1. Cell Rep. 18, 1187–1199 (2017).Article

Nicastro,G。等人。ZBP1识别β-肌动蛋白mRNA的机制。Cell Rep.181187–1199(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mateu-Regue, A. et al. Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons. Cell Rep. 29, 736–748 e734 (2019).Article

Mateu-Regue,A。等人。单个mRNP分析显示,小的细胞质mRNP颗粒代表mRNA单例。Cell Rep.29736–748 e734(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, W. J. et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 1867, 118795 (2020).Article

Zeng,W.J.等人。通过渗透压休克时IGF2BP蛋白的快速聚集来启动应激颗粒组装。Biochim Biophys Acta Mol Cell Res.1867118795(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tiruchinapalli, D. M. et al. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci 23, 3251–3261 (2003).Article

Tiruchinapalli,D.M.等人。海马神经元树突和棘中zipcode结合蛋白1和β-肌动蛋白mRNA的活性依赖性运输和动态定位。神经科学杂志233251-3261(2003)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, P. et al. G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules. Cell 181, 325–345 e328 (2020).Article

Yang,P。等人。G3BP1是一种可调开关,可触发相分离以组装应力颗粒。细胞181325-345 e328(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guillen-Boixet, J. et al. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell 181, 346–361 e317 (2020).Article

Guillen-Boixet,J。等人。RNA诱导的G3BP构象转换和聚类通过缩合驱动应力颗粒组装。细胞181346-361 e317(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, H. et al. RNA Controls PolyQ Protein Phase Transitions. Mol Cell 60, 220–230 (2015).Article

。摩尔细胞60220-230(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).Article

Gruber,A.R.,Lorenz,R.,Bernhart,S.H.,Neubock,R。&Hofacker,I.L。维也纳RNA网络套件。核酸研究36,W70–W74(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, W., Zhen, G., Xie, W. & Mayr, C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. Elife 10, e64252 (2021).Article

Ma,W.,Zhen,G.,Xie,W。&Mayr,C。体内重建发现多价RNA-RNA相互作用是网状凝聚物的驱动因素。Elife 10,e64252(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant Phase Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets. Angew Chem Int Ed Engl 56, 11354–11359 (2017).Article

Banerjee,P.R.,Milin,A.N.,Moosa,M.M.,Onuchic,P.L。和Deniz,A.A。折返相变驱动核糖核蛋白液滴中动态亚结构的形成。Angew Chem Int Ed Engl 5611354–11359(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wachter, K., Kohn, M., Stohr, N. & Huttelmaier, S. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biol Chem 394, 1077–1090 (2013).Article

Wachter,K.,Kohn,M.,Stohr,N。&Huttelmaier,S。IGF2BPs(IGF2 mRNA结合蛋白)的亚细胞定位和RNP形成受不同的RNA结合结构域调节。生物化学3941077–1090(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hollingworth, D. et al. KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res. 40, 6873–6886 (2012).Article

Hollingworth,D。等人。核酸结合受损的KH结构域作为功能分析的工具。核酸研究406873-6886(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Erlendsson, S. & Teilum, K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 7, 615565 (2020).Article

Erlendsson,S。&Teilum,K。Binding重新审视了细胞功能和信号传导中的亲合力。Front Mol Biosci 7615565(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 82, 2201–2214 (2022).Article

Mittag,T。&Pappu,R.V。理解相分离和解决开放性问题和挑战的概念框架。摩尔细胞822201-2214(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kar, M. et al. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc Natl Acad Sci USA 119, e2202222119 (2022).Article

Kar,M.等人。相分离RNA结合蛋白在亚饱和溶液中形成簇的异质分布。美国国家科学院院刊119,e2202222119(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kettel, P. et al. Stress-induced clustering of the UPR sensor IRE1 is driven by disordered regions within its ER lumenal domain Authors. bioRxiv, 2023.2003. 2030.534746 (2023).Boke, E. et al. Amyloid-like Self-Assembly of a Cellular Compartment. Cell 166, 637–650 (2016).Article

Kettel,P。等人。UPR传感器IRE1的应力诱导聚类是由其ER腔域作者内的无序区域驱动的。bioRxiv,2023.2003。2030.534746(2023年)。Boke,E。等人。细胞区室的淀粉样蛋白样自组装。细胞166637-650(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).Article

