商务合作
动脉网APP
可切换为仅中文
AbstractBridging the gap between genotype and phenotype in GWAS studies is challenging. A multitude of genetic variants have been associated with immune-related diseases, including cancer, yet the interpretability of most variants remains low. Here, we investigate the quantitative components in the T cell receptor (TCR) repertoire, the frequency of clusters of TCR sequences predicted to have common antigen specificity, to interpret the genetic associations of diverse human diseases.
摘要弥合GWAS研究中基因型和表型之间的差距具有挑战性。许多遗传变异与包括癌症在内的免疫相关疾病有关,但大多数变异的可解释性仍然很低。在这里,我们研究了T细胞受体(TCR)库中的定量成分,即预测具有共同抗原特异性的TCR序列簇的频率,以解释多种人类疾病的遗传关联。
We first developed a statistical model to predict the TCR components using variants in the TRB and HLA loci. Applying this model to over 300,000 individuals in the UK Biobank data, we identified 2309 associations between TCR abundances and various immune diseases. TCR clusters predicted to be pathogenic for autoimmune diseases were significantly enriched for predicted autoantigen-specificity.
我们首先开发了一个统计模型,以使用TRB和HLA基因座中的变体预测TCR成分。将该模型应用于英国生物库数据中的300000多个人,我们确定了TCR丰度与各种免疫疾病之间的2309个关联。预测对自身免疫性疾病具有致病性的TCR簇显着富集了预测的自身抗原特异性。
Moreover, four TCR clusters were associated with better outcomes in distinct cancers, where conventional GWAS cannot identify any significant locus. Collectively, our results highlight the integral role of adaptive immune responses in explaining the associations between genotype and phenotype..
此外,四个TCR集群与不同癌症的更好结果相关,传统的GWAS无法识别任何重要的基因座。总的来说,我们的结果突出了适应性免疫反应在解释基因型和表型之间的关联中的不可或缺的作用。。
IntroductionGenome-wide association studies (GWAS) have successfully identified numerous genetic variants linked to autoimmune diseases and cancers1,2. However, the mechanisms underlying these associations remain largely obscure3. Identification of disease-associated genes and cellular processes have partially explained disease etiology4,5,6,7, and immune phenotypes, such as immune cell proportion and cytokine production, also provided mechanistic insights into some diseases8,9.
引言全基因组关联研究(GWAS)已成功鉴定出许多与自身免疫性疾病和癌症相关的遗传变异1,2。然而,这些关联背后的机制在很大程度上仍然不清楚3。疾病相关基因和细胞过程的鉴定部分解释了疾病的病因4,5,6,7,免疫表型,如免疫细胞比例和细胞因子产生,也为某些疾病提供了机制见解8,9。
However, direct associations between the T cell receptor (TCR) repertoire, a critical component in the immune system, remain insufficiently explored. The TCR is pivotal in adaptive immune response10,11, as it recognizes antigen epitopes bounded by the human leukocyte antigen (HLA) molecule, which is encoded by the major histocompatibility complex (MHC) locus in Chromosome 6.
然而,T细胞受体(TCR)库(免疫系统的关键组成部分)之间的直接关联仍未得到充分探索。TCR在适应性免疫反应中至关重要10,11,因为它识别由人类白细胞抗原(HLA)分子结合的抗原表位,该分子由6号染色体上的主要组织相容性复合体(MHC)基因座编码。
T cells participate in a wide spectrum of human diseases, including autoimmune diseases, cancers, and infectious diseases12. Therefore, understanding the genetic influence of TCR repertoire will provide insights into the disease susceptibility, etiology and clinical outcome in the general population.
。因此,了解TCR库的遗传影响将为普通人群的疾病易感性,病因和临床结果提供见解。
Genetic variants influencing TCR sequence generation have been identified13,14,15,16, setting the stage to investigate the impact of these genotype-TCR associations on disease predisposition.A recent study provided genetic evidence supporting the hypothesis that HLA risk alleles shape T cell repertoire during thymic selection15.
。最近的一项研究提供了遗传证据,支持HLA风险等位基因在胸腺选择过程中形成T细胞库的假设15。
However, their association analysis was limited to three autoimmune diseases (celiac disease (CD), type 1 diabetes (T1D), and rheumatoid arthritis (RA)), without covering the effects in other diseases. Besides, they examined only known autoimmune risk variants, whereas TCR repertoires could be influenced.
