商务合作
动脉网APP
可切换为仅中文
AbstractAerobic granular sludge is a compact and efficient biofilm process used for wastewater treatment which has received much attention and is currently being implemented worldwide. The microbial associations and their ecological implications occurring during granule development, especially those involving inter-kingdom interactions, are poorly understood.
摘要好氧颗粒污泥是一种用于废水处理的紧凑高效的生物膜工艺,受到了广泛关注,目前正在全球范围内实施。。
In this work, we monitored the prokaryote and eukaryote community composition and structure during the granulation of activated sludge for 343 days in a sequencing batch reactor (SBR) and investigated the influence of abiotic and biotic factors on the granule development. Sludge granulation was accomplished with low-wash-out dynamics at long settling times, allowing for the microbial communities to adapt to the SBR environmental conditions.
在这项工作中,我们在序批式反应器(SBR)中监测了活性污泥颗粒化343天期间的原核生物和真核生物群落组成和结构,并研究了非生物和生物因素对颗粒发育的影响。污泥颗粒化是在长时间沉降时以低冲洗动力学完成的,允许微生物群落适应SBR环境条件。
The sludge granulation and associated changes in microbial community structure could be divided into three stages: floccular, intermediate, and granular. The eukaryotic and prokaryotic communities showed parallel successional dynamics, with three main sub-communities identified for each kingdom, dominating in each stage of sludge granulation.
污泥颗粒化和微生物群落结构的相关变化可分为三个阶段:絮凝剂,中间和颗粒。真核生物和原核生物群落表现出平行的演替动态,每个王国确定了三个主要的亚群落,在污泥颗粒化的每个阶段占主导地位。
Although inter-kingdom interactions were shown to affect community succession during the whole experiment, during granule development random factors like the availability of settlement sites or drift acquired increasing importance. The prokaryotic community was more affected by deterministic factors, including reactor conditions, while the eukaryotic community was to a larger extent shaped by biotic interactions (including inter-kingdom interactions) and stochasticity..
尽管在整个实验过程中,王国间的相互作用会影响群落演替,但在颗粒发育过程中,诸如定居点或漂移的可用性等随机因素变得越来越重要。原核生物群落受确定性因素的影响更大,包括反应堆条件,而真核生物群落在很大程度上受生物相互作用(包括王国间相互作用)和随机性的影响。。
IntroductionAerobic granular sludge is a biofilm-based process for wastewater treatment that has received much attention in recent years. This technology displays several advantages compared to the activated sludge process, achieving advanced nutrient removal in plants requiring less space and a lower energy demand1,2.
引言好氧颗粒污泥是近年来备受关注的一种基于生物膜的废水处理工艺。与活性污泥法相比,该技术显示出几个优点,在需要较少空间和较低能量需求的植物中实现了先进的养分去除1,2。
Aerobic granules are generally developed from activated sludge in sequencing batch reactors (SBRs), where aggregates with high microbial density and diversity are obtained3. Substrate and oxygen gradients within the biofilm matrix allow the coexistence of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria and phosphorous accumulating organisms (PAO), thus synchronizing nitrification, denitrification and biological phosphorus removal while degrading the organic carbon4,5,6,7.Granulation is a response to specific selection pressures applied in the reactors; however, the underlying mechanisms are still poorly understood.
好氧颗粒通常是在序批式反应器(SBR)中从活性污泥中开发出来的,其中获得了具有高微生物密度和多样性的聚集体3。生物膜基质内的底物和氧气梯度允许氨氧化细菌(AOB),亚硝酸盐氧化细菌(NOB),反硝化细菌和聚磷生物(PAO)共存,从而同步硝化,反硝化和生物除磷,同时降解有机碳4,5,6,7。粒化是对反应器中施加的特定选择压力的响应;然而,底层机制仍然知之甚少。
Granules are generally obtained by (1) applying high hydrodynamic shear forces; (2) feast-famine alternation; and (3) washing-out of the non-granulated biomass4,5,7. In such reactor conditions, upon switching from planktonic to aggregated mode of growth, microbial populations ensure their persistence in flowing environments that develop under shear forces8.
颗粒通常通过(1)施加高流体动力剪切力获得;(2) 盛宴饥荒交替;(3)洗出非颗粒生物4,5,7。在这种反应器条件下,当从浮游生物转变为聚集生长模式时,微生物种群确保其在剪切力下发展的流动环境中的持久性8。
Additionally, the applied high shear forces in the reactor, together with the feast-famine alternation and anaerobic feeding strategies applied in SBRs, increases the overall hydrophobicity of the biomass and accelerates microbial aggregation4,9,10,11.Eukaryotic members of the community play important roles in wastewater treatment contributing to sludge sedimentation and predation upon planktonic bacteria12,13,14,15, yet few studies have been conduct.
此外,在反应器中施加的高剪切力,以及在SBR中应用的盛宴饥荒交替和厌氧进料策略,增加了生物质的整体疏水性并加速了微生物的聚集4,9,10,11。社区的真核生物成员在废水处理中发挥重要作用,有助于污泥沉降和对浮游细菌的捕食12,13,14,15,但很少有研究进行。
Data availability
数据可用性
Raw sequence reads are deposited at the European Nucleotide Archive (ENA) repository under the project code PRJEB71975. The code and the necessary data to reproduce all the analyses are included in a Figshare repository (https://figshare.com/s/dfd2d3546e719829fad9, will be available upon acceptance)..
