商务合作
动脉网APP
可切换为仅中文
AbstractIn the canonical genetic code, the 61 sense codons are assigned to the 20 proteinogenic amino acids. Advancements in genetic code manipulation techniques have enabled the ribosomal incorporation of nonproteinogenic amino acids (npAAs). The critical molecule for translating messenger RNA (mRNA) into peptide sequences is aminoacyl-transfer RNA (tRNA), which recognizes the mRNA codon through its anticodon.
摘要在经典遗传密码中,61个有义密码子被分配给20个蛋白质氨基酸。遗传密码操作技术的进步使得非蛋白原氨基酸(npAAs)的核糖体掺入成为可能。将信使RNA(mRNA)翻译成肽序列的关键分子是氨酰基转移RNA(tRNA),它通过其反密码子识别mRNA密码子。
Because aminoacyl-tRNA synthetases (ARSs) are highly specific for their respective amino acid–tRNA pairs, it is not feasible to use natural ARSs to prepare npAA-tRNAs. However, flexizymes are adaptable aminoacylation ribozymes that can be used to prepare diverse aminoacyl-tRNAs at will using amino acids activated with suitable leaving groups.
由于氨酰基-tRNA合成酶(ARS)对其各自的氨基酸-tRNA对具有高度特异性,因此使用天然ARS制备npAA-tRNA是不可行的。然而,flexizymes是适应性氨基酰化核酶,可用于使用用合适的离去基团激活的氨基酸随意制备多种氨酰基tRNA。
Regarding recognition elements, flexizymes require only an aromatic ring in either the leaving group or side chain of the activated amino acid, and the conserved 3′-end CCA of the tRNA. Therefore, flexizymes allow virtually any amino acid to be charged onto any tRNA. The flexizyme system can handle not only l-α-amino acids with side chain modifications but also various backbone-modified npAAs.
关于识别元件,flexizymes只需要在活化氨基酸的离去基团或侧链上有一个芳香环,以及tRNA的保守3'端CCA。因此,flexizymes几乎可以将任何氨基酸带到任何tRNA上。flexizyme系统不仅可以处理具有侧链修饰的l-α氨基酸,还可以处理各种骨架修饰的npAAs。
This Review describes the development of flexizyme variants and discusses their structure and mechanism and their applications in genetic code reprogramming for the synthesis of unique peptides and proteins..
这篇综述描述了flexizyme变体的发展,并讨论了它们的结构和机制及其在遗传密码重编程中的应用,以合成独特的肽和蛋白质。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间更多订阅本期刊每年收到12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元更多了解更多购买本文在SpringerLink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Methodologies for introducing nonproteinogenic amino acids (npAAs) and substrates of flexizymes.Fig. 2: Development of aminoacylation ribozymes.Fig. 3: X-ray crystal structure of a flexizyme–tRNA minihelix fusion.Fig. 4: Engineered tRNAs for nonproteinogenic amino acid incorporation and their secondary structures.Fig.
图1:引入非蛋白原氨基酸(npAAs)和flexizymes底物的方法。图2:氨酰化核酶的发展。图3:flexizyme-tRNA微螺旋融合体的X射线晶体结构。图4:用于非蛋白原氨基酸掺入的工程化tRNA及其二级结构。图。
5: Mutant flexizyme and the development of orthogonal ribosome–tRNA pairs.Fig. 6: Depiction of a single round of Random Nonstandard Peptides Integrated Discovery (RaPID) display.Fig. 7: Examples of bioactive macrocyclic peptides developed using the Random Nonstandard Peptides Integrated Discovery (RaPID) system..