然而,他们的关联分析仅限于三种自身免疫性疾病(乳糜泻(CD),1型糖尿病(T1D)和类风湿性关节炎(RA)),而没有涵盖其他疾病的影响。此外,他们仅检查了已知的自身免疫风险变异,而TCR库可能会受到影响。
Data availability
数据可用性
Raw data analyzed in this study are available at the following locations: dbGaP: phs001442, phs001918; ImmuneAccess database: https://doi.org/10.21417/B7001Z, https://doi.org/10.21417/B7H01M, https://doi.org/10.21417/B7C88S, https://doi.org/10.21417/LWL2022JCP. Access to UK Biobank individual-level data can be requested from https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
本研究中分析的原始数据可在以下位置获得:dbGaP:phs001442,phs001918;ImmuneAccess数据库:https://doi.org/10.21417/B7001Z,https://doi.org/10.21417/B7H01M,https://doi.org/10.21417/B7C88S,https://doi.org/10.21417/LWL2022JCP.访问英国生物库个人层面的数据可以从https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
The weights of the lasso models are deposited at GitHub: https://github.com/YuhaoTan2/RfuWAS/blob/main/models/lasso_weights_tsv.zip..
套索模型的权重存放在GitHub:https://github.com/YuhaoTan2/RfuWAS/blob/main/models/lasso_weights_tsv.zip..
Code availability
代码可用性
All code used in the study is available at https://github.com/YuhaoTan2/RfuWAS and deposit at Zenodo (https://doi.org/10.5281/zenodo.13646450)68. Other software used includes TRUST4; GRAF-pop 1.0 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetZip.cgi?zip_name=GrafPop1.0.tar.gz); plink 2.0 (https://www.cog-genomics.org/plink/2.0/); Michigan Imputation Server 1.2.4 (https://imputationserver.sph.umich.edu/index.html#!); PEER 1.3 (https://github.com/PMBio/peer.git); GCTA 1.94.1 (https://yanglab.westlake.edu.cn/software/gcta/bin/gcta-1.94.1-linux-kernel-3-x86_64.zip); CreateUKBphenome (https://github.com/umich-cphds/createUKBphenome); MatrixEQTL 2.3 (https://cran.r-project.org/web/packages/MatrixEQTL/index.html); PrediXcan 0.6.11 (https://github.com/hakyimlab/MetaXcan); GSEA 4.3.2 (https://www.gsea-msigdb.org/gsea/index.jsp); EnrichmentMap 3.3.5 (https://enrichmentmap.readthedocs.io/en/latest/); AutoAnnotate 1.4 (https://autoannotate.readthedocs.io/en/latest/)..
研究中使用的所有代码均可在https://github.com/YuhaoTan2/RfuWAS并在Zenodo存款(https://doi.org/10.5281/zenodo.13646450)68、使用的其他软件包括TRUST4;GRAF pop 1.0(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetZip.cgi?zip_name=GrafPop1.0.tar.gz);plink 2.0(https://www.cog-genomics.org/plink/2.0/);密歇根插补服务器1.2.4(https://imputationserver.sph.umich.edu/index.html#!);同行1.3(https://github.com/PMBio/peer.git);GCTA 1.94.1(https://yanglab.westlake.edu.cn/software/gcta/bin/gcta-1.94.1-linux-kernel-3-x86_64.zip);创建UKBphenome(https://github.com/umich-cphds/createUKBphenome);(https://cran.r-project.org/web/packages/MatrixEQTL/index.html);PrediXcan 0.6.11(https://github.com/hakyimlab/MetaXcan);GSEA 4.3.2(https://www.gsea-msigdb.org/gsea/index.jsp);富集图3.3.5(https://enrichmentmap.readthedocs.io/en/latest/);自动注释1.4(https://autoannotate.readthedocs.io/en/latest/)。。
ReferencesSollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2022).Article
参考Sollis,E。等人,《NHGRI-EBI GWAS目录:知识库和沉积资源》。核酸研究51,D977–D985(2022)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smith, J. C. & Sheltzer, J. M. Genome-wide identification and analysis of prognostic features in human cancers. Cell Rep. 38, 110569 (2022).Article
Smith,J.C。&Sheltzer,J.M。全基因组鉴定和分析人类癌症的预后特征。Cell Rep.38110569(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sakaue, S. et al. Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease. Nat. Protoc. 18, 2625–2641 (2023).Article
Sakaue,S.等人的教程:识别驱动复杂疾病的HLA等位基因的统计遗传学指南。自然协议。182625-2641(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).Article
Wainberg,M.等人。转录组关联研究的机遇和挑战。纳特·吉内特。51592-599(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).Article