。重现所有分析的代码和必要数据都包含在Figshare存储库中(https://figshare.com/s/dfd2d3546e719829fad9,将在验收后提供)。。
ReferencesBengtsson, S., de Blois, M., Wilén, B. M. & Gustavsson, D. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ. Technol. 40, 2769–2778 (2019).Article
参考文献Bengtsson,S.,de Blois,M.,Wilén,B.M。和Gustavsson,D。好氧颗粒污泥与常规和紧凑型生物处理技术的比较。环境。技术。402769-2778(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ekholm, J. et al. Case study of aerobic granular sludge and activated sludge—Energy usage, footprint, and nutrient removal. Water Environ. Res. 95, e10914 (2023).Article
Ekholm,J.等人,《好氧颗粒污泥和活性污泥能量利用、足迹和养分去除的案例研究》。水环境。第95号决议,e10914(2023年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xia, J., Ye, L., Ren, H. & Zhang, X.-X. Microbial community structure and function in aerobic granular sludge. Appl. Microbiol. Biotechnol. 102, 3967–3979 (2018).Article
夏,J.,叶,L.,任,H。&Zhang,X.-X。好氧颗粒污泥中的微生物群落结构和功能。应用。微生物。生物技术。1023967-3979(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wilen, B.-M. et al. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl. Microbiol. Biotechnol. 102, 5005–5020 (2018).Article
Wilen,B.-M.等人。污水处理中活性污泥颗粒化的机理、优化及其对出水水质的影响。应用。微生物。生物技术。1025005-5020(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adav, S. S., Lee, D. J., Show, K. Y. & Tay, J. H. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 26, 411–423 (2008).Article
Adav,S.S.,Lee,D.J.,Show,K.Y。和Tay,J.H。好氧颗粒污泥:最新进展。生物技术。Adv.26411–423(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).Article
Delmont,T.O.等人。平面菌和变形菌的固氮种群在表层海洋宏基因组中丰富。自然微生物。3804-813(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aqeel, H. et al. Drivers of bioaggregation from flocs to biofilms and granular sludge. Environmental Science: Water Research and Technology 5, 2072–2089 (2019).Boltz, J. P. et al. From biofilm ecology to reactors: A focused review. Water Sci. Technol. 75, 1753–1760 (2017).Article
Aqueel,H.等人,《从絮体到生物膜和颗粒污泥的生物聚集驱动因素》。环境科学:水研究与技术52072-2089(2019)。Boltz,J.P.等人,《从生物膜生态学到反应器:重点综述》。水科学。技术。751753-1760(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
De Kreuk, M. K. & Van Loosdrecht, M. C. M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 49, 9–17 (2004).Article
De Kreuk,M.K.&Van Loosdrecht,M.C.M.选择生长缓慢的生物作为改善好氧颗粒污泥稳定性的手段。水科学。技术。49,9-17(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Y. Q. & Tay, J. H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresour. Technol. 99, 980–985 (2008).Article
Liu,Y.Q.&Tay,J.H。饥饿时间对序批式反应器中好氧颗粒形成和稳定性的影响。生物酸。技术。99980-985(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lin, Y., De Kreuk, M., Van Loosdrecht, M. C. M. & Adin, A. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Res. 44, 3355–3364 (2010).Article
Lin,Y.,De Kreuk,M.,Van Loosdrecht,M.C.M.&Adin,A.在中试工厂中从好氧颗粒污泥中分离的藻酸盐样胞外多糖的表征。Water Res.443355–3364(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Arregui, L., Linares, M., Pέrez-Uz, B., Guinea, A. & Serrano, S. Involvement of crawling and attached ciliates in the aggregation of particles in wastewater treatment plants. Air Soil Water Res. 1, ASWR.S752 (2008).Arregui, L., Serrano, S., Linares, M., Pérez-Uz, B. & Guinea, A. Ciliate contributions to bioaggregation: laboratory assays with axenic cultures of Tetrahymena thermophila.
Arregui,L.,Linares,M.,Pέrez Uz,B.,几内亚,A。&Serrano,S。爬行和附着的纤毛虫参与废水处理厂中颗粒的聚集。空气土壤水资源1,ASWR。S752(2008)。。
Int. Microbiol. 91–96 https://doi.org/10.2436/20.1501.01.13 (2007).Burian, A. et al. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J. 16, 1086–1094 (2022).Article .
