商务合作
动脉网APP
可切换为仅中文
AbstractParkinson’s disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments.
摘要帕金森病(PD)是一种以黑质多巴胺能神经元丢失为特征的神经退行性疾病。尽管取得了进展,但发病机制仍不清楚。人类中脑类器官(hMLOs)已成为研究PD,药物筛选和潜在治疗的有前途的模型。
This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies..
这篇综述讨论了hMLOs的发展,它们在PD研究中的应用,以及类器官构建中当前的挑战,突出了可能的优化策略。。
IntroductionParkinson’s disease (PD) is one of the most common neurodegenerative disorders associated with movement disabilities, affecting more than 6.1 million people worldwide1,2, with the mean age of onset at 553. Clinically, as a debilitating neurological disorder, PD patients mainly present with motor symptoms such as resting tremor, bradykinesia, rigidity, postural instability, loss of coordination and shuffling or freezing gait4,5,6.
引言帕金森病(PD)是与运动障碍相关的最常见的神经退行性疾病之一,影响全球610多万人1,2,平均发病年龄为553岁。临床上,作为一种使人衰弱的神经系统疾病,PD患者主要表现为运动症状,如静息性震颤,运动迟缓,僵硬,姿势不稳,协调丧失以及改组或僵硬4,5,6。
Non-motor symptoms may also present including depression, anxiety, constipation, sleep disturbances, hyposmia, paresthesia, and cognitive abnormalities7,8,9,10. The key histopathological hallmark of PD is the gradual loss of midbrain dopaminergic (mDA) neurons and the presence of intraneuronal protein inclusions named “Lewy Bodies” (LB) in substantia nigra (SN)3,10,11,12.
。PD的关键组织病理学标志是中脑多巴胺能(mDA)神经元的逐渐丧失以及黑质(SN)3,10,11,12中存在称为“路易体”(LB)的神经内蛋白质内含物。
Composed of abnormal α-synuclein (α-syn) protein aggregations13, LBs-associated pathology has been attributed to mitochondrial metabolism alteration and proteasomal and autophagy-lysosomal dysregulation, which ultimately bring about the death of mDA14,15.Up to now, there are three prevalent tools to explore the underlying mechanism of PD, including the post-mortem brain tissue from PD patients, animal models and in vitro cell models.
LBs相关病理学由异常的α-突触核蛋白(α-syn)蛋白聚集13组成,归因于线粒体代谢改变以及蛋白酶体和自噬溶酶体失调,最终导致mDA14的死亡,15。到目前为止,有三种流行的工具来探索PD的潜在机制,包括PD患者的死后脑组织,动物模型和体外细胞模型。
The post-mortem brain of PD patient is an ideal source for the PD analysis which directly reflect the actual inner environment. The use of human brain tissue, however, is strictly restricted by practical constraints16,17,18,19,20,21. Furthermore, post-mortem brain tissue may have undergone irreversible changes during the process of death that limit its utility for the study of PD16.
PD患者的死后脑是PD分析的理想来源,它直接反映了实际的内部环境。然而,人脑组织的使用受到实际限制16,17,18,19,20,21的严格限制。此外,死后脑组织在死亡过程中可能发生了不可逆转的变化,这限制了其在PD16研究中的应用。
Animal models of PD can be further divided into two groups, the toxin-based model and gene-based model3. By introducing neurotoxins such as 6-hydroxydopami.
PD的动物模型可以进一步分为两组,基于毒素的模型和基于基因的模型3。通过引入神经毒素,例如6-羟基多巴。
ReferencesFearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5), 2283–2301 (1991).Article
参考文献Fearnley,J.M。&Lees,A.J。衰老和帕金森病:黑质区域选择性。大脑114(Pt 5),2283-2301(1991)。文章
PubMed
PubMed
Google Scholar
谷歌学者
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).Article
GBD 2016神经病学合作者。1990-2016年全球,区域和国家神经疾病负担:2016年全球疾病负担研究的系统分析。柳叶刀神经学。18459-480(2019)。文章
Google Scholar
谷歌学者
Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).Article
Dauer,W。&Przedborski,S。帕金森病:机制和模型。神经元39889-909(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).Article
Kalia,L.V。和Lang,A.E。帕金森氏病。柳叶刀386896-912(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).Article
。柳叶刀3972284-2303(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Obeso, J. A. et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 32, 1264–1310 (2017).Article
Obeso,J.A.等人,《帕金森病的过去、现在和未来:关于颤抖性麻痹200周年的特别文章》。莫夫。混乱。322264-1310(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008).Article
Jankovic,J。帕金森病:临床特征和诊断。J、 神经病学。神经外科精神病学79368-376(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017).Article
Schapira,A.H.V.,Chaudhuri,K.R。&Jenner,P。帕金森病的非运动特征。神经科学杂志。18435-450(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 509 (2017).Article
Schapira,A.H.V.,Chaudhuri,K.R。&Jenner,P。帕金森病的非运动特征。神经科学杂志。18509(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sulzer, D. & Surmeier, D. J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).Article
。莫夫。混乱。28,41-50(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chandra, R., Hiniker, A., Kuo, Y.-M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).Article
Chandra,R.,Hiniker,A.,Kuo,Y.-M.,Nussbaum,R.L。&Liddle,R.A。肠道内分泌细胞中的α-突触核蛋白及其对帕金森病的影响。JCI Insight 2,e92295(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spillantini, M. G. et al. Α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).Article
Spillantini,M.G。等人。路易体中的γ-突触核蛋白。自然388839-840(1997)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H. & Takahashi, H. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99, 14–20 (2000).Article
Wakabayashi,K.,Hayashi,S.,Yoshimoto,M.,Kudo,H。&Takahashi,H。帕金森病大脑星形胶质细胞和少突胶质细胞中的NACP/α-突触核蛋白阳性丝状内含物。神经病学报。99,14-20(2000)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Michel, P. P., Hirsch, E. C. & Hunot, S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90, 675–691 (2016).Article
。神经元90675-691(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, G. et al. New perspectives on roles of Α-synuclein in Parkinson’s disease. Front. Aging Neurosci. 10, 370 (2018).Article
Zhang,G。等。关于β-突触核蛋白在帕金森病中作用的新观点。正面。衰老神经科学。10370(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).Article
Di Lullo,E。&Kriegstein,A.R。使用脑类器官来研究神经发育和疾病。神经科学杂志。18573-584(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, X.-S., Geng, W.-S. & Jia, J.-J. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10, 1759091418777438 (2018).Article
Zeng,X.-S.,Geng,W.-S.&Jia,J.-J。神经毒素诱导的帕金森病动物模型:致病机制和评估。ASN Neuro 101759091418777438(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chia, S. J., Tan, E.-K. & Chao, Y.-X. Historical perspective: models of Parkinson’s disease. Int. J. Mol. Sci. 21, 2464 (2020).Article
Chia,S.J.,Tan,E.-K.&Chao,Y.-X.历史观点:帕金森病模型。Int.J.Mol.Sci。212464(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gasser, T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med. 11, e22 (2009).Article
Gasser,T。帕金森病的分子发病机制:来自遗传学研究的见解。专家Rev.Mol.Med.11,e22(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Taguchi, T., Ikuno, M., Yamakado, H. & Takahashi, R. Animal model for prodromal Parkinson’s disease. Int. J. Mol. Sci. 21, 1961 (2020).Article