Jagadeesh,K.A.等人。通过整合单细胞RNA测序和人类遗传学来鉴定疾病关键细胞类型和细胞过程。纳特·吉内特。541479-1492(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–1875 (2023).Article
Mostafavi,H.,Spence,J.P.,Naqvi,S。&Pritchard,J.K。发现基因表达和复杂性状遗传效应的系统差异。纳特·吉内特。551866-1875(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).Article
Yao,D.W.,O'Connor,L.J.,Price,A.L。&Gusev,A。量化由测定的基因表达水平介导的疾病的遗传效应。纳特·吉内特。52626-633(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orrù, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).Article
Orrù,V。等人。调节健康和疾病中免疫细胞水平的遗传变异。细胞155242-256(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lagou, V. et al. Genetic architecture of adaptive immune system identifies key immune regulators. Cell Rep. 25, 798–810.e796 (2018).Article
适应性免疫系统的遗传结构确定了关键的免疫调节剂。Cell Rep.25798–810.e796(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mazzotti, L. et al. T-cell receptor Repertoire sequencing and its applications: focus on infectious diseases and cancer. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23158590 (2022).Lagattuta, K. A. et al. Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate.
Mazzotti,L。等。T细胞受体库测序及其应用:关注传染病和癌症。Int.J.Mol.Sci。23年,https://doi.org/10.3390/ijms23158590(2022年)。Lagattuta,K.A。等人的曲目分析揭示了影响T细胞命运的T细胞抗原受体序列特征。
Nat. Immunol. 23, 446–457 (2022).Article .
自然免疫。23446-457(2022)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 8, 235 (2023).Article
Sun,L.,Su,Y.,Jiao,A.,Wang,X。&Zhang,B。T细胞在健康和疾病中的作用。信号传输管。目标。他们。8235(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Russell, M. L. et al. Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities. eLife 11, e73475 (2022).Article
Russell,M.L.等人结合基因型和T细胞受体分布来推断决定V(D)J重组概率的遗传基因座。eLife 11,e73475(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).Article
Sharon,E。等人。MHC蛋白的遗传变异与T细胞受体表达偏倚有关。纳特·吉内特。48995-1002(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ishigaki, K. et al. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 54, 393–402 (2022).Article
Ishigaki,K。等人。HLA自身免疫风险等位基因限制T细胞受体的高变区。纳特·吉内特。54393-402(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DeWitt, W. S. III et al. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. eLife 7, e38358 (2018).Article
DeWitt,W.S.III等人。人类T细胞受体的发生模式编码免疫史,遗传背景和受体特异性。eLife 7,e38358(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, X. et al. Quantifiable TCR repertoire changes in prediagnostic blood specimens among patients with high-grade ovarian cancer. Cell Rep. Med. 5, https://doi.org/10.1016/j.xcrm.2024.101612 (2024).Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).Article .
Yu,X。等人。高级别卵巢癌患者诊断前血液标本中可量化的TCR谱变化。细胞代表医学5,https://doi.org/10.1016/j.xcrm.2024.101612(2024年)。Bycroft,C。等人。具有深度表型和基因组数据的英国生物库资源。自然562203-209(2018)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, H.-S. et al. Biomarker discovery study design for type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Diabetes/Metab. Res. Rev. 30, 424–434 (2014).Article
Lee,H.-S.等人,《青年糖尿病环境决定因素中1型糖尿病的生物标志物发现研究设计》(TEDDY)研究。糖尿病/代谢。第30424–434号决议(2014年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).Article
Song,L。等人。TRUST4:从大量和单细胞RNA-seq数据重建免疫库。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Genolet, R. et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. Cell Rep. Methods 3, 100459 (2023).Article
Genolet,R。等人。用于库分析和分离肿瘤反应性TCR的TCR测序和克隆方法。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Consortium, T. G. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article
Consortium,T.G.等人,《GTEx Consortium atlas of genetic Regulation effects over human Tissue》。科学3691318-1330(2020)。文章
Google Scholar
谷歌学者
Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).Article