国际微生物。91–96https://doi.org/10.2436/20.1501.01.13(2007年)。Burian,A。等人。捕食增加了活性污泥群落中微生物多样性的多种成分。ISME J.161086–1094(2022)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Madoni, P. Protozoa in wastewater treatment processes: A minireview. Italian J. Zool. 78, 3–11 (2011).Beun, J. J. et al. Aerobic granulation in a sequencing batch reactor. Water Res 33, 2283–2290 (1999).Article
废水处理过程中的原生动物:一篇小型评论。意大利人J.Zool。78,3-11(2011)。Beun,J.J.等人,《序批式反应器中的好氧造粒》。《水资源研究》332283–2290(1999)。文章
Google Scholar
谷歌学者
Weber, S. D., Ludwig, W., Schleifer, K. H. & Fried, J. Microbial composition and structure of aerobic granular sewage biofilms. Appl. Environ. Microbiol. 73, 6233–6240 (2007).Article
Weber,S.D.,Ludwig,W.,Schleifer,K.H。&Fried,J。好氧颗粒污水生物膜的微生物组成和结构。应用。环境。微生物。736233-6240(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liébana, R. et al. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation. FEMS Microbiol. Ecol. 92, fiw134 (2016).Article
Liébana,R.等人揭示了生物膜形成过程中活性污泥中发现的微生物种群之间的相互作用。FEMS微生物。Ecol公司。92,fiw134(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Böhme, A., Risse-Buhl, U. & Küsel, K. Protists with different feeding modes change biofilm morphology: Protists influence biofilm morphology. FEMS Microbiol. Ecol. 69, 158–169 (2009).Article
。FEMS微生物。Ecol公司。69158-169(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Matz, C. & Kjelleberg, S. Off the hook - How bacteria survive protozoan grazing. Trends Microbiol 13, 302–307 (2005).Article
Matz,C。&Kjelleberg,S。摘机-细菌如何在原生动物放牧中存活。趋势微生物学13302-307(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Huws, S. A., McBain, A. J. & Gilbert, P. Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol. 98, 238–244 (2005).Article
Huws,S.A.,McBain,A.J。&Gilbert,P。原生动物放牧及其对生物膜群落种群动态的影响。J、 应用。微生物。98238-244(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Suarez, C., Persson, F. & Hermansson, M. Predation of nitritation-anammox biofilms used for nitrogen removal from wastewater. FEMS Microbiol. Ecol. 91, 124 (2015).Article
Suarez,C.,Persson,F。&Hermansson,M。用于从废水中去除氮的硝化-厌氧氨氧化生物膜的捕食。FEMS微生物。Ecol公司。91124(2015)。文章
Google Scholar
谷歌学者
Liu, Y., Wang, Z.-W., Qin, L., Liu, Y.-Q. & Tay, J.-H. Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 67, 26–32 (2005).Article
Liu,Y.,Wang,Z.-W.,Qin,L.,Liu,Y.-Q.&Tay,J.-H。在序批式反应器中选择压力驱动的好氧造粒。应用。微生物。生物技术。67,26-32(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Toh, S., Tay, J., Moy, B., Ivanov, V. & Tay, S. Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl. Microbiol. Biotechnol. 60, 687–695 (2003).Article
Toh,S.,Tay,J.,Moy,B.,Ivanov,V。&Tay,S。SBR中好氧颗粒物理特性的尺寸效应。应用。微生物。生物技术。60687-695(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Verawaty, M., Pijuan, M., Yuan, Z. & Bond, P. L. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res. 46, 761–771 (2012).Article
Verawaty,M.,Pijuan,M.,Yuan,Z.&Bond,P.L。确定活性污泥废水处理中絮凝剂和破碎颗粒混合种子的好氧颗粒化机理。Water Res.46761–771(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, D., Niu, S., Xiong, Y., Yang, Y. & Dong, S. Microbial selection pressure is not a prerequisite for granulation: Dynamic granulation and microbial community study in a complete mixing bioreactor. Bioresour. Technol. 161, 102–108 (2014).Article
Zhou,D.,Niu,S.,Xiong,Y.,Yang,Y。&Dong,S。微生物选择压力不是造粒的先决条件:在完全混合生物反应器中进行动态造粒和微生物群落研究。生物酸。技术。161102-108(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Barr, J. J., Slater, F. R., Fukushima, T. & Bond, P. L. Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge: Effects of bacteriophage on activated sludge. FEMS Microbiol. Ecol. 74, 631–642 (2010).Article
Barr,J.J.,Slater,F.R.,Fukushima,T。&Bond,P.L。噬菌体活性引起除磷活性污泥群落和性能变化的证据:噬菌体对活性污泥的影响。FEMS微生物。Ecol公司。74631-642(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liébana, R. et al. Combined deterministic and stochastic processes control microbial succession in replicate granular biofilm reactors. Environ. Sci. Technol. 53, 4912–4921 (2019).Article
Liébana,R。等人。结合确定性和随机过程控制复制颗粒生物膜反应器中的微生物演替。环境。科学。技术。534912-4921(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X., Zhang, K., Ren, N., Li, N. & Ren, L. Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE. J. Environ. Sci. 21, 223–228 (2009).Article
Wang,X.,Zhang,K.,Ren,N.,Li,N。&Ren,L。使用PCR-DGGE监测启动期间A/O SBR的微生物群落结构和演替。J、 环境。科学。21223-228(2009)。文章
Google Scholar
谷歌学者
Wittebolle, L., Van Vooren, N., Verstraete, W. & Boon, N. High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors. J. Appl. Microbiol. 107, 385–394 (2009).Article