5: 突变的flexizyme和正交核糖体-tRNA对的发展。图6:单轮随机非标准肽集成发现(RaPID)显示的描述。图7:使用随机非标准肽集成发现(RaPID)系统开发的生物活性大环肽的实例。。
ReferencesConradi, R. A., Hilgers, A. R., Ho, N. F. & Burton, P. S. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8, 1453–1460 (1991).Article
参考文献Conradi,R.A.,Hilgers,A.R.,Ho,N.F。&Burton,P.S。肽结构对Caco-2细胞转运的影响。Pharm.Res.81453–1460(1991)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bockus, A. T. et al. Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of sanguinamide A analogues. J. Med. Chem. 58, 7409–7418 (2015).Article
Bockus,A.T.等人,《在肢体上行走:描述β分支,N-甲基化和侧链大小对血根酰胺A类似物的被动渗透性,溶解度和柔韧性的影响》。J、 医学化学。587409-7418(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Furukawa, A. et al. Drug-like properties in macrocycles above MW 1000: backbone rigidity versus side-chain lipophilicity. Angew. Chem. Int. Ed. Engl. 59, 21571–21577 (2020).Article
。安吉。化学。国际英语。5921571-21577(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miller, S. M. et al. Comparison of the proteolytic susceptibilities of homologous l‐amino acid, d‐amino acid, and N‐substituted glycine peptide and peptoid oligomers. Drug Dev. Res. 35, 20–32 (2008).Article
Miller,S.M.等人。同源l-氨基酸、d-氨基酸、N-取代甘氨酸肽和类肽寡聚体蛋白水解敏感性的比较。《药物开发》第35、20-32号决议(2008年)。文章
Google Scholar
谷歌学者
Zhao, Y. et al. Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6, 122 (2016).Article
Zhao,Y。等人。抗菌肽polybia MPI的d-氨基酸取代衍生物的抗菌活性和稳定性。AMB Express 6122(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V. & Seebach, D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2, 445–455 (2001).Article
Frackenpohl,J.,Arvidsson,P.I.,Schreiber,J.V。&Seebach,D。β-和γ-肽对蛋白水解酶的出色生物稳定性:用15种肽酶进行的体外研究。化学生物化学2445-455(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gopi, H. N. et al. Proteolytic stability of β-peptide bonds probed using quenched fluorescent substrates incorporating a hemoglobin cleavage site. FEBS Lett. 535, 175–178 (2003).Article
Gopi,H.N.等人。使用掺入血红蛋白切割位点的淬灭荧光底物探测β-肽键的蛋白水解稳定性。FEBS Lett公司。535175-178(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cabrele, C., Martinek, T. A., Reiser, O. & Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 57, 9718–9739 (2014).Article
Cabrele,C.,Martinek,T.A.,Reiser,O.&Berlicki,Ł。。J、 医学化学。579718-9739(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Forster, A. et al. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl Acad. Sci. USA 100, 6353–6357 (2003).Article
Forster,A.等人。通过翻译从头设计的遗传密码来编程肽模拟合成。。国家科学院。科学。美国1006353-6357(2003)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hohsaka, T., Ashizuka, Y., Murakami, H. & Sisido, M. Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J. Am. Chem. Soc. 118, 9778–9779 (1996).Article
Hohsaka,T.,Ashizuka,Y.,Murakami,H。&Sisido,M。通过体外移码抑制将非天然氨基酸掺入链霉亲和素中。J、 上午化学。Soc.1189778–9779(1996)。文章
Google Scholar
谷歌学者
Bain, J. D., Switzer, C., Chamberlin, A. R. & Benner, S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356, 537–539 (1992).Article
。自然356537-539(1992)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hirao, I. et al. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20, 177–182 (2002).Article
Hirao,I。等人。用于将氨基酸类似物掺入蛋白质中的非天然碱基对。美国国家生物技术公司。20177-182(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Feldman, A. W. et al. Optimization of replication, transcription, and translation in a semi-synthetic organism. J. Am. Chem. Soc. 141, 10644–10653 (2019).Article
Feldman,A.W.等人。半合成生物体中复制,转录和翻译的优化。J、 上午化学。Soc.14110644–10653(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taiji, M., Yokoyama, S. & Miyazawa, T. Transacylation rates of (aminoacyl)adenosine moiety at the 3′-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22, 3220–3225 (1983).Article
