EN
登录

Vax-Innate:通过调节T细胞和肿瘤微环境改善治疗性癌症疫苗

Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment

Nature 等信源发布 2024-10-21 02:07

可切换为仅中文


AbstractT cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting.

摘要T细胞在介导抗肿瘤免疫中起着至关重要的作用。用于癌症治疗的免疫检查点抑制剂(ICI)的成功突出了增强内源性T细胞反应如何介导肿瘤消退。然而,许多癌症的死亡率仍然很高,特别是在转移性环境中。

Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses.

基于肿瘤遗传特征和肿瘤特异性抗原鉴定的进展,正在开发针对突变肿瘤抗原(新抗原)的个体化治疗性癌症疫苗,以产生肿瘤特异性T细胞以改善治疗反应。。

Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME).

因此,通过改善疫苗接种后T细胞反应的幅度,质量和广度来增强T细胞活性是改善转移性肿瘤预后的当前目标之一。另一个主要考虑因素是如何进一步优化T细胞以在肿瘤微环境(TME)中发挥作用。

In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells..

从这个角度来看,我们专注于新抗原疫苗,并提出了一种称为Vax先天性的新方法,其中通过静脉注射或与肿瘤靶向免疫调节剂联合接种可以通过同时增加T细胞的数量,质量和广度来提高抗肿瘤功效,同时将TME转化为T细胞的主要免疫刺激环境。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Generation of tumour-specific T cells by neoAg vaccination.Fig. 2: Comparison of existing vaccine platforms for neoAg vaccination.Fig. 3: Comparison of major routes of neoAg cancer vaccine administration.Fig. 4: ‘Vax-Innate’ strategy may improve neoAg cancer vaccines for advanced disease.Fig.

图1:通过neoAg疫苗接种产生肿瘤特异性T细胞。图2:neoAg疫苗接种的现有疫苗平台的比较。图3:neoAg癌症疫苗施用的主要途径的比较。。图。

5: Strategies to modulate myeloid cells in the TME in combination with neoAg vaccination..

5: 结合neoAg疫苗接种调节TME中髓样细胞的策略。。

ReferencesMellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).Article

参考文献Mellman,I.,Chen,D.S.,Powles,T。&Turley,S.J。癌症免疫周期:适应症,基因型和免疫型。免疫力562188-2205(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).Article

朗,F.,施若尔斯,B.,Löwer,M.,Türeci,Ö&Sahin,U。个体化治疗性癌症疫苗新抗原的鉴定。《药物目录》修订版。21261-282(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).Article

Johnson,D.B.,Nebhan,C.A.,Moslehi,J.J。&Balko,J.M。免疫检查点抑制剂:毒性的长期影响。国家修订临床。Oncol公司。19254-267(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fares, C. M., Allen, E. M. V., Drake, C. G., Allison, J. P. & Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 (2019).Article

Fares,C.M.,Allen,E.M.V.,Drake,C.G.,Allison,J.P。&Hu Lieskovan,S。抵抗免疫检查点封锁的机制:为什么检查点抑制剂免疫疗法不适用于所有患者?美国社会临床。Oncol公司。教育。第39147-164卷(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).Article

Miller,B.C.等人。耗尽的CD8+T细胞亚群差异介导肿瘤控制并对检查点阻断作出反应。自然免疫。20326-336(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).Article

de Visser,K.E。和Joyce,J.A。不断发展的肿瘤微环境:从癌症起始到转移性生长。癌细胞41374-403(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Almagro, J., Messal, H. A., Elosegui-Artola, A., Rheenen, Jvan & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).Article

Almagro,J.,Messal,H.A.,Elosegui-Artola,A.,Rheenen,Jvan&Behrens,A.肿瘤发生和发展中的组织结构。趋势癌症8494-505(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, R., Tang, Y. & Miao, H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm 1, 47–68 (2020).Article

Shi,R.,Tang,Y。&Miao,H。肿瘤微环境中的代谢:对癌症免疫治疗的影响。MedComm 1,47-68(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kartikasari, A. E. R., Huertas, C. S., Mitchell, A. & Plebanski, M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 11, 692142 (2021).Article

Kartikasari,A.E.R.,Huertas,C.S.,Mitchell,A。&Plebanski,M。肿瘤诱导的炎性细胞因子和新兴的癌症检测和预后诊断设备。正面。Oncol公司。11692142(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y., Guo, J. & Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 10, 3099–3117 (2020).Article

Liu,Y.,Guo,J。&Huang,L。免疫治疗肿瘤微环境的调节:关注基于纳米材料的策略。Theranostics 103099-3117(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).Article

Leko,V。&Rosenberg,S.A。鉴定和靶向人类肿瘤抗原,用于基于T细胞的实体瘤免疫疗法。癌细胞38454-472(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Monte, U. D. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 8, 505–506 (2009).Article

109号细胞真的适合一克肿瘤组织吗?。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mallet, M. et al. Tumour burden and antigen-specific T cell magnitude represent major parameters for clinical response to cancer vaccine and TCR-engineered T cell therapy. Eur. J. Cancer 171, 96–105 (2022).Article