Wittebolle,L.,Van Vooren,N.,Verstraete,W。&Boon,N。平行顺序间歇反应器中氨氧化细菌群落的高重现性。J、 应用。微生物。107385-394(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gilbert, J. J. & Schröder, T. The ciliate epibiont Epistylis pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshw. Biol. 48, 878–893 (2003).Article
Gilbert,J。J。&Schröder,T。纤毛虫epibiont Epistylis pygmaeum:浮游动物宿主的选择,繁殖和对两种轮虫的影响。弗雷什。生物学48878-893(2003)。文章
Google Scholar
谷歌学者
Taylor, W. D. A comparative study of the sessile, filter-feeding ciliates of several small streams. Hydrobiologia 98, 125–133 (1983).Article
泰勒(Taylor,W.D.)对几条小溪的无柄滤食性纤毛虫的比较研究。水生生物学98125-133(1983)。文章
Google Scholar
谷歌学者
Parry, J. D. Protozoan Grazing of Freshwater Biofilms. in Adv. Appl. Microbiol. vol. 54 167–196 (Elsevier, 2004).Liu, Y. & Tay, J. H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36, 1653–1665 (2002).Article
Parry,J.D。淡水生物膜的原生动物放牧。在Adv.Appl。微生物。第54卷167-196(Elsevier,2004)。Liu,Y。&Tay,J。H。流体动力剪切力在生物膜和颗粒污泥形成中的重要作用。Water Res.361653–1665(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, X.-W., Sheng, G.-P. & Yu, H.-Q. Physicochemical characteristics of microbial granules. Biotechnol. Adv. 27, 1061–1070 (2009).Article
Liu,X.-W.,Sheng,G.-P.&Yu,H.-Q。微生物颗粒的物理化学特征。生物技术。Adv.271061–1070(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katharios-Lanwermeyer, S., Xi, C., Jakubovics, N. S. & Rickard, A. H. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development. Biofouling 30, 1235–1251 (2014).Article
Katharios Lanwermeyer,S.,Xi,C.,Jakubovics,N.S。&Rickard,A.H。Mini review:微生物聚集:普遍存在和对生物膜发育的影响。生物污垢301235-1251(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gao, H. et al. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. Sci. Total Environ. 842, 156911 (2022).Article
Gao,H。等人。内源性AHL介导的群体感应在ZnO纳米颗粒长期暴露下生物脱氮系统的适应和恢复中的多能性。科学。总环境。842156911(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Weissbrodt, D. G. et al. Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics. Front. Microbiol. 3, 1–22 (2012).Article
Weissbrodt,D.G.等人。在冲洗动力学下运行的废水处理系统中,早期好氧颗粒形成过程中的细菌选择。正面。微生物。3,1-22(2012)。文章
Google Scholar
谷歌学者
Chan, S. H., Ismail, M. H., Tan, C. H., Rice, S. A. & McDougald, D. Microbial predation accelerates granulation and modulates microbial community composition. BMC Microbiol. 21, 91 (2021).Article
Chan,S.H.,Ismail,M.H.,Tan,C.H.,Rice,S.A。&McDougald,D。微生物捕食加速肉芽形成并调节微生物群落组成。BMC微生物。21,91(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chouari, R. et al. Eukaryotic molecular diversity at different steps of the wastewater treatment plant process reveals more phylogenetic novel lineages. World J. Microbiol. Biotechnol. 33, 44 (2017).Article
Chouari,R。等人。污水处理厂过程不同步骤的真核生物分子多样性揭示了更多的系统发育新谱系。世界J.微生物。生物技术。33,44(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hirakata, Y. et al. Temporal variation of eukaryotic community structures in UASB reactor treating domestic sewage as revealed by 18S rRNA gene sequencing. Sci. Rep. 9, 12783 (2019).Article
Hirakata,Y.等人。通过18S rRNA基因测序揭示了处理生活污水的UASB反应器中真核生物群落结构的时间变化。科学。代表912783(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsunaga, K., Kubota, K. & Harada, H. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis. Microbes Environ. 29, 401–407 (2014).Article
Matsunaga,K.,Kubota,K。&Harada,H。通过18S rRNA基因分析揭示了城市污水处理过程中真核生物的分子多样性。微生物环境。29401–407(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Remmas, N., Melidis, P., Paschos, G., Statiris, E. & Ntougias, S. Protozoan indicators and extracellular polymeric substances alterations in an intermittently aerated membrane bioreactor treating mature landfill leachate. Environ. Technol. 38, 53–64 (2017).Article
Remmas,N.,Melidis,P.,Paschos,G.,Statiris,E。&Ntougias,S。处理成熟垃圾渗滤液的间歇曝气膜生物反应器中的原生动物指标和细胞外聚合物变化。环境。技术。38,53-64(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pohl, N., Solbach, M. D. & Dumack, K. The wastewater protist Rhogostoma minus (Thecofilosea, Rhizaria) is abundant, widespread, and hosts Legionellales. Water Res 203, 117566 (2021).Article
波尔,N.,索尔巴赫,M.D。和杜马克,K。废水原生生物Rhogostoma minus(Thecofilosea,Rhizaria)丰富,分布广泛,并拥有军团菌。水资源203、117566(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, J., Ma, L., Wei, S. & Horn, H. Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater. Sep. Purif. Technol. 110, 127–131 (2013).Article
Li,J.,Ma,L.,Wei,S。&Horn,H。好氧颗粒在用生活污水喂养的SBR中居住涡旋菌和轮虫。9月纯技术。110127-131(2013)。文章
Google Scholar
谷歌学者
Johansson, M., Gorokhova, E. & Larsson, U. Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26, 67–80 (2004).Article
Johansson,M.,Gorokhova,E。&Larsson,U。波罗的海北部开阔地区纤毛虫群落结构,潜在猎物和捕食者的年度变化。J、 《浮游生物决议》26,67–80(2004)。文章
Google Scholar