Taguchi,T.,Ikuno,M.,Yamakado,H。&Takahashi,R。前驱帕金森病的动物模型。Int.J.Mol.Sci。211961(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hartung, T. Thoughts on limitations of animal models. Parkinsonism Relat. Disord. 14(Suppl 2), S81–S83 (2008).Article
Hartung,T。关于动物模型局限性的思考。帕金森病相关。混乱。14(增刊2),S81–S83(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kokjohn, T. A. & Roher, A. E. Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement. 5, 340–347 (2009).Article
Kokjohn,T.A。&Roher,A.E。淀粉样前体蛋白转基因小鼠模型和阿尔茨海默病:了解范式,局限性和贡献。阿尔茨海默病。5340-347(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).Article
Takahashi,K。&Yamanaka,S。通过确定的因子从小鼠胚胎和成年成纤维细胞培养物中诱导多能干细胞。细胞126663-676(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).Article
Miller,J.D.等人。通过progerin诱导的衰老,基于人类iPSC的迟发性疾病建模。细胞干细胞13691-705(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).Article
Kriks,S。等人。源自人类ES细胞的多巴胺神经元有效地植入帕金森病的动物模型中。自然480547-551(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat. Protoc. 12, 1962–1979 (2017).Article
Nolbrant,S.,Heuer,A.,Parmar,M。&Kirkeby,A。产生用于体外成熟和脑内移植的高纯度人腹侧中脑多巴胺能祖细胞。自然协议。121962-1979(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).Article
Kirkeby,A。等人。在基于hESC的帕金森病治疗的临床翻译中,预测标记物指导分化以改善移植物结果。细胞干细胞20135-148(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).Article
Sulzer,D。等人。神经黑色素的生物合成是由突触小泡未积累的过量胞质儿茶酚胺驱动的。程序。国家科学院。科学。美国9711869-11874(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zecca, L., Zucca, F. A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580 (2003).Article
Zecca,L.,Zucca,F.A.,Wilms,H。&Sulzer,D。黑质的神经黑色素:具有保护性和毒性特征的神经元黑洞。趋势神经科学。26578-580(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).Article
Pașca,S.P。三维人脑文化的兴起。自然553437-445(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, H. et al. Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep. 12, 518–531 (2019).Article
Kim,H.等人在3D中脑类器官中建模G2019S-LRRK2散发性帕金森病。干细胞代表12518-531(2019)。文章
Google Scholar
谷歌学者
Ren, W. et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc. Natl Acad. Sci. USA 111, 16401–16406 (2014).Article
Ren,W。等人。单个表达Lgr5或Lgr6的味觉干/祖细胞在体外产生味蕾细胞。程序。国家科学院。科学。美国11116401–16406(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xia, Y. et al. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat. Protoc. 9, 2693–2704 (2014).Article
Xia,Y.等人。通过将人多能细胞分化为输尿管芽祖细胞样细胞来产生肾脏类器官。自然协议。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rookmaaker, M. B., Schutgens, F., Verhaar, M. C. & Clevers, H. Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11, 546–554 (2015).Article
Rookmaker,M.B.,Schutgens,F.,Verhaar,M.C。&Clevers,H。人类成体干细胞或祖细胞类器官的开发和应用。自然修订版Nephrol。11546-554(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Adams, J. W., Cugola, F. R. & Muotri, A. R. Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology 34, 365–375 (2019).Article
Adams,J.W.,Cugola,F.R。&Muotri,A.R。脑类器官作为模拟人类神经发育障碍的工具。生理学34365-375(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S.-H. & Chang, M.-Y. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int. J. Mol. Sci. 24, 12528 (2023).Article
Kim,S.-H.&Chang,M.-Y.人脑类器官的应用在模拟人脑发育和神经发育疾病方面的机遇和挑战。Int.J.Mol.Sci。2412528(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).Article
Lancaster,M.A.等人。脑类器官模拟人脑发育和小头畸形。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).Article
Muguruma,K.,Nishiyama,A.,Kawakami,H.,Hashimoto,K。&Sasai,Y。极化小脑组织在人多能干细胞的3D培养中的自组织。Cell Rep.10537–550(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).Article
Qian,X。等人。使用微型生物反应器模拟ZIKV暴露的大脑区域特异性类器官。细胞1651238-1254(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).Article
Lancaster,M.A。&Knoblich,J.A。盘子中的器官发生:使用类器官技术对发育和疾病进行建模。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).Article
Quadrato,G.等人,《光敏人脑类器官中的细胞多样性和网络动力学》。自然545,48-53(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pamies, D. et al. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34, 362–376 (2017).Article
Pamies,D.等人。一种源自诱导多能干细胞的人脑微生理系统,用于研究神经系统疾病和毒性。ALTEX 34362-376(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tieng, V. et al. Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev. 23, 1535–1547 (2014).Article
Tieng,V。等人。含有长寿命多巴胺能神经元的中脑类器官的工程。干细胞开发231535-1547(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).Article
Jo,J。等人。来自人类多能干细胞的中脑样类器官含有功能性多巴胺能和神经黑色素产生神经元。细胞干细胞19248-257(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Monzel, A. S. et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 8, 1144–1154 (2017).Article
Monzel,A.S.等人。从神经上皮干细胞衍生人中脑特异性类器官。干细胞代表81144-1154(2017)。文章
Google Scholar
谷歌学者
Kwak, T. H. et al. Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells 38, 727–740 (2020).Article
Kwak,T.H.等人。产生具有体内样细胞组成的均质中脑类器官有助于基于神经毒素的帕金森病建模。干细胞38727-740(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).Article
La Manno,G.等人,《小鼠、人类和干细胞中脑发育的分子多样性》。细胞167566-580.e19(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581 (2019).Article
Tiklová,K.等人。单细胞RNA测序揭示了小鼠大脑发育过程中出现的中脑多巴胺神经元多样性。国家公社。10581(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J. Clin. Invest. 124, 3032–3046 (2014).Article
Liu,G。等人。醛脱氢酶1定义并保护黑质纹状体多巴胺能神经元亚群。J、 。投资。1243032-3046(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiong, M. et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28, 112–126.e6 (2021).Article
熊,M。等。人类干细胞衍生的神经元修复回路并恢复神经功能。细胞干细胞28112-126.e6(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Burns, T. C., Li, M. D., Mehta, S., Awad, A. J. & Morgan, A. A. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: a systematic bioinformatics-based critique of preclinical models. Eur. J. Pharm. 759, 101–117 (2015).Article
Burns,T.C.,Li,M.D.,Mehta,S.,Awad,A.J。&Morgan,A.A。小鼠模型很少模仿人类神经退行性疾病的转录组:基于系统生物信息学的临床前模型批判。《欧洲药典》759101-117(2015)。文章
Google Scholar
谷歌学者
Bolognin, S. et al. 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv. Sci. 6, 1800927 (2019).Article
Bolognin,S.等人。帕金森病特异性多巴胺能神经元的3D培养,用于高含量表型分析和药物测试。。61800927(2019)。文章
Google Scholar
谷歌学者
Klima, S. et al. A human stem cell-derived test system for agents modifying neuronal N-methyl-D-aspartate-type glutamate receptor Ca2+-signalling. Arch. Toxicol. 95, 1703–1722 (2021).Article
Klima,S。等人。用于修饰神经元N-甲基-D-天冬氨酸型谷氨酸受体Ca2+信号传导的试剂的人类干细胞衍生测试系统。。毒理学。951703-1722(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zanetti, C. et al. Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson’s disease modelling and drug screening. Analyst 146, 2358–2367 (2021).Article