Stegle,O.,Parts,L.,Piipari,M.,Winn,J。&Durbin,R。使用表达残差的概率估计(PEER)来获得基因表达分析的增强能力和可解释性。自然协议。7500–507(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manso, T. et al. IMGT® databases, related tools and web resources through three main axes of research and development. Nucleic Acids Res. 50, D1262–D1272 (2021).Article
Manso,T.等人。IMGT®数据库,相关工具和网络资源,通过研究和开发的三个主轴。核酸研究50,D1262–D1272(2021)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, X. et al. Inactivation of NuRD component Mta2 causes abnormal T cell activation and lupus-like autoimmune disease in mice. J. Biol. Chem. 283, 13825–13833 (2008).Article
Lu,X。等人。NuRD成分Mta2的失活会导致小鼠T细胞异常活化和狼疮样自身免疫性疾病。J、 生物。化学。28313825–13833(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, X. et al. MTA2/NuRD regulates B cell development and cooperates with OCA-B in controlling the Pre-B to immature B cell transition. Cell Rep. 28, 472–485.e475 (2019).Article
Lu,X。等人,MTA2/NuRD调节B细胞发育,并与OCA-B合作控制前B细胞向未成熟B细胞的转变。Cell Rep.28472–485.e475(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cader, F. Z. et al. A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat. Med. 26, 1468–1479 (2020).Article
Cader,F.Z.等人。经典霍奇金淋巴瘤患者对PD-1阻断反应的外周免疫特征。《自然医学》261468-1479(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emerson, R. et al. Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data. J. Immunol. Methods 391, 14–21 (2013).Article
Emerson,R.等人使用高通量序列数据估计CD4+与CD8+T细胞的比例。J、 免疫。方法391,14-21(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Emerson, R. O. et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49, 659–665 (2017).Article
Emerson,R.O.等人的免疫测序鉴定了巨细胞病毒暴露史的特征和HLA介导的对T细胞库的影响。纳特·吉内特。49659-665(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).Article
Yang,J.,Lee,S.H.,Goddard,M.E。和Visscher,P.M.GCTA:全基因组复杂性状分析的工具。上午J。嗯。Genet。88,76-82(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).Article
Gamazon,E.R.等人。一种基于基因的关联方法,用于使用参考转录组数据绘制性状。纳特·吉内特。471091-1098(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gomez-Tourino, I., Kamra, Y., Baptista, R., Lorenc, A. & Peakman, M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat. Commun. 8, 1792 (2017).Article
Gomez-Tourino,I.,Kamra,Y.,Baptista,R.,Lorenc,A。&Peakman,M。T细胞受体β链在1型糖尿病中显示异常缩短和曲目共享。国家公社。81792(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rubelt, F. et al. Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells. Nat. Commun. 7, 11112 (2016).Article
Rubelt,F。等人。个体遗传差异导致幼稚和抗原经历细胞的独特细胞淋巴细胞受体库。国家公社。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin, A. & Davies, T. F. T cells and human autoimmune thyroid disease: emerging data show lack of need to invoke suppressor T cell problems. Thyroid 2, 247–261 (1992).Article
Martin,A.&Davies,T.F.T细胞与人类自身免疫性甲状腺疾病:新出现的数据表明,不需要引起抑制性T细胞问题。甲状腺2247-261(1992)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bowlus, C. L. The role of iron in T cell development and autoimmunity. Autoimmun. Rev. 2, 73–78 (2003).Article
Bowlus,C.L。铁在T细胞发育和自身免疫中的作用。自身免疫。第2版,73-78(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. medRxiv, 2024.2003.2013.24303864, https://doi.org/10.1101/2024.03.13.24303864 (2024).Zhu, C. et al. Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire.
Karczewski,K.J.等人,Pan UK Biobank GWAS改进了发现,遗传结构分析以及祖先富集效应的解析。medRxiv,2024.2003.2013.24303864,https://doi.org/10.1101/2024.03.13.24303864(2024年)。Zhu,C.等人。草酸钙结晶引起的肾损伤导致肾内T细胞受体δ免疫库的重排。
J. Transl. Med. 17, 278 (2019).Article .
J.Transl。与17278(2019)。文章联盟。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017).Article
Tickotsky,N.,Sagiv,T.,Prilusky,J.,Shifrat,E。&Friedman,N。McPAS TCR:手动策划的病理学相关T细胞受体序列目录。生物信息学332924-2929(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, L. W. et al. Characterisation of T cell receptor repertoires in coeliac disease. J. Clin. Pathol., jcp-2022-208541, https://doi.org/10.1136/jcp-2022-208541 (2022).Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival.