Taiji,M.,Yokoyama,S。&Miyazawa,T。氨酰基转移核糖核酸3'末端(氨酰基)腺苷部分的转酰化速率。生物化学223220-3225(1983)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nawrot, B., Milius, W., Ejchart, A., Limmer, S. & Sprinzl, M. The structure of 3′-O-anthraniloyladenosine, an analogue of the 3′-end of aminoacyl-tRNA. Nucleic Acids Res. 25, 948–954 (1997).Article
Nawrot,B.,Milius,W.,Ejchart,A.,Limmer,S。&Sprinzl,M。3'-O-蒽酰基腺苷的结构,氨基酰基tRNA的3'末端类似物。核酸研究25948-954(1997)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taiji, M., Yokoyama, S. & Miyazawa, T. Aminoacyl-tRNA exclusively in the 3′-isomeric form is bound to polypeptide chain elongation factor Tu. J. Biochem. 98, 1447–1453 (1985).Article
Taiji,M.,Yokoyama,S。&Miyazawa,T。仅以3'-异构体形式的氨酰基tRNA与多肽链延伸因子Tu.J.Biochem结合。981447-1453(1985)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).Article
Nissen,P。等人。Phe-tRNAPhe,EF-Tu和GTP类似物三元复合物的晶体结构。科学2701464-1472(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Stortchevoi, A. A. Misacylation of tRNA in prokaryotes: a re-evaluation. Cell Mol. Life Sci. 63, 820–831 (2006).Article
Stortchevoi,A.A。原核生物中tRNA的错误酰化:重新评估。细胞分子生命科学。63820-831(2006)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).Article
Wang,L.,Brock,A.,Herberich,B。&Schultz,P.G。扩展大肠杆菌的遗传密码。科学292498-500(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Y. S., Fang, X., Wallace, A. L., Wu, B. & Liu, W. R. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 134, 2950–2953 (2012).Article
Wang,Y.S.,Fang,X.,Wallace,A.L.,Wu,B。&Liu,W.R。一种合理设计的吡咯基-tRNA合成酶突变体,具有广泛的底物谱。J、 上午化学。Soc.1342950–2953(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fahnestock, S. & Rich, A. Ribosome-catalyzed polyester formation. Science 173, 340–343 (1971).Article
Fahnestock,S。&Rich,A。核糖体催化的聚酯形成。科学173340-343(1971)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Robertson, S. A., Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. The use of 5′-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res. 17, 9649–9660 (1989).Article
Robertson,S.A.,Noren,C.J.,Anthony Cahill,S.J.,Griffith,M.C。&Schultz,P.G。使用5'-磷酸-2-脱氧核糖胞苷基核糖核苷作为tRNA化学氨酰化的简便途径。核酸研究179649-9660(1989)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).Article
Murakami,H.,Ohta,A.,Ashigai,H。&Suga,H。一种用于非天然多肽合成的高度灵活的tRNA酰化方法。《自然方法》3357-359(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).Article
Goto,Y.,Katoh,T。&Suga,H。Flexizymes用于遗传密码重编程。自然协议。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. In vitro genetic code reprogramming for the expansion of usable noncanonical amino acids. Annu. Rev. Biochem. 91, 221–243 (2022).Article
Katoh,T。&Suga,H。体外遗传密码重编程以扩展可用的非经典氨基酸。年。生物化学评论。91221-243(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).Article
Lohse,P.A。&Szostak,J.W。核酶催化氨基酸转移反应。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).Article
Lee,N.,Bessho,Y.,Wei,K.,Szostak,J.W。&Suga,H。核酶催化的tRNA氨基酰化。自然结构。生物学杂志7,28-33(2000)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, N. & Suga, H. A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7, 1043–1051 (2001).Article
Lee,N。&Suga,H。小螺旋环RNA充当反式氨酰化催化剂。RNA 71043-1051(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramaswamy, K., Wei, K. & Suga, H. Minihelix-loop RNAs: minimal structures for aminoacylation catalysts. Nucleic Acids Res. 30, 2162–2171 (2002).Article
Ramaswamy,K.,Wei,K。&Suga,H。Minihelix-loop RNA:氨基酰化催化剂的最小结构。核酸研究302162-2171(2002)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).Article
Saito,H.,Kourouklis,D。&Suga,H。一种体外进化的具有氨基酰化活性的前体tRNA。EMBO J.201797–1806(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saito, H., Watanabe, K. & Suga, H. Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7, 1867–1878 (2001).PubMed