Zanetti,C.等人。使用氧化还原循环微传感器监测人类中脑类器官的神经递质释放,作为个性化帕金森病建模和药物筛选的新型工具。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, S. W. et al. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Prog. Neurobiol. 204, 102086 (2021).Article
Kim,S.W.等人。源自人类中脑类器官的神经干细胞是治疗帕金森病的稳定来源:中脑类器官神经干细胞(Og-NSC)是PD治疗的稳定来源。程序。神经生物学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, H.-K. et al. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE 11, e0163072 (2016).Article
Lee,H.-K.等人。基于分化诱导多能干细胞的阿尔茨海默病三维人类神经球体模型。PLoS ONE 11,e0163072(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yan, Y. et al. Modeling neurodegenerative microenvironment using cortical organoids derived from human stem cells. Tissue Eng. Part A 24, 1125–1137 (2018).Article
Yan,Y.等人。使用源自人类干细胞的皮质类器官模拟神经退行性微环境。组织工程A部分241125-1137(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Osaki, T., Uzel, S. G. M. & Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 4, eaat5847 (2018).Article
Osaki,T.,Uzel,S.G.M。&Kamm,R.D。来自人iPS衍生的肌肉细胞和光遗传运动神经元的肌萎缩侧索硬化症(ALS)的微生理3D模型。科学。Adv.4,eaat5847(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Conforti, P. et al. Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc. Natl Acad. Sci. USA 115, E762–E771 (2018).Article
Conforti,P。等人。通过调节HD早期表型,可以恢复错误的神经元测定和细胞极化。程序。国家科学院。科学。美国115,E762–E771(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hor, J. H. et al. Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis. 9, 1100 (2018).Article
Hor,J.H。等人。细胞周期抑制剂在脊髓性肌萎缩症的类器官模型中保护运动神经元。细胞死亡Dis。91100(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).Article
Blauwendraat,C.,Nalls,M.A。和Singleton,A.B。帕金森病的遗传结构。柳叶刀神经学。19170-178(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).Article
。柳叶刀神经学。181091-1102(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Senkevich, K. & Gan-Or, Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat. Disord. 73, 60–71 (2020).Article
;来自人类遗传学的证据。帕金森病相关。混乱。73,60-71(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Balestrino, R. & Schapira, A. H. V. Parkinson disease. Eur. J. Neurol. 27, 27–42 (2020).Article
Balestrino,R。&Schapira,A.H.V。帕金森病。欧洲神经病学杂志。27,27–42(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hogberg, H. T. et al. Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther. 4(Suppl 1), S4 (2013).Article
Hogberg,H.T.等人致力于研究基因/环境相互作用的人脑发育3D模型。干细胞研究。4(补充1),S4(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).Article
Kirkeby,A.等人。在特定条件下从人类胚胎干细胞产生区域特定的神经祖细胞和功能神经元。Cell Rep.1703–714(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).Article
Polymeropoulos,M.H.等人在帕金森氏病家族中发现的α-突触核蛋白基因突变。科学2762045-2047(1997)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fujioka, S. et al. Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat. Disord. 20(Suppl 1), S29–S34 (2014).Article
Fujioka,S.等人。帕金森病和多系统萎缩的新型家族形式的最新进展。帕金森病相关。混乱。20(补充1),S29–S34(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kasten, M. & Klein, C. The many faces of α-synuclein mutations. Mov. Disord. 28, 697–701 (2013).Article
Kasten,M。&Klein,C。α-突触核蛋白突变的许多面孔。莫夫。混乱。28697-701(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Krüger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108 (1998).Article
Krüger,R。等人。帕金森病中编码α-突触核蛋白的基因中的Ala30Pro突变。纳特·吉内特。18106-108(1998)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).Article
Lesage,S。等人,G51Dα-突触核蛋白突变引起新型帕金森氏锥体综合征。安。神经病学。73459-471(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).Article
Zarranz,J。J。等人。α-突触核蛋白的新突变E46K导致帕金森和路易体痴呆。安。神经病学。55164-173(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chartier-Harlin, M.-C. et al. Α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).Article
Chartier-Harlin,M.-C.等人-突触核蛋白基因座重复是家族性帕金森病的原因。柳叶刀3641167-1169(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Farrer, M. et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).Article
Farrer,M.等人。帕金森病和α-突触核蛋白基因组倍增的亲属比较。安。神经病学。55174-179(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nishioka, K. et al. Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann. Neurol. 59, 298–309 (2006).Article
Nishioka,K。等人。帕金森病中α-突触核蛋白基因重复的临床异质性。安。神经病学。59298-309(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ibáñez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet 364, 1169–1171 (2004).Article
Ibáñez,P。等人。α-突触核蛋白基因重复与家族性帕金森病之间的因果关系。柳叶刀3641169-1171(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Muenter, M. D. et al. Hereditary form of parkinsonism-dementia. Ann. Neurol. 43, 768–781 (1998).Article
Muenter,M.D.等人。帕金森氏痴呆的遗传形式。安。神经病学。43768-781(1998)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Book, A. et al. A meta-analysis of α-synuclein multiplication in familial parkinsonism. Front. Neurol. 9, 1021 (2018).Article
Book,A.等人。家族性帕金森病中α-突触核蛋白增殖的荟萃分析。正面。神经病学。91021(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Delenclos, M. et al. Cellular models of α-synuclein toxicity and aggregation. J. Neurochem. 150, 566–576 (2019).Article
Delenclos,M。等人。α-突触核蛋白毒性和聚集的细胞模型。J、 神经化学。150566-576(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jo, J. et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann. Neurol. 90, 490–505 (2021).Article
Jo,J.等人。携带葡萄糖脑苷脂酶和α-突触核蛋白突变的人中脑类器官中的路易体样内含物。安。神经病学。90490-505(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mohamed, N.-V. et al. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy. Brain Commun. 3, fcab223 (2021).Article
Mohamed,N.-V.等人。具有SNCA基因三重模型的中脑类器官是突触核蛋白病的关键特征。大脑通讯。3,fcab223(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becerra-Calixto, A. et al. Lewy body-like pathology and loss of dopaminergic neurons in midbrain organoids derived from familial Parkinson’s disease patient. Cells 12, 625 (2023).Article
Becerra Calixto,A.等人。路易体样病理学和家族性帕金森病患者中脑类器官多巴胺能神经元的丢失。细胞12625(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Muwanigwa, M. N. et al. Α-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson’s disease. Mol. Cell Neurosci. 128, 103919 (2024).Article
Muwanigwa,M.N.等人-突触核蛋白病理学与家族性帕金森病中脑类器官模型中的星形胶质细胞衰老有关。分子细胞神经科学。128103919(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 365, 412–415 (2005).Article
Di Fonzo,A。等人。与常染色体显性帕金森病相关的频繁LRRK2基因突变。柳叶刀365412-415(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004).Article
Paisán-Ruíz,C.等人。克隆含有导致PARK8连锁帕金森病突变的基因。神经元44595-600(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Daher, J. P. L. et al. Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. J. Biol. Chem. 290, 19433–19444 (2015).Article