Shin,Y。&Brangwynne,C.P。细胞生理学和疾病中的液相浓缩。科学357,eaaf4382(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Taylor, N. O., Wei, M. T., Stone, H. A. & Brangwynne, C. P. Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophys J 117, 1285–1300 (2019).Article

Taylor,N.O.,Wei,M.T.,Stone,H.A。和Brangwynne,C.P。使用光漂白后的荧光恢复来量化相分离冷凝物中的动力学。Biophys J 1171285-1300(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).Article

Klionsky,D.J.等人,《自噬监测分析的使用和解释指南》(第3版)。自噬12,1-222(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vauquelin, G. & Charlton, S. J. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 161, 488–508 (2010).Article

Vauquelin,G。&Charlton,S.J。持久的靶标结合和再结合作为延长体内药物作用的机制。Br J Pharmacol 161488-508(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Freibaum, B. D., Messing, J., Yang, P., Kim, H. J. & Taylor, J. P. High-fidelity reconstitution of stress granules and nucleoli in mammalian cellular lysate. Journal of Cell Biology 220, e202009079 (2021).Article

Freibaum,B.D.,Messing,J.,Yang,P.,Kim,H.J。&Taylor,J.P。哺乳动物细胞裂解物中应激颗粒和核仁的高保真重建。细胞生物学杂志220,e2020009079(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kedersha, N., Tisdale, S., Hickman, T. & Anderson, P. Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods in enzymology 448, 521–552 (2008).Article

Kedersha,N.,Tisdale,S.,Hickman,T。&Anderson,P。哺乳动物应激颗粒和加工体的实时和定量成像。酶学方法448521-552(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129, 5656–5664 (2007).Article

Bernado,P.,Mylonas,E.,Petoukhov,M.V.,Blackledge,M。&Svergun,D.I。使用小角度X射线散射对柔性蛋白质进行结构表征。J Am Chem Soc 1295656–5664(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for Disordered and Multidomain Proteins. J Chem Theory Comput 18, 2033–2041 (2022).Article

Thomasen,F.E.,Pesce,F.,Roesgaard,M.A.,Tesei,G。&Lindorff-Larsen,K。改进Martini 3的无序和多结构域蛋白。J化学理论计算机182033-2041(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, e30294 (2017).Article

Harmon,T.S.,Holehouse,A.S.,Rosen,M.K。&Pappu,R.V。内在无序的接头决定了多价蛋白质中相分离和凝胶化之间的相互作用。Elife 6,e30294(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alston, J. J., Ginell, G. M., Soranno, A. & Holehouse, A. S. The analytical Flory random coil is a simple-to-use reference model for unfolded and disordered proteins. bioRxiv (2023).Thandapani, P., O’Connor, T. R., Bailey, T. L. & Richard, S. Defining the RGG/RG motif. Mol Cell 50, 613–623 (2013).Article .

Alston,J.J.,Ginell,G.M.,Soranno,A。&Holehouse,A.S。分析Flory随机线圈是未折叠和无序蛋白质的简单使用参考模型。bioRxiv(2023)。Thandapani,P.,O'Connor,T.R.,Bailey,T.L。和Richard,S。定义RGG/RG主题。摩尔细胞50613-623(2013)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Roschdi, S. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol 29, 1113–1121 (2022).Article

Roschdi,S。等人。非典型RNA四链体将RNA标记为基因沉默的载体。Nat Struct Mol Biol 291113-1121(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).Article

Kim,T.H.等人。FMRP和CAPRIN1的磷酸依赖性相分离概括了翻译和去腺苷酸化的调节。科学365825-829(2019)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Hafner, M., Lianoglou, S., Tuschl, T. & Betel, D. Genome-wide identification of miRNA targets by PAR-CLIP. Methods 58, 94–105 (2012).Article

Hafner,M.,Lianoglou,S.,Tuschl,T。&Betel,D。通过PAR-CLIP全基因组鉴定miRNA靶标。方法58,94-105(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stohr, N. & Huttelmaier, S. IGF2BP1: a post-transcriptional “driver” of tumor cell migration. Cell Adh Migr 6, 312–318 (2012).Article