Saito,H.,Watanabe,K。&Suga,H。通过核酶同时分子识别氨基酸和tRNA。RNA 71867-1878(2001)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Murakami, H., Saito, H. & Suga, H. A versatile tRNA aminoacylation catalyst based on RNA. Chem. Biol. 10, 655–662 (2003).Article
Murakami,H.,Saito,H。&Suga,H。基于RNA的多功能tRNA氨酰化催化剂。化学。生物学杂志10655-662(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Niwa, N., Yamagishi, Y., Murakami, H. & Suga, H. A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg. Med. Chem. Lett. 19, 3892–3894 (2009).Article
Niwa,N.,Yamagishi,Y.,Murakami,H。&Suga,H。一种选择性充电由水友好离去基团激活的氨基酸的柔性酶。生物组织医学化学。利特。193892-3894(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yamagishi, Y. et al. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem. Biol. 18, 1562–1570 (2011).Article
Yamagishi,Y.等人。天然产物,如大环N-甲基肽抑制剂,针对从核糖体表达的从头文库中发现的泛素连接酶。化学。生物学181562-1570(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xiao, H., Murakami, H., Suga, H. & Ferré-D’Amaré, A. R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).Article
Xiao,H.,Murakami,H.,Suga,H。&Ferré-D'Amaré,A.R。通过小的体外选择的核酶进行特异性tRNA氨酰化的结构基础。自然454358-361(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14, 1315–1322 (2007).Article
Ohta,A.,Murakami,H.,Higashimura,E。&Suga,H。通过遗传密码重编程合成聚酯。化学。生物学141315-1322(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Takatsuji, R. et al. Ribosomal synthesis of backbone-cyclic peptides compatible with in vitro display. J. Am. Chem. Soc. 141, 2279–2287 (2019).Article
。J、 上午化学。Soc.1412279–2287(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).Article
。化学。生物学杂志15,32-42(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).Article
Goto,Y.等人。重新编程翻译起始以合成生理稳定的环肽。ACS化学。生物学杂志3120-129(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Maini, R. et al. Ribosomal formation of thioamide bonds in polypeptide synthesis. J. Am. Chem. Soc. 141, 20004–20008 (2019).Article
Maini,R。等人。多肽合成中硫代酰胺键的核糖体形成。J、 上午化学。Soc.14120004–20008(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tsutsumi, H., Kuroda, T., Kimura, H., Goto, Y. & Suga, H. Posttranslational chemical installation of azoles into translated peptides. Nat. Commun. 12, 696 (2021).Article
Tsutsumi,H.,Kuroda,T.,Kimura,H.,Goto,Y。&Suga,H。将唑类转化为翻译肽的翻译后化学安装。国家公社。12696(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goto, Y. & Suga, H. Translation initiation with initiator tRNA charged with exotic peptides. J. Am. Chem. Soc. 131, 5040–5041 (2009).Article
Goto,Y。&Suga,H。用带有外来肽的引发剂tRNA进行翻译起始。J、 上午化学。Soc.1315040–5041(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fujino, T., Goto, Y., Suga, H. & Murakami, H. Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 138, 1962–1969 (2016).Article
Fujino,T.,Goto,Y.,Suga,H。&Murakami,H。具有多种β-氨基酸的肽的核糖体合成。J、 上午化学。Soc.1381962-1969(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Adaligil, E., Song, A., Cunningham, C. N. & Fairbrother, W. J. Ribosomal synthesis of macrocyclic peptides with linear γ4- and β-hydroxy-γ4-amino acids. ACS Chem. Biol. 16, 1325–1331 (2021).Article
Adaligil,E.,Song,A.,Cunningham,C.N。和Fairbrother,W.J。核糖体合成具有线性γ4-和β-羟基-γ4-氨基酸的大环肽。ACS化学。生物学1611325-1331(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T., Sengoku, T., Hirata, K., Ogata, K. & Suga, H. Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nat. Chem. 12, 1081–1088 (2020).Article
Katoh,T.,Sengoku,T.,Hirata,K.,Ogata,K。&Suga,H。核糖体合成和从头发现含有环状β-氨基酸的生物活性foldamer肽。自然化学。121081-1088(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, J. et al. Ribosomal incorporation of cyclic β-amino acids into peptides using in vitro translation. Chem. Commun. 56, 5597–5600 (2020).Article
Lee,J.等人。使用体外翻译将环状β-氨基酸的核糖体掺入肽中。化学。Commun公司。565597-5600(2020)。文章
Google Scholar
谷歌学者
Ohshiro, Y. et al. Ribosomal synthesis of backbone-macrocyclic peptides containing gamma-amino acids. ChemBioChem 12, 1183–1187 (2011).Article