Daher,J。P。L。等人。富含亮氨酸的重复激酶2(LRRK2)药理学抑制减轻了α-突触核蛋白基因诱导的神经变性。J、 生物。化学。29019433-19444(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hsieh, C.-H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016).Article
Hsieh,C.-H.等人。miro降解和线粒体自噬的功能障碍是家族性和散发性帕金森病的共同特征。细胞干细胞19709-724(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant α-synuclein. Neuron 64, 807–827 (2009).Article
。神经元64807-827(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manzoni, C. & Lewis, P. A. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB J. 27, 3424–3429 (2013).Article
Manzoni,C。&Lewis,P.A。自噬/溶酶体降解途径的功能障碍是遗传性突触核蛋白病的共同特征。FASEB J.273424–3429(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chesselet, M.-F., Fleming, S., Mortazavi, F. & Meurers, B. Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat. Disord. 14(Suppl 2), S84–S87 (2008).Article
Chesselet,M.-F.,Fleming,S.,Mortazavi,F。&Meurers,B。帕金森病遗传小鼠模型的优势和局限性。帕金森病相关。混乱。14(增刊2),S84–S87(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giasson, B. I. et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533 (2002).Article
Giasson,B.I.等人。表达A53T人α-突触核蛋白的小鼠出现严重运动障碍的神经元α-突触核蛋白病。神经元34521-533(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, M. K. et al. Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 -> Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci. USA 99, 8968–8973 (2002).Article
Lee,M.K.等人。携带家族性帕金森病相关Ala-53->Thr突变的人α-突触核蛋白在转基因小鼠中引起具有α-突触核蛋白聚集的神经退行性疾病。程序。国家科学院。科学。美国998968-8973(2002)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).Article
Masliah,E。等人。α-突触核蛋白小鼠的多巴胺能损失和包涵体形成:对神经退行性疾病的影响。科学2871265-1269(2000)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Beal, M. F. Experimental models of Parkinson’s disease. Nat. Rev. Neurosci. 2, 325–334 (2001).Article
Beal,M.F。帕金森病的实验模型。神经科学杂志。2325-334(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).Article
Chung,C.Y.等人。帕金森病患者来源神经元中α-突触核蛋白毒性的鉴定和拯救。科学342983-987(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kluss, J. H., Mamais, A. & Cookson, M. R. LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 47, 651–661 (2019).Article
Kluss,J.H.,Mamais,A。和Cookson,M.R。LRRK2将遗传性和散发性帕金森病联系起来。生物化学。社会事务。47651-661(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smits, L. M. et al. Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis. 5, 5 (2019).Article
Smits,L.M.等人在中脑样器官中模拟帕金森病。NPJ帕金森病。5,5(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, C.-J. et al. Thioredoxin-interacting protein induced α-synuclein accumulation via inhibition of autophagic flux: Implications for Parkinson’s disease. CNS Neurosci. Ther. 23, 717–723 (2017).Article
Su,C.-J.等人。硫氧还蛋白相互作用蛋白通过抑制自噬通量诱导α-突触核蛋白积累:对帕金森病的影响。中枢神经系统神经科学。他们。23717-723(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zagare, A. et al. Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am. J. Hum. Genet. 109, 311–327 (2022).Article
Zagare,A。等人。中脑类器官模拟早期胚胎神经发育并概括LRRK2-p.Gly2019Ser相关基因表达。上午J。嗯。Genet。109311-327(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).Article
Valente,E.M.等人。PINK1突变引起的遗传性早发性帕金森病。科学3041158-1160(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gandhi, S. et al. PINK1 protein in normal human brain and Parkinson’s disease. Brain 129, 1720–1731 (2006).Article
甘地,S。等人。正常人脑和帕金森氏病中的PINK1蛋白。大脑1291720-1731(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hoepken, H.-H. et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401–411 (2007).Article
Hoepken,H.-H.等人。PARK6中线粒体功能障碍,过氧化损伤和谷胱甘肽代谢的变化。神经生物学。Dis。25401-411(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Deas, E. et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20, 867–879 (2011).Article
Deas,E。等人,线粒体蛋白酶PARL.Hum.Mol.Genet在A103位切割PINK1。20867-879(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016 (2012).Article
Okatsu,K。等人。膜电位耗散时PINK1自磷酸化对于Parkin募集到受损线粒体至关重要。Nat。Commun。31016(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Matsuda, S., Kitagishi, Y. & Kobayashi, M. Function and characteristics of PINK1 in mitochondria. Oxid. Med. Cell Longev. 2013, 601587 (2013).Article
Matsuda,S.,Kitagishi,Y。&Kobayashi,M。线粒体中PINK1的功能和特征。Oxid。医学Cell Longev。2013601587(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, L. et al. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 22, 2829–2841 (2013).Article
Zhang,L。等人。TRAP1拯救PINK1功能丧失表型。嗯,摩尔·吉内特。222829–2841(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Flinn, L. J. et al. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann. Neurol. 74, 837–847 (2013).Article
Flinn,L.J。等人,TigarB在PINK1缺乏症中引起线粒体功能障碍和神经元丢失。安。神经病学。74837-847(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gao, J. et al. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress. Autophagy 12, 632–647 (2016).Article
Gao,J。等人。胞质PINK1在蛋白酶体应激期间促进泛素化蛋白靶向聚集体自噬途径。自噬12632-647(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eldeeb, M. A. et al. Tom20 gates PINK1 activity and mediates its tethering of the TOM and TIM23 translocases upon mitochondrial stress. Proc. Natl Acad. Sci. USA 121, e2313540121 (2024).Article
Eldeeb,M.A。等人,Tom20控制PINK1活性,并在线粒体应激时介导其对TOM和TIM23转位酶的束缚。程序。国家科学院。科学。美国121,e2313540121(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brown, S. J. et al. PINK1 deficiency impairs adult neurogenesis of dopaminergic neurons. Sci. Rep. 11, 6617 (2021).Article
Brown,S.J.等人,PINK1缺乏会损害多巴胺能神经元的成年神经发生。科学。代表116617(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ryan, E., Seehra, G., Sharma, P. & Sidransky, E. GBA1-associated parkinsonism: new insights and therapeutic opportunities. Curr. Opin. Neurol. 32, 589–596 (2019).Article
Ryan,E.,Seehra,G.,Sharma,P。&Sidransky,E。GBA1相关性帕金森病:新的见解和治疗机会。货币。奥平。神经病学。32589-596(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Do, J., Perez, G., Berhe, B., Tayebi, N. & Sidransky, E. Behavioral phenotyping in a murine model of GBA1-associated Parkinson disease. Int. J. Mol. Sci. 22, 6826 (2021).Article
Do,J.,Perez,G.,Berhe,B.,Tayebi,N。&Sidransky,E。GBA1相关帕金森病小鼠模型中的行为表型。Int.J.Mol.Sci。226826(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bae, E.-J. et al. Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Exp. Mol. Med. 47, e153 (2015).Article
Bae,E.-J.等人。葡萄糖脑苷脂酶1活性的丧失会导致溶酶体功能障碍和α-突触核蛋白聚集。实验分子医学47,e153(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abeliovich, A., Hefti, F. & Sevigny, J. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J. Parkinsons Dis. 11, S183–S188 (2021).Article