Lee,L.W.等人。乳糜泻中T细胞受体库的表征。J、 。病理学。,jcp-2022-208541,https://doi.org/10.1136/jcp-2022-208541(2022年)。Valpione,S。等人。肿瘤浸润性T细胞的T细胞受体库对癌症存活具有预测和预后作用。
Nat. Commun. 12, 4098 (2021).Article .
Nat.普通。124098(2021)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aran, A., Garrigós, L., Curigliano, G., Cortés, J. & Martí, M. Evaluation of the TCR Repertoire as a predictive and prognostic biomarker in cancer: diversity or clonality? Cancers 14, https://doi.org/10.3390/cancers14071771 (2022).Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci.
Aran,A.,Garrigós,L.,Curigliano,G.,Cortés,J.&Martí,M.评估TCR库作为癌症的预测和预后生物标志物:多样性还是克隆性?癌症14,https://doi.org/10.3390/cancers14071771(2022年)。Barbeira,A.N.等人利用GTEx资源破译GWAS基因座的机制。
Genome Biol. 22, 49 (2021).Article .
基因组生物学。22,49(2021)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roca, A. M., Chobrutskiy, B. I., Callahan, B. M. & Blanck, G. T-cell receptor V and J usage paired with specific HLA alleles associates with distinct cervical cancer survival rates. Hum. Immunol. 80, 237–242 (2019).Article
。嗯,免疫。80237-242(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Callahan, B. M., Tong, W. L. & Blanck, G. T cell receptor-β J usage, in combination with particular HLA class II alleles, correlates with better cancer survival rates. Immunol. Res. 66, 219–223 (2018).Article
Callahan,B.M.,Tong,W.L。&Blanck,G。T细胞受体-βJ的使用与特定的HLA II类等位基因相结合,与更好的癌症存活率相关。免疫。第66219-223号决议(2018年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).Article
Yarchoan,M.,Johnson,B.A.,Lutz,E.R.,Laheru,D.A。&Jaffee,E.M。靶向新抗原以增强抗肿瘤免疫力。《自然评论》癌症17209-222(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).Article
Li,T。等人。用于分析肿瘤浸润性免疫细胞的TIMER2.0。核酸研究48,W509–W514(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goncharov, M. et al. VDJdb in the pandemic era: a compendium of T cell receptors specific for SARS-CoV-2. Nat. Methods 19, 1017–1019 (2022).Article
Goncharov,M.等人,《大流行时代的VDJdb:SARS-CoV-2特异性T细胞受体概要》。自然方法191017-1019(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yamamoto, S. et al. Clinicopathological significance of WT1 expression in ovarian cancer: a possible accelerator of tumor progression in serous adenocarcinoma. Virchows Arch. 451, 27–35 (2007).Article
Yamamoto,S.等。WT1在卵巢癌中表达的临床病理学意义:浆液性腺癌肿瘤进展的可能加速因素。Virchows拱门。451,27-35(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Taube, E. T. et al. Wilms tumor protein 1 (WT1)- not only a diagnostic but also a prognostic marker in high-grade serous ovarian carcinoma. Gynecol. Oncol. 140, 494–502 (2016).Article
Taube,E.T.等人。Wilms肿瘤蛋白1(WT1)-不仅是高度浆液性卵巢癌的诊断指标,也是预后指标。妇科。Oncol公司。140494-502(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. 102, 15545–15550 (2005).Article
Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。10215545-15550(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Madi, A. et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 6, e22057 (2017).Article
Madi,A。等人。小鼠和人类的T细胞受体库聚集在保守的公共CDR3序列周围的相似网络中。eLife 6,e22057(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. Investigation of antigen-specific T-cell receptor clusters in human cancers. Clin. Cancer Res. 26, 1359–1371 (2020).Article
Zhang,H。等人。人类癌症中抗原特异性T细胞受体簇的研究。临床。癌症研究261359-1371(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, H., Zhan, X. & Li, B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat. Commun. 12, 4699 (2021).Article
Zhang,H.,Zhan,X。&Li,B。GIANA允许通过等距变换进行计算有效的TCR聚类和多疾病库分类。国家公社。124699(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).Article
Gusev,A。等人。大规模转录组关联研究的综合方法。纳特·吉内特。48245-252(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Omer, A. et al. T cell receptor beta germline variability is revealed by inference from repertoire data. Genome Med. 14, 2 (2022).Article
Omer,A。等人。通过从曲目数据推断,揭示了T细胞受体β种系的变异性。基因组医学14,2(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Inocencio, J., Choi, E., Glass, D. N. & Hirsch, R. T cell receptor repertoire differences between African Americans and Caucasians associated with polymorphism of the TCRBV3S1 (V beta 3.1) gene. J. Immunol. 154, 4836–4841 (1995).Article
De Inocencio,J.,Choi,E.,Glass,D.N。和Hirsch,R。非裔美国人和高加索人之间的T细胞受体库差异与TCRBV3S1(V beta 3.1)基因的多态性有关。J、 免疫。1544836-4841(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: A fast distance-based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3 9, sd–2461 (2019).Das, S. et al. Next-generation genotype imputation service and methods.