Ohshiro,Y.等人。含有γ氨基酸的骨架大环肽的核糖体合成。ChemBioChem 121183-1187(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Ribosomal elongation of cyclic γ-amino acids using a reprogrammed genetic code. J. Am. Chem. Soc. 142, 4965–4969 (2020).Article
Katoh,T。&Suga,H。使用重编程遗传密码对环状γ-氨基酸进行核糖体延伸。J、 上午化学。Soc.1424965–4969(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, H., Katoh, T. & Suga, H. Macrocyclic peptides closed by a thioether-bipyridyl unit that grants cell membrane permeability. ACS Bio. Med. Chem. Au 3, 429–437 (2023).Article
Chen,H.,Katoh,T。&Suga,H。大环肽被硫醚联吡啶单元封闭,赋予细胞膜通透性。ACS生物医药化学。AU3429-437(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Torikai, K. & Suga, H. Ribosomal synthesis of an amphotericin-B inspired macrocycle. J. Am. Chem. Soc. 136, 17359–17361 (2014).Article
Torikai,K。&Suga,H。两性霉素-B启发的大环的核糖体合成。J、 上午化学。Soc.13617359–17361(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rogers, J. M. et al. Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids. Nat. Chem. 10, 405–412 (2018).Article
Rogers,J.M.等人,《核糖体合成和肽螺旋芳香族折叠杂合体的折叠》。自然化学。10405-412(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Canu, N. et al. Flexizyme-aminoacylated shortened tRNAs demonstrate that only the aminoacylated acceptor arms of the two tRNA substrates are required for cyclodipeptide synthase activity. Nucleic Acids Res. 48, 11615–11625 (2020).Article
Canu,N。等人。Flexizyme氨酰化的缩短tRNA证明,环二肽合酶活性仅需要两种tRNA底物的氨酰化受体臂。核酸研究4811615-11625(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fujino, T., Kondo, T., Suga, H. & Murakami, H. Exploring the minimal RNA substrate of flexizymes. ChemBioChem 20, 1959–1965 (2019).Article
Fujino,T.,Kondo,T.,Suga,H。&Murakami,H。探索柔性酶的最小RNA底物。化学生物化学201959-1965(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Flexizyme-catalyzed synthesis of 3′-aminoacyl-NH-tRNAs. Nucleic Acids Res. 47, e54 (2019).Article
Katoh,T。&Suga,H。Flexizyme催化合成3'-氨酰基NH-tRNA。核酸研究47,e54(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Futai, K., Terasaka, N., Katoh, T. & Suga, H. tRid, an enabling method to isolate previously inaccessible small RNA fractions. Methods 106, 105–111 (2016).Article
Futai,K.,Terasaka,N.,Katoh,T。&Suga,H。tRid,这是一种能够分离以前无法接近的小RNA组分的方法。方法106105-111(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T., Iwane, Y. & Suga, H. tRNA engineering for manipulating genetic code. RNA Biol. 15, 453–460 (2018).Article
Katoh,T.,Iwane,Y。&Suga,H。用于操纵遗传密码的tRNA工程。RNA生物学。15453-460(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sigal, M., Matsumoto, S., Beattie, A., Katoh, T. & Suga, H. Engineering tRNAs for the ribosomal translation of non-proteinogenic monomers. Chem. Rev. 124, 6444–6500 (2024).Article
Sigal,M.,Matsumoto,S.,Beattie,A.,Katoh,T。&Suga,H。工程tRNA用于非蛋白单体的核糖体翻译。化学。版本1246444–6500(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Englander, M. T. et al. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Proc. Natl Acad. Sci. USA 112, 6038–6043 (2015).Article
Englander,M.T。等人。核糖体可以区分其肽基转移酶中心内氨基酸的手性。。国家科学院。科学。美国1126038–6043(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Melnikov, S. V. et al. Mechanistic insights into the slow peptide bond formation with d-amino acids in the ribosomal active site. Nucleic Acids Res. 47, 2089–2100 (2019).Article
Melnikov,S.V.等人。核糖体活性位点中与d-氨基酸形成缓慢肽键的机理见解。核酸研究472089-2100(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tajima, K., Katoh, T. & Suga, H. Drop-off-reinitiation triggered by EF-G-driven mistranslocation and its alleviation by EF-P. Nucleic Acids Res. 50, 2736–2753 (2022).Article
Tajima,K.,Katoh,T。&Suga,H。由EF-G驱动的错误翻译引发的下降重新初始化及其通过EF-P的缓解。核酸研究502736-2753(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Asahara, H. & Uhlenbeck, O. C. The tRNA specificity of Thermus thermophilus EF-Tu. Proc. Natl Acad. Sci. USA 99, 3499–3504 (2002).Article