谷歌学者
Szabó, E. et al. Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates. Front. Microbiol. 8, 770 (2017).Article
Szabó,E.等人。在不同有机负荷率下运行的序批式反应器中缺氧/好氧颗粒污泥的微生物种群动态和生态系统功能。正面。微生物。8770(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saleem, M., Fetzer, I., Harms, H. & Chatzinotas, A. Diversity of protists and bacteria determines predation performance and stability. ISME J. 7, 1912–1921 (2013).Article
Saleem,M.,Fetzer,I.,Harms,H。&Chatzinotas,A。原生生物和细菌的多样性决定了捕食性能和稳定性。ISME J.71912–1921(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
de Celis, M. et al. Niche differentiation drives microbial community assembly and succession in full-scale activated sludge bioreactors. Npj Biofilms Microbiomes 8, 23 (2022).Article
de Celis,M.等人。生态位分化驱动全规模活性污泥生物反应器中的微生物群落组装和演替。Npj生物膜微生物组8,23(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seviour, T., Yuan, Z., van Loosdrecht, M. C. M. & Lin, Y. Aerobic sludge granulation: A tale of two polysaccharides? Water Res. 46, 4803–4813 (2012).Article
Seviour,T.,Yuan,Z.,van Loosdrecht,M.C.M。和Lin,Y。好氧污泥颗粒化:两种多糖的故事?Water Res.464803–4813(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Guimarães, L. B. et al. Production of extracellular polymeric substances in granular sludge under selection for Accumulibacter and Competibacter; bioRxiv 2023.03.24.534144 https://doi.org/10.1101/2023.03.24.534144 (2023).Sartini, B., Marchesini, R., D´ávila, S., D’Agosto, M. & Dias, R.
Guimarães,L.B.等人。在选择Accumulibacter和Competibacter的情况下,颗粒污泥中细胞外聚合物的产生;bioRxiv 2023.03.24.534144https://doi.org/10.1101/2023.03.24.534144(2023年)。萨蒂尼(B.Sartini),马切西尼(R.Marchesini),达维拉(S.D'vila),达戈斯托(M.D'Agosto)和迪亚斯(R.Dias)。
J. P. Diversity and distribution of peritrich ciliates on the Snail Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in a Eutrophic Lotic System. Zool. Stud. https://doi.org/10.6620/ZS.2018.57-42 (2018).Madoni, P. Ciliated protozoan communities and saprobic evaluation of water quality in the hilly zone of some tributaries of the Po River (northern Italy).
J、 P.富营养化水体系统中蜗牛Physa acuta Draparnaud,1805(腹足纲:Physidae)上的纤毛虫的多样性和分布。佐尔。螺柱。https://doi.org/10.6620/ZS.2018.57-42(2018年)。Madoni,P。纤毛原生动物群落和Po河(意大利北部)一些支流丘陵区水质的腐殖评估。
Hydrobiologia 541, 55–69 (2005).Article .
水生生物541,55-69(2005)。第[UNK]条。
Google Scholar
谷歌学者
Patterson, D. J. & Simpson, A. G. B. Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol. 32, 423–448 (1996).Article
Patterson,D.J.&Simpson,A.G.B.来自西澳大利亚沿海海洋和高盐沉积物的异养鞭毛虫。。32423-448(1996)。文章
Google Scholar
谷歌学者
Winkler, M.-K. H. et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem. Eng. J. 336, 489–502 (2018).Article
Winkler,M.-K.H.等人,《颗粒污泥生物去除废水中营养物质和难降解有机物的综合评论》。化学。《工程杂志》336489-502(2018)。文章
Google Scholar
谷歌学者
Dris, R. et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ. Chem. 12, 539–550 (2015).Article
Dris,R.等人,《海洋之外:微塑料颗粒对淡水生态系统的污染》。环境。化学。12539-550(2015)。文章
Google Scholar
谷歌学者
Lemaire, R., Webb, R. I. & Yuan, Z. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J. 2, 528–541 (2008).Article
Lemaire,R.,Webb,R.I.&Yuan,Z.用于处理营养丰富的工业废水的好氧微生物颗粒结构的微尺度观察。ISME J.2528-541(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bock, C. et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ. Microbiol. 22, 2243–2260 (2020).Article
Bock,C.等人在欧洲范围内塑造原生生物和细菌群落模式的因素。环境。微生物。222243-2260(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Stoessel, F. On the ecology of ciliates in riverwaters: The evaluation of water quality via ciliates and filamentous bacteria. Aquat. Sci. 51, 235–248 (1989).Article
Stoessel,F。关于河水中纤毛虫的生态学:通过纤毛虫和丝状细菌评估水质。Aquat。科学。51235-248(1989)。文章
Google Scholar
谷歌学者
Liu, W. et al. Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (A2O) reactor with two-zone sedimentation tank treating municipal sewage. Water Res. 178, 115825 (2020).Article
Liu,W。等人。在带有两区沉淀池的厌氧/缺氧/好氧(A2O)反应器中处理城市污水的活性污泥的成功粒化和微生物分化。Water Res.178115825(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ortiz-Álvarez, R. et al. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6, e00344–21 (2021).Article
Ortiz-Álvarez,R。等人。当地真菌群落的网络特性揭示了葡萄园土壤中耕作实践的人为干扰后果。mSystems 6,e00344–21(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salmaso, N. & Tolotti, M. Other Phytoflagellates and Groups of Lesser Importance. in (ed. Likens, G. E. B. T.-E. of I. W.) 174–183 (Academic Press, Oxford, 2009). https://doi.org/10.1016/B978-012370626-3.00137-X.Calderini, M. L., Salmi, P., Rigaud, C., Peltomaa, E. & Taipale, S. J. Metabolic plasticity of mixotrophic algae is key for their persistence in browning environments.