Abeliovich,A.,Hefti,F。&Sevigny,J。与GBA1突变相关的帕金森病的基因治疗。J、 帕金森病。11,S183–S188(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baden, P. et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat. Commun. 14, 1930 (2023).Article
Baden,P。等人。葡萄糖脑苷脂酶被导入线粒体并保持复合物I的完整性和能量代谢。国家公社。141930(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosety, I. et al. Impaired neuron differentiation in GBA-associated Parkinson’s disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis. 9, 166 (2023).Article
Rosety,I。等人。GBA相关帕金森病中神经元分化受损与类器官细胞周期缺陷有关。NPJ帕金森病。9166(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995).Article
Ungewickell,E。等人。auxilin在未涂覆网格蛋白包被的囊泡中的作用。《自然》378632-635(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Edvardson, S. et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7, e36458 (2012).Article
Edvardson,S。等人。编码神经元特异性网格蛋白脱壳共伴侣辅助蛋白的DNAJC6中的有害突变与青少年帕金森病有关。PLoS ONE 7,e36458(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Köroğlu, Ç., Baysal, L., Cetinkaya, M., Karasoy, H. & Tolun, A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat. Disord. 19, 320–324 (2013).Article
科罗卢,Ç。,Baysal,L.,Cetinkaya,M.,Karasoy,H。&Tolun,A。DNAJC6负责具有表型变异性的青少年帕金森病。帕金森病相关。混乱。19320-324(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Olgiati, S. et al. DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann. Neurol. 79, 244–256 (2016).Article
Olgiati,S。等人。与早发性帕金森病相关的DNAJC6突变。安。神经病学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wulansari, N. et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Sci. Adv. 7, eabb1540 (2021).Article
Wulanari,N。等人。携带帕金森氏病相关DNAJC6突变的人脑类器官的神经发育缺陷和神经退行性表型。科学。Adv.7,eabb1540(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).Article
Klein,C。&Westenberger,A。帕金森病的遗传学。冷泉兔。透视图。医学杂志2,a008888(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ahfeldt, T. et al. Pathogenic pathways in early-onset autosomal recessive Parkinson’s disease discovered using isogenic human dopaminergic neurons. Stem Cell Rep. 14, 75–90 (2020).Article
Ahfeldt,T。等人。使用同基因人多巴胺能神经元发现的早发性常染色体隐性帕金森病的致病途径。干细胞代表14,75-90(2020)。文章
Google Scholar
谷歌学者
Morrone Parfitt, G. et al. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model. Nat. Commun. 15, 447 (2024).Article
Morrone Parfitt,G。等人。星形胶质细胞溶酶体蛋白水解的破坏促进了早发性帕金森病模型中脑类器官蛋白稳态的失败。国家公社。15447(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. et al. Molecular profiling of human substantia nigra identifies diverse neuron types associated with vulnerability in Parkinson’s disease. Sci. Adv. 10, eadi8287 (2024).Article
Wang,Q。等人。人类黑质的分子谱分析确定了与帕金森病易感性相关的多种神经元类型。科学。Adv.10,eadi8287(2024年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Monzel, A. S. et al. Machine learning-assisted neurotoxicity prediction in human midbrain organoids. Parkinsonism Relat. Disord. 75, 105–109 (2020).Article
Monzel,A.S.等人。机器学习辅助人类中脑类器官的神经毒性预测。帕金森病相关。混乱。75105-109(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 318, 215–224 (2004).Article
Schober,A。帕金森病的经典毒素诱导动物模型:6-OHDA和MPTP。细胞组织研究318215-224(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Meredith, G. E. & Rademacher, D. J. MPTP mouse models of Parkinson’s disease: an update. J. Parkinsons Dis. 1, 19–33 (2011).Article
Meredith,G.E。&Rademacher,D.J。MPTP帕金森病小鼠模型:更新。J、 帕金森病。1,19-33(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smeyne, R. J. & Jackson-Lewis, V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 134, 57–66 (2005).Article
Smeyne,R.J。和Jackson Lewis,V。帕金森病的MPTP模型。Brain Res.Mol.Brain Res.134,57-66(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schulz, J. B., Matthews, R. T., Muqit, M. M., Browne, S. E. & Beal, M. F. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem. 64, 936–939 (1995).Article
Schulz,J.B.,Matthews,R.T.,Muqit,M.M.,Browne,S.E。&Beal,M.F。7-硝基吲唑对神经元一氧化氮合酶的抑制可防止MPTP诱导的小鼠神经毒性。J、 神经化学。64936-939(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Houlden, H. & Singleton, A. B. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 124, 325–338 (2012).Article
Houlden,H。&Singleton,A.B。帕金森病的遗传学和神经病理学。神经病学报。124325-338(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pang, S. Y.-Y. et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 8, 23 (2019).Article
Pang,S.Y.-Y.等人。帕金森病发病机制中衰老,遗传和环境因素的相互作用。翻译。神经退行性变。8,23(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Logroscino, G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ. Health Perspect. 113, 1234–1238 (2005).Article
Logroscino,G.早期环境危险因素在帕金森病中的作用:有什么证据?环境。健康展望。1131234-1238(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ahmed, H., Abushouk, A. I., Gabr, M., Negida, A. & Abdel-Daim, M. M. Parkinson’s disease and pesticides: a meta-analysis of disease connection and genetic alterations. Biomed. Pharmacother. 90, 638–649 (2017).Article
Ahmed,H.,Abushouk,A.I.,Gabr,M.,Negida,A。&Abdel Daim,M.M。帕金森病和农药:疾病联系和遗传改变的荟萃分析。生物医学。药剂师。90638-649(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cannon, J. R. & Greenamyre, J. T. Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol. Dis. 57, 38–46 (2013).Article
Cannon,J.R。和Greenamyre,J.T。帕金森病中的基因-环境相互作用:人类和哺乳动物模型中的具体证据。神经生物学。Dis。57,38-46(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).Article
Langston,J.W.,Ballard,P.,Tetrud,J.W。&Irwin,I。由于哌替啶类似物合成的产物,人类慢性帕金森病。科学219979-980(1983)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tetrud, J. W., Langston, J. W., Garbe, P. L. & Ruttenber, A. J. Mild parkinsonism in persons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurology 39, 1483–1487 (1989).Article
。神经病学391483-1487(1989)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L. & Levy, L. S. Pesticides and Parkinson’s disease-is there a link? Environ. Health Perspect. 114, 156–164 (2006).Article
Brown,T.P.,Rumsby,P.C.,Capleton,A.C.,Rushton,L.&Levy,L.S。杀虫剂与帕金森病有联系吗?环境。健康展望。114156-164(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rascol, O., Fabbri, M. & Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 20, 1048–1056 (2021).Article
Rascol,O.,Fabbri,M。&Poewe,W。金刚烷胺治疗帕金森病和其他运动障碍。柳叶刀神经学。201048-1056(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Calabresi, P., Di Filippo, M., Ghiglieri, V., Tambasco, N. & Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 9, 1106–1117 (2010).Article