Asahara,H。&Uhlenbeck,O.C。嗜热栖热菌EF-Tu的tRNA特异性。Proc。国家科学院。科学。美国993499-3504(2002)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Terasaka, N., Hayashi, G., Katoh, T. & Suga, H. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat. Chem. Biol. 10, 555–557 (2014).Article
Terasaka,N.,Hayashi,G.,Katoh,T。&Suga,H。通过肽基转移酶中心的工程设计,正交核糖体-tRNA对。自然化学。生物学杂志10555-557(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T., Tajima, K. & Suga, H. Consecutive elongation of d-amino acids in translation. Cell Chem. Biol. 24, 46–54 (2017).Article
Katoh,T.,Tajima,K。&Suga,H。翻译中d-氨基酸的连续延伸。。生物学杂志24,46-54(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Ribosomal incorporation of consecutive β-amino acids. J. Am. Chem. Soc. 140, 12159–12167 (2018).Article
Katoh,T。&Suga,H。连续β-氨基酸的核糖体掺入。J、 上午化学。Soc.14012159–12167(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iwane, Y., Kimura, H., Katoh, T. & Suga, H. Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation. Nucleic Acids Res. 49, 10807–10817 (2021).Article
Iwane,Y.,Kimura,H.,Katoh,T。&Suga,H。N-甲基-氨酰基-tRNA对EF-Tu的均匀亲和调节增强了它们的多重掺入。核酸研究4910807-10817(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).Article
Ude,S。等人。翻译延伸因子EF-P减轻了聚脯氨酸延伸时核糖体的停滞。科学339,82-85(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Doerfel, L. K. et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88 (2013).Article
Doerfel,L.K。等人。EF-P对于快速合成含有连续脯氨酸残基的蛋白质至关重要。科学339,85-88(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T., Wohlgemuth, I., Nagano, M., Rodnina, M. V. & Suga, H. Essential structural elements in tRNAPro for EF-P-mediated alleviation of translation stalling. Nat. Commun. 7, 11657 (2016).Article
Katoh,T.,Wohlgemuth,I.,Nagano,M.,Rodnina,M.V。&Suga,H。tRNAPro中用于EF-P介导的缓解翻译停滞的基本结构元素。国家公社。711657(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katoh, T., Iwane, Y. & Suga, H. Logical engineering of d-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res. 45, 12601–12610 (2017).Article
Katoh,T.,Iwane,Y。&Suga,H。增强d-氨基酸掺入的tRNA的d-臂和T-茎的逻辑工程。核酸研究4512601-12610(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA. Nucleic Acids Res. 51, 8169–8180 (2023).Article
Katoh,T。&Suga,H。使用EF-P响应性人工引发剂tRNA用外来氨基酸进行翻译起始。核酸研究518169-8180(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Ribosomal elongation of aminobenzoic acid derivatives. J. Am. Chem. Soc. 142, 16518–16522 (2020).Article
Katoh,T。&Suga,H。氨基苯甲酸衍生物的核糖体延伸。J、 上午化学。Soc.14216518–16522(2020年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Consecutive ribosomal incorporation of α-aminoxy/α-hydrazino acids with L/D-configurations into nascent peptide chains. J. Am. Chem. Soc. 143, 18844–18848 (2021).Article
Katoh,T。&Suga,H。将具有L/D构型的α-氨基氧基/α-肼基酸连续核糖体掺入新生肽链中。J、 上午化学。Soc.14318844–18848(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T. & Suga, H. Fine-tuning the tRNA anticodon arm for multiple/consecutive incorporations of β-amino acids and analogs. Nucleic Acids Res. 52, 6586–6595 (2024).Article
Katoh,T。&Suga,H。微调tRNA反密码子臂,以多次/连续掺入β-氨基酸和类似物。核酸研究526586-6595(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moazed, D. & Noller, H. F. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc. Natl Acad. Sci. USA 88, 3725–3728 (1991).Article
Moazed,D。&Noller,H。F。肽基tRNA的CCA末端与23S rRNA相互作用的位点。Proc。国家科学院。科学。美国883725-3728(1991)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Samaha, R. R., Green, R. & Noller, H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).Article
Samaha,R.R.,Green,R。&Noller,H.F。核糖体肽基转移酶中心tRNA和23S rRNA之间的碱基对。自然377309-314(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Green, R., Switzer, C. & Noller, H. F. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science 280, 286–289 (1998).Article