Salmaso,N。&Tolotti,M。其他植物鞭毛虫和不太重要的群体。在(ed.Likens,G.E.B.T.-E.of I.W.)174-183(学术出版社,牛津,2009)。https://doi.org/10.1016/B978-012370626-3.00137-X.Calderini,M.L.,Salmi,P.,Rigaud,C.,Peltomaa,E。&Taipale,S.J。混合营养藻类的代谢可塑性是其在褐变环境中持续存在的关键。
Mol. Ecol. 31, 4726–4738 (2022).Article .
摩尔Ecol。314726-4738(2022)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krustok, I., Odlare, M., Truu, J. & Nehrenheim, E. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresour. Technol. 202, 238–243 (2016).Article
Krustok,I.,Odlare,M.,Truu,J。&Nehrenheim,E。抑制城市污水处理光生物反应器中的硝化作用:对藻类生长和养分吸收的影响。生物酸。技术。202238-243(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xiao, Y. et al. New insights into multi-strategies of sludge granulation in up-flow anaerobic sludge blanket reactors from community succession and interaction. Bioresour. Technol. 377, 128935 (2023).Article
Xiao,Y.等人。从群落演替和相互作用的角度对上流式厌氧污泥床反应器中污泥颗粒化的多种策略的新见解。生物酸。技术。377128935(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Barr, J. J., Cook, A. E. & Bond, P. L. Granule formation mechanisms within an aerobic wastewater system for phosphorus removal. Appl. Environ. Microbiol. 76, 7588–7597 (2010).Article
Barr,J.J.,Cook,A.E.&Bond,P.L。好氧废水系统中用于除磷的颗粒形成机制。应用。环境。微生物。767588-7597(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weissbrodt, D. G., Schneiter, G. S., Fürbringer, J. M. & Holliger, C. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors. Water Res. 47, 7006–7018 (2013).Article
Weissbrodt,D.G.,Schneiter,G.S.,Fürbringer,J.M。&Holliger,C。在好氧颗粒污泥序批式反应器中选择多磷酸盐和糖原积累生物的触发因子的鉴定。Water Res.477006–7018(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dulekgurgen, E., Ovez, S., Artan, N. & Orhon, D. Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor. Biotechnol. Lett. 25, 687–693 (2003).Article
Dulekgurgen,E.,Ovez,S.,Artan,N。&Orhon,D。在序批式反应器中通过颗粒污泥增强生物磷酸盐去除。生物技术。利特。25687-693(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, C. et al. Cultivating granular sludge directly in a continuous-flow membrane bioreactor with internal circulation. Chem. Eng. J. 309, 108–117 (2017).Article
Chen,C.等人。在具有内循环的连续流膜生物反应器中直接培养颗粒污泥。化学。《工程杂志》309108-117(2017)。文章
Google Scholar
谷歌学者
Chen, Y.-Y. & Lee, D.-J. Effective aerobic granulation: Role of seed sludge. J. Taiwan Inst. Chem. Eng. 52, 118–119 (2015).Article
Chen,Y.-Y.&Lee,D.-J.有效的好氧颗粒化:种子污泥的作用。J、 台湾化学研究所。工程52118-119(2015)。文章
Google Scholar
谷歌学者
Liébana, R. et al. Integration of aerobic granular sludge and membrane bioreactors for wastewater treatment. Crit. Rev. Biotechnol. 38, 801–816 (2018).Article
Liébana,R.等人。好氧颗粒污泥和膜生物反应器在废水处理中的集成。暴击。生物技术Rev。38801-816(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
APHA. Standard Methods For the Examination of Water and Wastewater. (American Public Health Association, 1995).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Kozich, J. J., Westcott, S. L., Baxter, N.
APHA。水和废水检验的标准方法。(美国公共卫生协会,1995年)。Schneider,C.A.,Rasband,W.S。和Eliceiri,K.W。NIH Image to ImageJ:25年的图像分析。自然方法9671-675(2012)。科齐奇,J.J.,韦斯科特,S.L.,巴克斯特,N。
T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).Article .
T、 ,Highlander,S.K。和Schloss,P.D。开发了双指数测序策略和管理流程,用于在miseq illumina测序平台上分析扩增子序列数据。应用。环境。微生物。795112-5120(2013)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4, e6372 (2009).Article
Amaral Zettler,L.A.,McCliment,E.A.,Ducklow,H.W。&Huse,S.M。一种使用小亚基核糖体RNA基因V9高变区的大规模平行测序研究原生动物多样性的方法。PLoS ONE 4,e6372(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vences, M. et al. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. Conserv. Genet. Resour. 8, 323–327 (2016).Article
Vences,M.等人。使用线粒体16S rRNA基因的双索引引物在Illumina平台上进行淡水脊椎动物元条形码编码。保守。基因。资源。8323-327(2016)。文章
Google Scholar
谷歌学者
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article
Callahan,B。J。等人。DADA2:从Illumina扩增子数据推断高分辨率样品。自然方法13581-583(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article
Edgar,R.C。搜索和聚类比BLAST快几个数量级。生物信息学262460–2461(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Modin, O. et al. Hill-based dissimilarity indices and null models for analysis of microbial community assembly. Microbiome 8, 1–16 (2020).