Jin,Y.,Schaffer,A.A.,Feolo,M.,Holmes,J.B。&Kattman,B.L。GRAF-pop:一种基于距离的快速方法,可从多个基因型数据集中推断受试者血统,无需主成分分析。G3 9,sd–2461(2019)。Das,S.等人,《下一代基因型插补服务和方法》。
Nat. Genet. 48, 1284–1287 (2016).Article .
Nat.Genet。48, 1284–1287 (2016).第[UNK]条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat. Genet. 53, sdf–1516 (2021).
Luo,Y。等人。一个捕获全球人口多样性的高分辨率HLA参考小组可以在HIV宿主反应中进行多血统精细定位。纳特·吉内特。53,sdf–1516(2021)。
Google Scholar
谷歌学者
Martin, P. J. et al. Recipient and donor genetic variants associated with mortality after allogeneic hematopoietic cell transplantation. Blood Adv. 4, 3224–3233 (2020).Article
Martin,P.J.等人。受体和供体遗传变异与异基因造血细胞移植后的死亡率相关。血液杂志43224-3233(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to Phecodes: Workflow development and initial evaluation. JMIR Med Inf. 7, sd (2019).
Wu,P.等人。将ICD-10和ICD-10-CM代码映射到Phecodes:工作流程开发和初步评估。JMIR Med Inf.7,sd(2019)。
Google Scholar
谷歌学者
Nelson, R. W. et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42, sfd–107 (2015).Article
Nelson,R.W.等人。类似外源肽和自身肽之间的T细胞受体交叉反应影响幼稚细胞群大小和自身免疫。豁免42,sfd–107(2015)。文章
Google Scholar
谷歌学者
Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).Article
Shabalin,A.A。矩阵eQTL:通过大型矩阵运算进行超快速eQTL分析。生物信息学281353-1358(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).Article
McLaren,W。等人。ensembl变异效应预测因子。基因组生物学。17122(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giudicelli, V., Brochet, X. & Lefranc, M. P. IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb. Protoc. 2011, 695–715 (2011).PubMed
Giudicelli,V.,Brochet,X。&Lefranc,M.P。IMGT/V-QUEST:免疫球蛋白(IG)和T细胞受体(TR)核苷酸序列的IMGT标准化分析。冷泉兔。普罗托克。2011695-715(2011)。PubMed出版社
Google Scholar
谷歌学者
Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2022).Article
Martin,F.J.等人,Ensembl 2023。核酸研究51,D933-D941(2022)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reimand, J. et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14, 482–517 (2019).Article
Reimand,J.等人。使用g:Profiler,GSEA,Cytoscape和EnrichmentMap对组学数据进行通路富集分析和可视化。自然协议。14482-517(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, Y. The code repo for “Interpretable GWAS by linking clinical phenotypes to quantifiable immune repertoire components”. Zenodo, https://doi.org/10.5281/zenodo.13646450 (2024).Download referencesAcknowledgementsThis work is supported by NCI R01 CA258524 (B.L.), CA245318 (B.L.), NIAID U01 AI169298 (X.Z.), R01 AI174108 (D.J.L.), U01 AI185638 (D.J.L.), and NHGRI R01 HG011035 (D.J.L.).