Green,R.,Switzer,C。&Noller,H.F。核糖体催化的肽键形成,其A位点底物与23S核糖体RNA共价连接。《科学》280286-289(1998)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bashan, A. et al. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11, 91–102 (2003).Article
Bashan,A。等人。肽键形成,易位和新生链进展的核糖体机制的结构基础。分子细胞11,91-102(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).Article
Kim,D.F。&Green,R。核糖体A位点23S rRNA和tRNA之间的碱基配对。摩尔细胞4859-864(1999)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ishida, S., Terasaka, N., Katoh, T. & Suga, H. An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch. Nat. Chem. Biol. 16, 702–709 (2020).Article
Ishida,S.,Terasaka,N.,Katoh,T。&Suga,H。一种氨基酰化核酶,由天然tRNA感应的T-box核糖开关进化而来。自然化学。生物学16702-709(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Katoh, T., Goto, Y. & Suga, H. In vitro selection of thioether-closed macrocyclic peptide ligands by means of the RaPID system. Methods Mol. Biol. 2371, 247–259 (2022).Article
Katoh,T.,Goto,Y。&Suga,H。通过RaPID系统体外选择硫醚封闭的大环肽配体。方法分子生物学。2371247-259(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
van Neer, R. H. P. et al. Serum-stable and selective backbone-N-methylated cyclic peptides that inhibit prokaryotic glycolytic mutases. ACS Chem. Biol. 17, 2284–2295 (2022).Article
van Neer,R.H.P.等人。抑制原核糖酵解突变酶的血清稳定和选择性骨架-N-甲基化环肽。ACS化学。生物学172284-2295(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13071–13072 (1996).Article
Appella,D.H.,Christianson,L.A.,Karle,I.L.,Powell,D.R。&Gellman,S.H。β-肽折叠物:一个新的β-氨基酸寡聚体家族中强大的螺旋形成。J、 上午化学。Soc.11813071–13072(1996)。文章
Google Scholar
谷歌学者
Appella, D. H. et al. Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384 (1997).Article
Appella,D.H.等人。基于残基的β-肽寡聚体螺旋形状控制。自然387381-384(1997)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schumann, F., Müller, A., Koksch, M., Müller, G. & Sewald, N. Are β-amino acids γ-turn mimetics? Exploring a new design principle for bioactive cyclopeptides. J. Am. Chem. Soc. 122, 12009–12010 (2000).Article
Schumann,F.,Müller,A.,Koksch,M.,Müller,G。&Sewald,N。β-氨基酸是γ-转角模拟物吗?探索生物活性环肽的新设计原理。J、 上午化学。Soc.12212009–12010(2000)。文章
Google Scholar
谷歌学者
Guthohrlein, E. W., Malesevic, M., Majer, Z. & Sewald, N. Secondary structure inducing potential of β-amino acids: torsion angle clustering facilitates comparison and analysis of the conformation during MD trajectories. Biopolymers 88, 829–839 (2007).Article
Guthohrlein,E.W.,Malesevic,M.,Majer,Z。&Sewald,N。β-氨基酸的二级结构诱导潜力:扭转角聚类有助于比较和分析MD轨迹期间的构象。生物聚合物88829-839(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wakabayashi, R., Kawai, M., Katoh, T. & Suga, H. In vitro selection of macrocyclic α/β3-peptides against human EGFR. J. Am. Chem. Soc. 144, 18504–18510 (2022).Article
Wakabayashi,R.,Kawai,M.,Katoh,T。&Suga,H。体外选择针对人EGFR的大环α/β3-肽。J、 上午化学。Soc.14418504–18510(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katoh, T. & Suga, H. In vitro selection of foldamer-like macrocyclic peptides containing 2-aminobenzoic acid and 3-aminothiophene-2-carboxylic acid. J. Am. Chem. Soc. 144, 2069–2072 (2022).Article
Katoh,T。&Suga,H。体外选择含有2-氨基苯甲酸和3-氨基噻吩-2-羧酸的foldamer样大环肽。J、 上午化学。Soc.1442069–2072(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hintermann, T., Gademann, K., Jaun, B. & Seebach, D. γ‐Peptides forming more stable secondary structures than α‐peptides: synthesis and helical NMR‐solution structure of the γ‐hexapeptide analog of H‐(Val‐Ala‐Leu)2‐OH. Helv. Chim. Acta 81, 983–1002 (2005).Article
Hintermann,T.,Gademann,K.,Jaun,B。&Seebach,D。γ-肽形成比α-肽更稳定的二级结构:H-(Val-Ala-Leu)2-OH的γ-六肽类似物的合成和螺旋NMR-溶液结构。你好。奇姆。。文章
Google Scholar
谷歌学者
Chatterjee, S. et al. Expanding the peptide β-turn in αγ hybrid sequences: 12 atom hydrogen bonded helical and hairpin turns. J. Am. Chem. Soc. 131, 5956–5965 (2009).Article