Modin,O.等人。基于Hill的不相似指数和零模型,用于分析微生物群落组装。微生物组8,1-16(2020)。
Google Scholar
谷歌学者
Edgar, R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 074161 https://doi.org/10.1101/074161 (2016).McIlroy, S. J. et al. MiDAS: the field guide to the microbes of activated sludge. Database 2015, bav062 (2015).Article
。生物十四074161https://doi.org/10.1101/074161(2016年)。McIlroy,S.J.等人,《MiDAS:活性污泥微生物现场指南》。数据库2015,bav062(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).Article
Guillou,L.等人,《原生生物核糖体参考数据库(PR2):具有精选分类学的单细胞真核生物小亚单位rRNA序列目录》。核酸研究41,D597–D604(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dueholm, M. K. D. et al. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat. Commun. 13, 1908 (2022).Article
Dueholm,M.K.D.等人,《MiDAS 4:用于研究废水处理厂细菌群落的全长16S rRNA基因序列和分类学的全球目录》。国家公社。131908(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C. & Hochreiter, S. Msa: An R package for multiple sequence alignment. Bioinformatics 31, 3997–3999 (2015).Article
Bodenhofer,U.,Bonatesta,E.,Horejš-Kainrath,C。&Hochreiter,S.Msa:用于多序列比对的R包。生物信息学313997-3999(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).Article
Schliep,K。P。phangorn:《生物信息学》中的系统发育分析27592-593(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Li, D. hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw. 3, 1041 (2018).Article
Jost,L。熵和多样性。Oikos 113363–375(2006)。Li,D。hillR:通过希尔数的分类学,功能和系统发育多样性和相似性。J、 开源软件。31041(2018)。文章
Google Scholar
谷歌学者
Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article
《多样性与均匀性:统一符号及其后果》。生态学54427-432(1973)。文章
Google Scholar
谷歌学者
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. (2019).Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).Article
Oksanen,J.等人,《素食者:社区生态包》。R包版本2.5-5。(2019年)。Kurtz,Z.D.等人。微生物生态网络的稀疏和组成稳健推断。PLoS计算机。生物学11,e1004226(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Csardi, G. & Nepusz, T. The igraph software package for complex network research. Inter J Complex Syst. 1695, 1–9 (2006).
Csardi,G。和Nepusz,T。用于复杂网络研究的igraph软件包。Inter J复杂系统。1695,1-9(2006)。
Google Scholar
谷歌学者
Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).Article
Danczak,R.E.等人。使用元群落生态学来理解环境代谢组。国家公社。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).Article
Stegen,J.C.,Lin,X.,Konopka,A.E。和Fredrickson,J.K。地下微生物群落中的随机和确定性组装过程。ISME J.61653–1664(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article
Paradis,E。&Schliep,K。ape 5.0:R.Bioinformatics 35526-528(2019)中的现代系统发育和进化分析环境。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article
Kembel,S.W.等人,Picante:R用于整合系统发育和生态学的工具。生物信息学261463-1464(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fine, P. V. A. & Kembel, S. W. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565 (2011).Article
Fine,P.V.A.&Kembel,S.W。系统发育群落结构和亚马逊河西部树木群落空间和土壤梯度的系统发育周转。生态地理学34552-565(2011)。文章
Google Scholar
谷歌学者
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article
Webb,C.O.,Ackerly,D.D.,McPeek,M.A。和Donoghue,M.J。系统发育和社区生态学。年。修订版Ecol。系统。33475-505(2002)。文章
Google Scholar
谷歌学者
Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).Article
Stegen,J.C.等人,《量化社区组装过程并确定施加它们的特征》。ISME J.72069–2079(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. 112, E1326–E1332 (2015).Article
Dini Andreote,F.,Stegen,J.C.,Van Elsas,J.D。&Salles,J.F。解开介导微生物演替中随机和确定性过程之间平衡的机制。程序。国家科学院。科学。112,E1326–E1332(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).Article
Chase,J.M.,Kraft,N.J.B.,Smith,K.G.,Vellend,M。&Inouye,B.D。使用零模型将群落差异的变化与α多样性的变化分开。生态圈2,第24条(2011年)。文章
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was funded by FORMAS, the Swedish Research Council for Environment, Agricultural Science and Spatial Planning (Contracts 245-2013-627 and 2018-01423). The funder played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.
下载参考文献致谢本研究由瑞典环境、农业科学和空间规划研究委员会FORMAS资助(合同245-2013-627和2018-01423)。资助者在研究设计,数据收集,数据分析和解释或撰写本手稿方面没有发挥任何作用。
Additional funding was obtained by the Spanish Ministry of Economy, Trade and Enterprise (CTM2016-76491-P). Miguel de Celis was supported by a predoctoral “FPI” contract by the Spanish Ministry of Economy, Trade and Enterprise (BES-2017-080024) and a “Research and Training Grant” (FEMS-GO-2021-032).FundingOpen access funding provided by Chalmers University of Technology.Author informationAuthor notesRaquel LiébanaPresent address: AZTI, Marine Research Division, Basque Research Technology Alliance (BRTA), Sukarrieta, SpainAuthors and AffiliationsDepartment of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, SpainMiguel de Celis, Lucía Arregui, Antonio Santos & Ignacio BeldaInstituto de Ciencias Agrarias; Consejo Superior de Investigaciones Científicas, Madrid, SpainMiguel de CelisDivision of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, SwedenOskar Modin, Frank Persson, Britt-Marie Wilén & Raquel LiébanaAuthorsMiguel de CelisView author publicationsYou can also search for this author in.