Calabresi,P.,Di Filippo,M.,Ghiglieri,V.,Tambasco,N。&Picconi,B。帕金森病患者左旋多巴引起的运动障碍:填补了从长凳到床边的空白。柳叶刀神经学。91106-1117(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Stephen, P. J. & Williamson, J. Drug-induced parkinsonism in the elderly. Lancet 2, 1082–1083 (1984).Article
。《柳叶刀》21082-1083(1984)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).Article
Bhaduri,A。等人。皮质类器官中的细胞应激损害分子亚型规范。自然578142-148(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiang, Y. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487–497.e7 (2019).Article
Xiang,Y。等人。hESC衍生的丘脑类器官与皮质类器官融合时形成相互投射。细胞干细胞24487-497.e7(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zafeiriou, M.-P. et al. Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat. Commun. 11, 3791 (2020).Article
Zafeiriou,M.-P.等人。生物工程神经元类器官的发育GABA极性转换和神经元可塑性。国家公社。113791(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jenner, P. & Olanow, C. W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47, S161–S170 (1996).Article
Jenner,P。&Olanow,C.W。氧化应激与帕金森病的发病机制。神经病学47,S161-S170(1996)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pamies, D. et al. Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol. Dis. 169, 105719 (2022).Article
Pamies,D。等人。人类IPSC 3D脑模型作为研究化学诱导的多巴胺能神经元毒性的工具。神经生物学。Dis。169105719(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Renner, H. et al. Cell-type-specific high throughput toxicity testing in human midbrain organoids. Front. Mol. Neurosci. 14, 715054 (2021).Article
Renner,H。等人。人类中脑类器官中细胞类型特异性高通量毒性测试。正面。分子神经科学。14715054(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dorgau, B. et al. Human retinal organoids provide a suitable tool for toxicological investigations: a comprehensive validation using drugs and compounds affecting the retina. Stem Cells Transl. Med. 11, 159–177 (2022).Article
Dorgau,B。等人。人类视网膜类器官为毒理学研究提供了合适的工具:使用影响视网膜的药物和化合物进行全面验证。干细胞翻译。医学11159-177(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katzenschlager, R. & Lees, A. J. Treatment of Parkinson’s disease: levodopa as the first choice. J. Neurol. 249(Suppl 2), II19–II24 (2002).PubMed
Katzenschlager,R。&Lees,A.J。帕金森病的治疗:左旋多巴作为首选。J、 神经病学。249(增刊2),II19–II24(2002)。PubMed出版社
Google Scholar
谷歌学者
Bronstein, J. M. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165 (2011).Article
Bronstein,J.M.等人,《帕金森病的脑深部刺激:专家共识和关键问题回顾》。。神经病学。68165(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Faggiani, E. & Benazzouz, A. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: from history to the interaction with the monoaminergic systems. Prog. Neurobiol. 151, 139–156 (2017).Article
Faggiani,E。&Benazzouz,A。帕金森病丘脑底核的脑深部刺激:从历史到与单胺能系统的相互作用。程序。神经生物学。151139-156(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, M. S., Kim, H. & Lee, G. Precision medicine in Parkinson’s disease using induced pluripotent stem cells. Adv. Healthc. Mater. e2303041 https://doi.org/10.1002/adhm.202303041 (2024).Adler, A. F. et al. hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease.
Kim,M.S.,Kim,H。&Lee,G。使用诱导多能干细胞治疗帕金森病的精准医学。健康顾问。马特。e2303041https://doi.org/10.1002/adhm.202303041(2024年)。Adler,A.F.等人。在帕金森病的临床前模型中,hESC衍生的多巴胺能移植物整合到基底神经节回路中。
Cell Rep. 28, 3462–3473.e5 (2019).Article .
Cell Rep.283462–3473.e5(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).Article
Kikuchi,T。等人。人类iPS细胞衍生的多巴胺能神经元在灵长类帕金森病模型中起作用。自然548592-596(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).Article
Mansour,A.A.等人。功能性和血管化人脑类器官的体内模型。美国国家生物技术公司。36432-441(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fiorenzano, A. et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat. Commun. 12, 7302 (2021).Article
Fiorenzano,A。等人,《单细胞转录组学》捕捉了人类中脑发育的特征和大脑类器官中多巴胺神经元的多样性。国家公社。127302(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Birtele, M. et al. Single-cell transcriptional and functional analysis of dopaminergic neurons in organoid-like cultures derived from human fetal midbrain. Development 149, dev200504 (2022).Article
Birtele,M.等人。源自人胎儿中脑的类器官培养物中多巴胺能神经元的单细胞转录和功能分析。开发149,dev200504(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Devine, M. J. et al. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun. 2, 440 (2011).Article
Devine,M.J.等人。帕金森病诱导的多能干细胞具有三倍的α-突触核蛋白基因座。国家公社。2440(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, X. et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson’s disease. Theranostics 13, 2673–2692 (2023).Article
Zheng,X。等人。在帕金森病小鼠模型中,人类iPSC衍生的中脑类器官在功能上整合到纹状体回路中并恢复运动功能。Theranostics 132673-2692(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jarazo, J. et al. Parkinson’s disease phenotypes in patient neuronal cultures and brain organoids improved by 2-hydroxypropyl-β-cyclodextrin treatment. Mov. Disord. 37, 80–94 (2022).Article
Jarazo,J。等人。通过2-羟丙基-β-环糊精治疗,患者神经元培养物和脑类器官中的帕金森病表型得到改善。莫夫。混乱。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, M. S. et al. Advanced human iPSC-based preclinical model for Parkinson’s disease with optogenetic α-synuclein aggregation. Cell Stem Cell 30, 973–986.e11 (2023).Article
Kim,M.S.等人。基于iPSC的帕金森病光遗传α-突触核蛋白聚集的先进临床前模型。细胞干细胞30973-986.e11(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shin, M. et al. Human motor system-based biohybrid robot-on-a-chip for drug evaluation of neurodegenerative disease. Adv. Sci. 11, e2305371 (2024).Article
Shin,M.等人。基于人类运动系统的生物杂交芯片机器人,用于神经退行性疾病的药物评估。。11,e2305371(2024)。文章
Google Scholar
谷歌学者
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).Article
斯温尼(Swinney,D.C.)和安东尼(Anthony,J.)是如何发现新药的?《药物目录》修订版。10507-519(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).Article
Eder,J.,Sedrani,R。&Wiesmann,C。一流药物的发现:起源和进化。《药物目录》修订版。13577-587(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gribkoff, V. K. & Kaczmarek, L. K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120, 11–19 (2017).Article
Gribkoff,V.K。&Kaczmarek,L.K。对中枢神经系统药物发现新方法的需求:为什么药物失败,以及可以做些什么来改善结果。神经药理学120,11-19(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Swalley, S. E. Expanding therapeutic opportunities for neurodegenerative diseases: a perspective on the important role of phenotypic screening. Bioorg. Med. Chem. 28, 115239 (2020).Article
Swalley,S.E。扩大神经退行性疾病的治疗机会:表型筛查重要作用的观点。生物组织医学化学。28115239(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Friese, A. et al. The convergence of stem cell technologies and phenotypic drug discovery. Cell Chem. Biol. 26, 1050–1066 (2019).Article