Tan,Y.“通过将临床表型与可量化的免疫库成分联系起来来解释GWAS”的代码repo。泽诺多,https://doi.org/10.5281/zenodo.13646450(2024年)。下载参考文献致谢这项工作得到了NCI R01 CA258524(B.L.),CA245318(B.L.),NIAID U01 AI169298(X.Z.),R01 AI174108(D.J.L.),U01 AI185638(D.J.L.)和NHGRI R01 HG011035(D.J.L.)的支持。
We acknowledge Philip Bradley for discussion on the project.Author informationAuthor notesThese authors jointly supervised this work: Dajiang J. Liu, Xiaowei Zhan, Bo Li.Authors and AffiliationsGraduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USAYuhao Tan & Bo LiCenter for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USAYuhao Tan, Hongyi Zhang, Mingyao Pan & Bo LiDepartment of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USAYuhao Tan, Hongyi Zhang, Mingyao Pan & Bo LiInstitute for Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USALida Wang & Dajiang J.
我们感谢菲利普·布拉德利对该项目的讨论。作者信息作者注意到这些作者共同监督了这项工作:刘大江J.刘,詹晓伟,李波。作者和附属机构宾夕法尼亚大学佩雷尔曼医学院基因组学和计算生物学研究生组,宾夕法尼亚州费城,19104年,美国宾夕法尼亚州费城儿童医院计算和基因组医学许可中心,宾夕法尼亚州费城,美国宾夕法尼亚大学病理学和检验医学系宾夕法尼亚州立大学,宾夕法尼亚州赫尔希,USALida Wang和Dajiang J。
LiuQuantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USAXiaowei ZhanAuthorsYuhao TanView author publicationsYou can also search for this author in.
美国德克萨斯州达拉斯德克萨斯大学西南医学中心Peter O'Donnell公共卫生学院LiuQuantitative生物医学研究中心詹晓伟作者余浩TanView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarLida WangView author publicationsYou can also search for this author in
PubMed Google ScholarLida WangView作者出版物您也可以在
PubMed Google ScholarHongyi ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张宏毅查看作者出版物您也可以在
PubMed Google ScholarMingyao PanView author publicationsYou can also search for this author in
PubMed Google ScholarmamingYao PanView作者出版物您也可以在
PubMed Google ScholarDajiang J. LiuView author publicationsYou can also search for this author in
PubMed Google ScholarDajiang J.LiuView作者出版物您也可以在
PubMed Google ScholarXiaowei ZhanView author publicationsYou can also search for this author in
PubMed Google ScholarXiaowei ZhanView作者出版物您也可以在
PubMed Google ScholarBo LiView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsB.L., X. Z., D.J.L., and Y.T. conceived the project. Y.T. developed the framework and performed analysis. L.W., H.Z., M.P., B.L., X. Z., and D.J.L. helped with data interpretation. B.L., X.Z., D.J.L., and Y.T. facilitated dataset access. Y.T., B.L., X.Z., and D.J.L.
PubMed谷歌学术贡献b。五十、 ,X.Z.,D.J.L。和Y.T.构思了这个项目。Y、 T.开发了框架并进行了分析。五十、 W.,H.Z.,M.P.,B.L.,X.Z。和D.J.L.帮助进行数据解释。B、 L.,X.Z.,D.J.L。和Y.T.促进了数据集访问。Y、 T.,B.L.,X.Z。和D.J.L。
prepared the manuscript. B.L., X.Z., and D.J.L. supervised the study.Corresponding authorsCorrespondence to.
准备了手稿。B、 。通讯作者通讯。
Dajiang J. Liu, Xiaowei Zhan or Bo Li.Ethics declarations
刘大江,詹晓伟或李波。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Peer review
同行评审
Peer review information
同行评审信息
Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Isabela Pedroza-Pacheco and Christina Karlsson Rosenthal. A peer review file is available.
通信生物学感谢匿名审稿人对这项工作的同行评审所做的贡献。主要处理编辑:Isabela Pedroza Pacheco和Christina Karlsson Rosenthal。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationPeer Review FileSupplementary InformationDescription of Additional Supplementary MaterialsSupplementary DataReporting SummaryRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息同行评审文件补充信息其他补充材料的描述补充数据报告摘要权利和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleTan, Y., Wang, L., Zhang, H. et al. Interpretable GWAS by linking clinical phenotypes to quantifiable immune repertoire components.
。
Commun Biol 7, 1357 (2024). https://doi.org/10.1038/s42003-024-07010-xDownload citationReceived: 18 March 2024Accepted: 03 October 2024Published: 20 October 2024DOI: https://doi.org/10.1038/s42003-024-07010-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Commun Biol 71357(2024)。https://doi.org/10.1038/s42003-024-07010-xDownloadhttps://doi.org/10.1038/s42003-024-07010-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供