西班牙经济、贸易和企业部(CTM2016-76491-P)获得了额外的资金。米格尔·德塞利斯(Miguel de Celis)得到了西班牙经济、贸易和企业部(BES-2017-080024)的十年前“FPI”合同和“研究与培训补助金”(FEMS-GO-2021-032)的支持。资金由查尔默斯理工大学提供的开放获取资金。作者信息作者注:AZTI,巴斯克研究技术联盟(BRTA)海洋研究部,Sukarrieta,SpainAuthors及其附属机构遗传,生理学和微生物学系,微生物学系,生物科学学院,马德里坎普顿塞大学,马德里,斯宾米格尔·德塞利斯,卢卡·阿雷吉,安东尼奥·桑托斯和伊格纳西奥·贝尔丹研究所农业科学院;马德里高等调查委员会,西班牙水环境技术部,查尔默斯理工大学建筑与土木工程系,哥德堡,斯维登斯科尔·莫丁,弗兰克·佩尔松,布里特·玛丽·威尔恩和拉奎尔·利巴纳作者Miguel de CelisView作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarOskar ModinView author publicationsYou can also search for this author in
PubMed Google ScholarOskar ModinView作者出版物您也可以在
PubMed Google ScholarLucía ArreguiView author publicationsYou can also search for this author in
PubMed Google ScholarLucía ArreguiView作者出版物您也可以在
PubMed Google ScholarFrank PerssonView author publicationsYou can also search for this author in
PubMed Google ScholarFrank PerssonView作者出版物您也可以在
PubMed Google ScholarAntonio SantosView author publicationsYou can also search for this author in
PubMed Google ScholarAntonio SantosView作者出版物您也可以在
PubMed Google ScholarIgnacio BeldaView author publicationsYou can also search for this author in
PubMed Google ScholarIgnacio BeldaView作者出版物您也可以在
PubMed Google ScholarBritt-Marie WilénView author publicationsYou can also search for this author in
PubMed Google ScholarBritt Marie WilénView作者出版物您也可以在
PubMed Google ScholarRaquel LiébanaView author publicationsYou can also search for this author in
PubMed Google Scholaraquel LiébanaView作者出版物您也可以在
PubMed Google ScholarContributionsMd.C.: Data curation, Formal analysis, Methodology, Software, Visualization, Writing – Original Draft, Writing – Review & Editing. O.M.: Conceptualization, Formal analysis, Funding acquisition, Methodology, Software, Supervision, Writing – Review & Editing.
PubMed谷歌学术贡献SMD。C、 :数据管理,形式分析,方法论,软件,可视化,写作-原稿,写作-评论和编辑。O、 M.:概念化,形式分析,资金获取,方法论,软件,监督,写作-评论和编辑。
L.A.: Formal analysis, Writing – Review & Editing. F.P.: Conceptualization, Methodology, Funding acquisition, Supervision, Writing – Review & Editing. A.S.: Funding acquisition, Supervision, Writing – Review & Editing. I.B.: Funding acquisition, Supervision, Writing – Review & Editing. B-M.W.: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – Review & Editing.
五十、 答:正式分析,写作-评论和编辑。F、 P:概念化,方法论,资金获取,监督,写作-评论和编辑。A、 美国:资金获取,监督,写作-审查和编辑。一、 。B-M.W.:概念化,资金获取,方法论,项目管理,资源,监督,写作-评论和编辑。
R.L.: Conceptualization, Investigation, Data curation, Formal analysis, Methodology, Visualization, Writing – Original Draft, Writing – Review & Editing.Corresponding authorsCorrespondence to.
R、 L.:概念化,调查,数据管理,形式分析,方法论,可视化,写作-原稿,写作-评论和编辑。通讯作者通讯。
Miguel de Celis, Britt-Marie Wilén or Raquel Liébana.Ethics declarations
Miguel de Celis、Britt Marie Wilén或Raquel Liébana。伦理声明
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary materialSupplementary Table S2Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料补充表S2权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articlede Celis, M., Modin, O., Arregui, L. et al. Community successional patterns and inter-kingdom interactions during granular biofilm development.
转载和许可本文引用本文Celis,M.,Modin,O.,Arregui,L。等人。颗粒生物膜发育过程中的群落演替模式和王国间相互作用。
npj Biofilms Microbiomes 10, 109 (2024). https://doi.org/10.1038/s41522-024-00581-xDownload citationReceived: 01 May 2024Accepted: 08 October 2024Published: 20 October 2024DOI: https://doi.org/10.1038/s41522-024-00581-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj生物膜微生物组10109(2024)。https://doi.org/10.1038/s41522-024-00581-xDownload引文收到日期:2024年5月1日接受日期:2024年10月8日发布日期:2024年10月20日OI:https://doi.org/10.1038/s41522-024-00581-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供