Friese,A.等人,《干细胞技术与表型药物发现的融合》。细胞化学。生物学261050-1066(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boussaad, I. et al. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Sci. Rep. 11, 1439 (2021).Article
Boussaad,I。等人。用于高通量药物筛选的2D和3D患者衍生细胞模型的集成,自动维护,扩展和分化。科学。第111439页(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rimann, M. & Graf-Hausner, U. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23, 803–809 (2012).Article
Rimann,M。&Graf Hausner,U。用于药物开发的合成3D多细胞系统。货币。奥平。生物技术。23803-809(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 12, 207–218 (2014).Article
Edmondson,R.,Broglie,J.J.,Adcock,A.F。&Yang,L。三维细胞培养系统及其在药物发现和基于细胞的生物传感器中的应用。测定。药物开发技术。12207-218(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Montanez-Sauri, S. I., Beebe, D. J. & Sung, K. E. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges. Cell Mol. Life Sci. 72, 237–249 (2015).Article
Montanez-Sauri,S.I.,Beebe,D.J.&Sung,K.E。3D细胞微环境的微型筛选系统:平台,进展和挑战。细胞分子生命科学。72237-249(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Grenier, K., Kao, J. & Diamandis, P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol. Psychiatry 25, 254–274 (2020).Article
Grenier,K.,Kao,J。&Diamandis,P。人类神经变性的三维建模:脑类器官的成熟。摩尔精神病学25254-274(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Babu, H. W. S., Kumar, S. M., Kaur, H., Iyer, M. & Vellingiri, B. Midbrain organoids for Parkinson’s disease (PD)—a powerful tool to understand the disease pathogenesis. Life Sci. 345, 122610 (2024).Article
Babu,H.W.S.,Kumar,S.M.,Kaur,H.,Iyer,M。&Vellingiri,B。帕金森病(PD)的中脑类器官-了解疾病发病机理的有力工具。生命科学。345122610(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kortekaas, R. et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).Article
Kortekaas,R。等人。帕金森病中脑体内血脑屏障功能障碍。安。神经病学。57176-179(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
de Rus Jacquet, A. et al. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease. Nat. Commun. 14, 3651 (2023).Article
de Rus Jacquet,A。等人。帕金森病脑芯片模型中炎性星形胶质细胞对BBB损伤的贡献。国家公社。143651(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, L. & Jiang, C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm. Sin. B 11, 2306–2325 (2021).Article
。药学学报。B 112306-2325(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).Article
Cakir,B。等人。具有功能性血管样系统的人脑类器官工程。自然方法161169-1175(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daviaud, N., Friedel, R. H. & Zou, H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5, ENEURO.0219-18.2018 (2018).Article
Daviaud,N.,Friedel,R.H。&Zou,H。血管化和移植的人脑类器官在小鼠皮层中的植入。eNeuro 5,eNeuro.0219-18.2018(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dao, L. et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 31, 818–833.e11 (2024).Article
Dao,L.等人。在人类PSC衍生的类器官中模拟血脑屏障形成和脑海绵状血管畸形。细胞干细胞31818–833.e11(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).Article
Czerniecki,S.M.等人。高通量筛选增强了人类多能干细胞的肾脏类器官分化,并实现了自动多维表型分析。细胞干细胞22929–940.e4(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ao, Z. et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal. Chem. 92, 4630–4638 (2020).Article
Ao,Z.等人。人脑类器官的一站式微流体组装,以模拟产前大麻暴露。肛门。化学。924630-4638(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).Article
Nayak,D.,Roth,T.L。和McGavern,D.B。小胶质细胞的发育和功能。年。修订版Immunol。32367-402(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).Article
Takasato,M。等人。来自人类iPS细胞的肾脏类器官包含多个谱系并模拟人类肾脏发生。《自然》526564-568(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sabate-Soler, S. et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 70, 1267–1288 (2022).Article
Sabate-Soler,S。等人。小胶质细胞整合到人类中脑类器官中导致神经元成熟和功能增加。神经胶质701267-1288(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, C., Bakker, A. D., Klein-Nulend, J. & Bravenboer, N. Studies on osteocytes in their 3D native matrix versus 2D in vitro models. Curr. Osteoporos. Rep. 17, 207–216 (2019).Article
。货币。骨质疏松症。代表17207-216(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pais, A. S. et al. The challenge of ovarian tissue culture: 2D versus 3D culture. J. Ovarian Res. 14, 147 (2021).Article
Pais,A.S.等人,《卵巢组织培养的挑战:2D与3D培养》。J、 卵巢研究14147(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marín, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J. L. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293, 872–875 (2001).Article
Marín,O.,Yaron,A.,Bagri,A.,Tessier-Lavigne,M。&Rubenstein,J.L。分选由信号素-神经毡蛋白相互作用调节的纹状体和皮质中间神经元。科学293872-875(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535–1546 (2012).Article
Kwan,K.Y.,Sestan,N。和Anton,E.S。新皮层神经元迁移和层状身份的转录共调节。发展1391535-1546(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clowry, G. J. et al. Charting the protomap of the human telencephalon. Semin Cell Dev. Biol. 76, 3–14 (2018).Article
Clowry,G.J.等人绘制了人类端脑的原型图。Semin Cell Dev.Biol。76,3-14(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).Article
Molnár,Z.等人。对人类大脑皮层发育的新见解。J、 。235432-451(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).Article
López Bendito,G。&Molnár,Z。丘脑皮层发育:我们将如何实现?神经科学杂志。4276-289(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).Article
Renner,M.等人,《大脑类器官的自组织发育模式和分化》。EMBO J.361316–1329(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).Article
Eiraku,M.等人。胚胎干细胞极化皮层组织的自组织形成及其通过外在信号的主动操纵。细胞干细胞3519-532(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Muguruma, K. et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat. Neurosci. 13, 1171–1180 (2010).Article
。自然神经科学。131171-1180(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).Article
Nakano,T.等人。人胚胎干细胞视杯和可储存分层神经视网膜的自我形成。细胞干细胞10771-785(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).Article
。程序。国家科学院。科学。美国11020284–20289(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marton, R. M. & Pașca, S. P. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 30, 133–143 (2020).Article
Marton,R.M。&Pașca,S.P。用于研究人脑发育和疾病中细胞串扰的类器官和组装体技术。趋势细胞生物学。30133-143(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Qian, X. et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13, 565–580 (2018).Article
Qian,X。等人。使用小型旋转生物反应器生成人脑区域特异性类器官。自然协议。13565-580(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dong, X. et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol. Psychiatry 26, 2964–2976 (2021).Article
Dong,X。等人。人类大脑类器官在移植后在小鼠大脑中建立皮层下投射。摩尔精神病学262964-2976(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Moriarty, N. et al. A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 29, 434–448.e5 (2022).Article