Chatterjee,S.等人。扩展αγ杂交序列中的肽β-转角:12原子氢键螺旋和发夹转角。J、 上午化学。Soc.1315956–5965(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Basuroy, K. et al. Unconstrained homooligomeric γ-peptides show high propensity for C14 helix formation. Org. Lett. 15, 4866–4869 (2013).Article
Basuroy,K。等人。无约束的同源寡聚γ肽显示出C14螺旋形成的高倾向。组织Lett。154866–4869(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Giuliano, M. W. et al. Evaluation of a cyclopentane-based γ-amino acid for the ability to promote α/γ-peptide secondary structure. J. Org. Chem. 78, 12351–12361 (2013).Article
Giuliano,M.W.等人。基于环戊烷的γ-氨基酸促进α/γ-肽二级结构能力的评估。J、 组织化学。7812351–12361(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giuliano, M. W. et al. A γ-amino acid that favors 12/10-helical secondary structure in α/γ-peptides. J. Am. Chem. Soc. 136, 15046–15053 (2014).Article
Giuliano,M.W.等人。一种有利于α/γ肽中12/10螺旋二级结构的γ氨基酸。J、 上午化学。Soc.13615046–15053(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Miura, T. et al. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ2,4-amino acids targeting the SARS-CoV-2 main protease. Nat. Chem. 15, 998–1005 (2023).Article
Miura,T。等人。体外选择含有靶向SARS-CoV-2主要蛋白酶的环状γ2,4-氨基酸的大环肽抑制剂。自然化学。15998-1005(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Terasaka, N., Futai, K., Katoh, T. & Suga, H. A human microRNA precursor binding to folic acid discovered by small RNA transcriptomic SELEX. RNA 22, 1918–1928 (2016).Article
Terasaka,N.,Futai,K.,Katoh,T。&Suga,H。一种通过小RNA转录组学SELEX发现的与叶酸结合的人microRNA前体。RNA 221918-1928(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gilbert, W. Origin of life: the RNA world. Nature 319, 618–618 (1986).Article
吉尔伯特,W。生命起源:RNA世界。自然319618-618(1986)。文章
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (A) (22H00439) and Grant-in-Aid for Challenging Research (Pioneering) (21K18233) to T.K. and Grant-in-Aid for Specially Promoted Research (20H05618) to H.S.
下载参考文献致谢这项工作得到了日本科学促进会(JSPS)科学研究资助(A)(22H00439)和T.K.挑战性研究资助(开拓)(21K18233)以及H.S.特别促进研究资助(20H05618)的支持。
The authors thank A. Beattie for proofreading the manuscript.Author informationAuthors and AffiliationsDepartment of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, JapanTakayuki Katoh & Hiroaki SugaAuthorsTakayuki KatohView author publicationsYou can also search for this author in.
作者感谢A.Beattie校对手稿。作者信息作者和附属机构东京大学科学研究生院化学系,日本东京,日本东京,日本东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京。
PubMed Google ScholarHiroaki SugaView author publicationsYou can also search for this author in
PubMed Google Scholarahiroaki SugaView作者出版物您也可以在
PubMed Google ScholarContributionsT.K. wrote the original draft and reviewed and edited the manuscript. H.S. also reviewed and edited the manuscript.Corresponding authorsCorrespondence to
PubMed谷歌学术贡献者。K、 撰写了原稿,并审阅和编辑了手稿。H、 美国也审查和编辑了手稿。通讯作者通讯
Takayuki Katoh or Hiroaki Suga.Ethics declarations
Katoh Takayuki或Suga Hiroaki。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Chemistry thanks Jiantao Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》化学感谢郭建涛和另一位匿名审稿人为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleKatoh, T., Suga, H.
。权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Katoh,T.,Suga,H。
Reprogramming the genetic code with flexizymes..
用flexizymes重新编程遗传密码。。
Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00656-5Download citationAccepted: 11 September 2024Published: 21 October 2024DOI: https://doi.org/10.1038/s41570-024-00656-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Chem(2024年)。https://doi.org/10.1038/s41570-024-00656-5Download引文接受日期:2024年9月11日发布日期:2024年10月21日OI:https://doi.org/10.1038/s41570-024-00656-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供