Stohr,N。&Huttelmaier,S。IGF2BP1:肿瘤细胞迁移的转录后“驱动因素”。Cell Adh Migr 6312-318(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, B., Buxbaum, A. R., Katz, Z. B., Yoon, Y. J. & Singer, R. H. Quantifying Protein-mRNA Interactions in Single Live Cells. Cell 162, 211–220 (2015).Article

。细胞162211-220(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat Struct Mol Biol 17, 666–672 (2010).Article

Deribe,Y.L.,Pawson,T。&Dikic,I。信号整合中的翻译后修饰。Nat Struct Mol Biol 17666–672(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Velazquez-Cruz, A., Banos-Jaime, B., Diaz-Quintana, A., De la Rosa, M. A. & Diaz-Moreno, I. Post-translational control of RNA-binding proteins and disease-related dysregulation. Front Mol Biosci 8, 658852 (2021).Article

Velazquez-Cruz,A.,Banos-Jaime,B.,Diaz-Quintana,A.,De la Rosa,M.A。&Diaz-Moreno,I。RNA结合蛋白的翻译后控制和疾病相关的失调。Front Mol Biosci 8658852(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsai, W. C. et al. Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem 291, 22671–22685 (2016).Article

Tsai,W.C.等人。G3BP1的精氨酸去甲基化促进应激颗粒的组装。生物化学杂志29122671-22685(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hofweber, M. & Dormann, D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 294, 7137–7150 (2019).Article

Hofweber,M。&Dormann,D。Friend或foe翻译后修饰作为相分离和RNP颗粒动力学的调节剂。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).Article

Wippich,F。等人。双特异性激酶DYRK3将应激颗粒浓缩/溶解与mTORC1信号传导偶联。细胞152791-805(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Beranek, V. et al. Genetically encoded protein phosphorylation in mammalian cells. Cell Chem Biol 25, 1067–1074 e1065 (2018).Article

Beranek,V。等人。哺乳动物细胞中遗传编码的蛋白质磷酸化。Cell Chem Biol 251067–1074 e1065(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, W. J. et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun 12, 1946 (2021).Article

Li,W.J.等人分析PRMT甲基化组揭示了hnRNPA1精氨酸甲基化在RNA剪接和细胞生长中的作用。Nat Commun 121946(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ranganathan, S., Dasmeh, P., Furniss, S. & Shakhnovich, E. Phosphorylation sites are evolutionary checkpoints against liquid-solid transition in protein condensates. Proc Natl Acad Sci USA 120, e2215828120 (2023).Article

Ranganathan,S.,Dasmeh,P.,Furniss,S。&Shakhnovich,E。磷酸化位点是蛋白质缩合物中液-固转变的进化检查点。美国国家科学院院刊120,e2215828120(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cho, N. H. et al. OpenCell: Endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).Article

Cho,N.H.等人,《开放细胞:人类细胞组织制图的内源性标记》。科学375,eabi6983(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman, J. S. & Huang, B. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci USA 113, E3501–E3508 (2016).Article

Leonetti,M.D.,Sekine,S.,Kamiyama,D.,Weissman,J.S。&Huang,B。一种高通量GFP标记内源性人类蛋白质的可扩展策略。美国国家科学院院刊113,E3501–E3508(2016)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dyballa, N. & Metzger, S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp 30, e1431 (2009).Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.

Dyballa,N。&Metzger,S。聚丙烯酰胺凝胶中蛋白质的快速灵敏胶体考马斯G-250染色。J Vis Exp 30,e1431(2009)。Kong,A.T.,Leprevost,F.V.,Avtonomov,D.M.,Mellacheruvu,D。和Nesvizhskii,A.I。MSFragger:基于质谱的蛋白质组学中的超快和全面的肽鉴定。

Nat Methods 14, 513–520 (2017).Article .