Moriarty,N。等人。使用人类多能干细胞同位重建中脑多巴胺通路的细胞和基因联合治疗方法。细胞干细胞29434–448.e5(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shrigley, S. et al. Grafts derived from an α-synuclein triplication patient mediate functional recovery but develop disease-associated pathology in the 6-OHDA model of Parkinson’s disease. J. Parkinsons Dis. 11, 515–528 (2021).Article
Shrigley,S。等人。源自α-突触核蛋白三联体患者的移植物介导功能恢复,但在帕金森病的6-OHDA模型中发展出与疾病相关的病理学。J、 帕金森病。11515-528(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).Article
Li,C.等人。单细胞脑类器官筛查可识别自闭症的发育缺陷。自然621373-380(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chiaradia, I. et al. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 30, 1351–1367.e10 (2023).Article
Chiaradia,I。等人。组织形态学影响人脑类器官发育的时间程序。细胞干细胞301351–1367.e10(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yan, Y. et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 31, 260–274.e7 (2024).Article
Yan,Y.等人。具有功能连接的人类神经组织的3D生物打印。细胞干细胞31260–274.e7(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Geng, L. et al. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson’s disease. Mol. Neurodegener. 18, 94 (2023).Article
Geng,L。等人。MLKL缺乏症可减轻帕金森病α-突触核蛋白转基因小鼠模型中的神经炎症和运动缺陷。分子神经退行性变。18,94(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hendriks, D. et al. Human fetal brain self-organizes into long-term expanding organoids. Cell 187, 712–732.e38 (2024).Article
Hendriks,D。等人。人类胎儿大脑自组织成长期扩张的类器官。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors’ work was supported by the National Natural Science Foundation of China (82271277 to C.M.), and the Innovative and Scientific and Technological Talent Training Project of Henan Province (Grant YXKC2021062 to C.M.), and the Non-profit Central Research Institute Fund of Chinses Academy of Medical Sciences (2020-PT310-01 to Y.X.).Author informationAuthor notesThese authors contributed equally: Xin Cui, Xinwei Li, Huimin Zheng, Yun Su.Authors and AffiliationsDepartment of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, ChinaXin Cui, Xinwei Li, Huimin Zheng, Yun Su, Shuyu Zhang, Mengjie Li, Xiaoyan Hao, Shuo Zhang, Zhengwei Hu, Zongping Xia, Changhe Shi, Yuming Xu & Chengyuan MaoAcademy of Medical Sciences of Zhengzhou University, Zhengzhou, ChinaXin Cui, Xinwei Li, Shuo Zhang & Zhengwei HuHenan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, ChinaXin Cui, Xinwei Li, Huimin Zheng, Yun Su, Mengjie Li, Xiaoyan Hao, Shuo Zhang, Zhengwei Hu, Zongping Xia, Changhe Shi, Yuming Xu & Chengyuan MaoNeuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaShuyu ZhangClinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, ChinaZongping XiaInstitute of Neuroscience, Zhengzhou University, Zhengzhou, ChinaChanghe Shi & Yuming XuAuthorsXin CuiView author publicationsYou can also search for this author in.
下载参考文献致谢作者的工作得到了国家自然科学基金(82271277至C.M.)和河南省创新科技人才培养项目(YXKC2021062至C.M.)以及中国医学科学院非营利性中央研究所基金(2020-PT310-01至Y.X.)的支持。作者信息作者注意到这些作者做出了同样的贡献:崔欣,李新伟,郑惠民,苏云。作者和所属单位郑州大学第一附属医院神经内科,郑州,中国崔欣,李新伟,郑惠民,苏云,张舒宇,李孟杰,郝晓燕,张硕,胡正伟,夏宗平,石昌河,徐玉明,程源毛泽东郑州大学医学科学院,郑州,崔欣,李新伟,张硕,胡正伟河南脑血管疾病重点实验室,郑州大学第一附属医院,郑州大学,崔新新,崔新伟,张硕,胡正伟,河南省脑血管疾病重点实验室,郑州大学,郑州,崔新新,崔新新,郑新民,郑新民,郑新民,郑新民,郑新民,郑新民,郑新民,郑,中国郑州大学夏宗平神经科学研究所,郑州,中国常河市和徐玉明作者Xin CuiView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarXinwei LiView author publicationsYou can also search for this author in
PubMed Google ScholarXinwei LiView作者出版物您也可以在
PubMed Google ScholarHuimin ZhengView author publicationsYou can also search for this author in
PubMed谷歌学者郑惠民查看作者出版物您也可以在
PubMed Google ScholarYun SuView author publicationsYou can also search for this author in
PubMed Google ScholarYun SuView作者出版物您也可以在
PubMed Google ScholarShuyu ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarShuyu ZhangView作者出版物您也可以在
PubMed Google ScholarMengjie LiView author publicationsYou can also search for this author in
PubMed Google Scholarmangjie LiView作者出版物您也可以在
PubMed Google ScholarXiaoyan HaoView author publicationsYou can also search for this author in
PubMed Google ScholarXiaoyan HaoView作者出版物您也可以在
PubMed Google ScholarShuo ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarShuo ZhangView作者出版物您也可以在
PubMed Google ScholarZhengwei HuView author publicationsYou can also search for this author in
PubMed谷歌学者郑伟HuView作者出版物您也可以在
PubMed Google ScholarZongping XiaView author publicationsYou can also search for this author in
PubMed Google ScholarZongping XiaView作者出版物您也可以在
PubMed Google ScholarChanghe ShiView author publicationsYou can also search for this author in
PubMed Google ScholarChanghe ShiView作者出版物您也可以在
PubMed Google ScholarYuming XuView author publicationsYou can also search for this author in
PubMed Google ScholarYuming XuView作者出版物您也可以在
PubMed Google ScholarChengyuan MaoView author publicationsYou can also search for this author in
PubMed谷歌学术城苑茂景作者出版物您也可以在中搜索该作者。的信息。的研究报告中找到该作者。的信息。的研究报告。的研究报告中的信息。的研究报告中的信息。的研究报告中的信息,以及在该研究报告中的信息,以及在该研究
PubMed Google ScholarContributionsXin Cui, Xinwei Li, Huimin Zheng and Yun Su drafted and revised of the manuscript for content, including medical writing for the content. Changhe Shi, Shuyu Zhang, Mengjie Li, Xiaoyan Hao, Shuo Zhang, Zhengwei Hu, Zongping Xia and Changhe Shi assembled and edited the figures and tables.
PubMed谷歌学术贡献Xin Cui,Xinwei Li,Huimin Zheng和Yun Su起草并修订了手稿的内容,包括内容的医学写作。石昌和、张淑玉、李梦洁、郝晓燕、张硕、胡正伟、夏宗平和石昌和组装并编辑了这些数字和表格。
Chengyuan Mao and Yuming Xu conceived the manuscript.Corresponding authorsCorrespondence to.
毛承元和徐玉明构思了手稿。通讯作者通讯。
Yuming Xu or Chengyuan Mao.Ethics declarations
徐玉明或毛成元。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleCui, X., Li, X., Zheng, H. et al. Human midbrain organoids: a powerful tool for advanced Parkinson’s disease modeling and therapy exploration.
转载和许可本文引用本文Cui,X.,Li,X.,Zheng,H。等人。人类中脑类器官:用于晚期帕金森病建模和治疗探索的有力工具。
npj Parkinsons Dis. 10, 189 (2024). https://doi.org/10.1038/s41531-024-00799-8Download citationReceived: 06 January 2023Accepted: 02 October 2024Published: 20 October 2024DOI: https://doi.org/10.1038/s41531-024-00799-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj帕金森病。10189(2024)。https://doi.org/10.1038/s41531-024-00799-8Download引文收到日期:2023年1月6日接受日期:2024年10月2日发布日期:2024年10月20日OI:https://doi.org/10.1038/s41531-024-00799-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供