Nat方法14513-520(2017)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol Cell Proteomics 20, 100077 (2021).Article

Yu,F.,Haynes,S.E。和Nesvizhskii,A.I。IonQuant通过FDR控制的运行间匹配,实现了准确而灵敏的无标记定量。摩尔细胞蛋白质组学20100077(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat Methods 17, 869–870 (2020).Article

da Veiga Leprevost,F。等人,《哲学家:鸟枪蛋白质组学数据分析的多功能工具包》。Nat方法17869-870(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hollenstein, D. M. et al. Chemical acetylation of ligands and two-step digestion protocol for reducing codigestion in affinity purification-mass spectrometry. J Proteome Res. 22, 3383–3391 (2023).Article

。J Proteome Res.223383–3391(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).Article

Skyline:用于创建和分析目标蛋白质组学实验的开源文档编辑器。生物信息学26966-968(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75, 663–670 (2003).Article

Rappsilber,J.,Ishihama,Y。&Mann,M。停止和停止提取提示,用于蛋白质组学中的基质辅助激光解吸/电离,纳米电喷雾和LC/MS样品预处理。《肛门化学》75663-670(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Burastero, O. et al. Raynals, an online tool for the analysis of dynamic light scattering. Acta Crystallogr D Struct Biol 79, 673–683 (2023).Article

Burastero,O.等人,《动态光散射分析的在线工具》,晶体学报79673-683(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004).Article

Pettersen,E.F.等人,《UCSF Chimera——探索性研究和分析的可视化系统》。J计算机化学251605-1612(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J Chem Phys. 126, 014101 (2007).Article

Bussi,G.,Donadio,D。和Parrinello,M。通过速度重标度进行规范采样。J化学物理。126014101(2007)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18, 382–388 (2021).Article

。Nat方法18382-388(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lindahl, E., MJ;, A., Hess, B. & van der Spoel, D. GROMACS 2020.5 Source code. (2021).Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503 (1992).Article

林达尔,E.,MJ;,A、 ,Hess,B。&van der Spoel,D。GROMACS 2020.5源代码。(2021年)。Svergun,D。使用感知标准确定间接变换方法中的正则化参数。J。Appl。。25495-503(1992)。文章

ADS

广告

Google Scholar

谷歌学者

Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293 (1995).Article

Delaglio,F。等人。NMRPipe:基于UNIX管道的多维光谱处理系统。J Biomol NMR 6277–293(1995)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Skinner, S. P. et al. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66, 111–124 (2016).Article

Skinner,S.P.等。CcpNmr分析分配:用于集成NMR分析的灵活平台。J Biomol NMR 66111-124(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article

Liao,Y.,Smyth,G.K。&Shi,W。featureCounts:一种有效的通用程序,用于将序列读数分配给基因组特征。生物信息学30923-930(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, R25 (2010).Article

Robinson,M.D。&Oshlack,A。用于RNA-seq数据差异表达分析的标度归一化方法。基因组生物学11,R25(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).Article

Eden,E.,Navon,R.,Steinfeld,I.,Lipson,D。&Yakhini,Z。GOrilla:在排名基因列表中发现和可视化丰富GO术语的工具。BMC生物信息学10,48(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).Article

Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸研究50,D543–D552(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe are grateful to the late Thomas Peterbauer at the Max Perutz Labs Biooptics Light Microscopy Facility for his help and support. We thank Mila Asparuhova, Gizem Celebi and Isabell Niedermoser for their technical support and help. We appreciate the support from Julia Scholz in image analysis.

下载参考文献致谢我们感谢Max Perutz实验室生物光学光学光学显微镜设施已故的托马斯·彼得鲍尔的帮助和支持。我们感谢Mila Asparuhova、Gizem Celebi和Isabell Niedermoser的技术支持和帮助。我们感谢Julia Scholz在图像分析方面的支持。

We thank Gijs Versteeg and his lab for their help with lentiviral transduction and providing us with the expression plasmids. We thank Kitti Csalyi and Thomas Sauer at Max Perutz Labs Biooptics FACS facility for their help. We thank Georg Kontaxis for his continuing support with NMR measurements. Proteomics analyzes were performed by the Mass Spectrometry Facility at Max Perutz Labs using the VBCF instrument pool.

我们感谢Gijs Versteeg和他的实验室在慢病毒转导方面的帮助,并为我们提供了表达质粒。我们感谢Max Perutz实验室生物光学FACS设施的Kitti Csalyi和Thomas Sauer的帮助。我们感谢Georg Kontaxis对NMR测量的持续支持。。

We are grateful to Max Perutz Labs Mass spectrometry facility, Markus Hartl, Dorothea Anrather, Wei-qiang Chen and David Hollenstein for their help and support with measurements, data analyzes and experimental design. We are grateful to Thomas Leonard for his help with SEC-SAXS measurements and his invaluable input in data analyzes.

我们感谢Max Perutz实验室质谱设施,Markus Hartl,Dorothea Anrather,Wei qiang Chen和David Hollenstein在测量,数据分析和实验设计方面的帮助和支持。。

We thank Jeffrey A. Chao for providing us the MBP-tagged IGF2BP1 full-length. We thank Arthur Sedivy from the Vienna BioCenter ProTech Facility for his value support with DLS measurement and analysis. This research was funded in whole or in part by the Austrian Science Fund (FWF) [FWF-SFB F79 and FWF-W 1261] to GEK. For open access purposes, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.E.S.

我们感谢Jeffrey A.Chao为我们提供了带有MBP标签的IGF2BP1全长。我们感谢维也纳生物中心ProTech设施的Arthur Sedivy在DLS测量和分析方面的价值支持。这项研究全部或部分由GEK的奥地利科学基金(FWF)[FWF-SFB F79和FWF-W 1261]资助。出于开放获取的目的,作者已将CC BY public copyright许可证应用于本次提交产生的任何作者接受的稿件版本。E、 S。

and R.C. acknowledge support and funding by the Frankfurt Institute of Advanced Studies, the LOEWE Center for Multiscale Modeling in Life Sciences of the state of Hesse, the Collaborative Research Center 1507 “Membrane-associ.

R.C.感谢法兰克福高等研究所,黑森州洛伊生命科学多尺度建模中心,1507“膜协会”合作研究中心的支持和资助。

PubMed Google ScholarAleksandra S. AnisimovaView author publicationsYou can also search for this author in

PubMed Google ScholarAleksandra S.AnisimovaView作者出版物您也可以在

PubMed Google ScholarAdnan MuratovicView author publicationsYou can also search for this author in

PubMed Google ScholarAdnan MuratovicView作者出版物您也可以在

PubMed Google ScholarBenjamin BourgeoisView author publicationsYou can also search for this author in

PubMed Google ScholarBenjamin Bourgeoight作者出版物您也可以在

PubMed Google ScholarElena SpinettiView author publicationsYou can also search for this author in

PubMed Google ScholarIsabell NiedermoserView author publicationsYou can also search for this author in

PubMed Google ScholarIsabell NiedermoserView作者出版物您也可以在

PubMed Google ScholarRoberto CovinoView author publicationsYou can also search for this author in

PubMed Google ScholarRoberto CovinoView作者出版物您也可以在

PubMed Google ScholarTobias MadlView author publicationsYou can also search for this author in

PubMed Google ScholarTobias MadlView作者出版物您也可以在

PubMed Google ScholarG. Elif KaragözView author publicationsYou can also search for this author in

PubMed谷歌学术博客。Elif KaragözView作者出版物您也可以在

PubMed Google ScholarContributionsHH: Conceptualization. HH, ASA, AM, BB, ES and IN: Investigation, Methodology, Formal Analyzes and Visualization. TM, RC and GEK: Conceptualization, Funding acquisition and Supervision. HH and GEK wrote the original draft. All authors contributed to review and editing.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献:概念化。HH,ASA,AM,BB,ES和IN:调查,方法论,形式分析和可视化。TM,RC和GEK:概念化,资金获取和监督。HH和GEK写了原稿。所有作者都为审查和编辑做出了贡献。对应作者对应。

G. Elif Karagöz.Ethics declarations

G、 Elif Karagöz。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Stefan Hüttelmaier, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Stefan Hüttelmaier和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Transparent Peer Review fileSource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5透明同行评审文件源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHornegger, H., Anisimova, A.S., Muratovic, A. et al. IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism.

转载和许可本文引用本文Hornegger,H.,Anisimova,A.S.,Muratovic,A。等人。无序接头中的IGF2BP1磷酸化调节核糖核蛋白凝聚物的形成和RNA代谢。

Nat Commun 15, 9054 (2024). https://doi.org/10.1038/s41467-024-53400-4Download citationReceived: 20 November 2023Accepted: 11 October 2024Published: 20 October 2024DOI: https://doi.org/10.1038/s41467-024-53400-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159054(2024)。https://doi.org/10.1038/s41467-024-53400-4Download引文接收日期:2023年11月20日接收日期:2024年10月11日发布日期:2024年10月20日OI:https://doi.org/10.1038/s41467-024-53400-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供