Mallet,M。等人。肿瘤负荷和抗原特异性T细胞大小代表了对癌症疫苗和TCR工程化T细胞疗法的临床反应的主要参数。《欧洲癌症杂志》171,96-105(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).Article

Nagarsheth,N.B.等人,针对转移性HPV相关上皮癌患者靶向E7的TCR工程化T细胞。《自然医学》27419-425(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).Article

Sterner,R.C。和Sterner,R.M。CAR-T细胞疗法:目前的局限性和潜在的策略。血癌J.11,69(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).Article

Rosenberg,S.A。&Restifo,N.P。过继细胞转移作为人类癌症的个性化免疫疗法。科学348,62-68(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).Article

Wherry,E.J。&Kurachi,M。对T细胞衰竭的分子和细胞见解。国家免疫修订版。15486-499(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).Article

Siddiqui,I。等人。具有干细胞样特性的肿瘤内Tcf1+PD-1+CD8+T细胞促进肿瘤控制以响应疫苗接种和检查点阻断免疫疗法。免疫力50195-211.e10(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).Article

Im,S.J.等人定义了在PD-1治疗后提供增殖爆发的CD8+T细胞。自然537417-421(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).Article

Krishna,S。等人。干细胞样CD8 T细胞介导过继性细胞免疫疗法对人类癌症的反应。科学3701328-1334(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).Article

Morotti,M.等人。过继性T细胞治疗实体瘤的承诺和挑战。《癌症杂志》1241759-1776(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021).Article

Baharom,F。等人。静脉注射纳米颗粒疫苗产生干细胞样TCF1+新抗原特异性CD8+T细胞。自然免疫。22,41-52(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022).Article

基于腺病毒的疫苗促进新抗原特异性CD8+T细胞干性和肿瘤排斥。科学。翻译。医学杂志14,eabo7604(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).Article

Quezada,S.A.等人。肿瘤反应性CD4+T细胞在转移到淋巴细胞减少宿主后会产生细胞毒性活性并根除大型黑色素瘤。J、 实验医学207637-650(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Magen, A. et al. Intratumoral dendritic cell–CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).Article

Magen,A。等人。肝细胞癌中PD-1阻断后,肿瘤内树突状细胞-CD4+T辅助细胞生态位使CD8+T细胞分化。《自然医学》291389-1399(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schietinger, A., Philip, M., Liu, R. B., Schreiber, K. & Schreiber, H. Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. J. Exp. Med. 207, 2469–2477 (2010).Article

Schietinger,A.,Philip,M.,Liu,R.B.,Schreiber,K。&Schreiber,H。旁观者杀死癌症需要CD4+和CD8+T细胞在效应期的合作。J、 实验医学2072469-2477(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Csh Perspect. Biol. 11, a028480 (2019).CAS

Alspach,E.,Lussier,D.M。&Schreiber,R.D。干扰素γ及其在促进和抑制自发性和治疗性癌症免疫中的重要作用。Csh透视图。生物学11,a028480(2019)。中科院

Google Scholar

谷歌学者

Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 42, 1202–1216.e8 (2024).Article

Espinosa-Carrasco,G。等人。免疫疗法介导的实体瘤消除需要瘤内免疫三联体。癌细胞421202-1216.e8(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schoenberger, S. P., Toes, R. E. M., Voort, E. I. H., van der, Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).Article

Schoenberger,S.P.,Toes,R.E.M.,Voort,E.I.H.,van der,Offringa,R.&Melief,C.J.M。T细胞对细胞毒性T淋巴细胞的帮助是由CD40-CD40L相互作用介导的。自然393480-483(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ossendorp, F., Mengedé, E., Camps, M., Filius, R. & Melief, C. J. M. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).Article

Ossendorp,F.,Mengedé,E.,Camps,M.,Filius,R。&Melief,C.J.M。特异性T辅助细胞需求,以最佳诱导针对主要组织相容性复合物II类阴性肿瘤的细胞毒性T淋巴细胞。J、 实验医学187693-702(1998)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Graaf, F. J. et al. Neoantigen-specific T-cell help outperforms non-specific help in multi-antigen DNA vaccination against cancer. Mol. Ther. Oncol. 32, 200835 (2024).Article

de Graaf,F.J。等人。新抗原特异性T细胞帮助在针对癌症的多抗原DNA疫苗接种中优于非特异性帮助。摩尔热。Oncol公司。32200835(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ninmer, E. K. et al. Multipeptide vaccines for melanoma in the adjuvant setting: long-term survival outcomes and post-hoc analysis of a randomized phase II trial. Nat. Commun. 15, 2570 (2024).Article

Ninmer,E.K.等人。佐剂环境中黑色素瘤的多肽疫苗:长期生存结果和随机II期试验的事后分析。国家公社。152570(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).Article

Kappler,J.W.,Roehm,N。&Marrack,P。T细胞耐受性通过胸腺中的克隆消除。细胞49273-280(1987)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2, 487–497 (2021).Article

Pearlman,A.H.等人,针对公共新抗原进行癌症免疫治疗。《自然癌症》2487-497(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Supabphol, S., Li, L., Goedegebuure, S. P. & Gillanders, W. E. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert. Opin. Investig. Drugs 30, 529–541 (2021).Article

Supabphol,S.,Li,L.,Goedegebuure,S.P。&Gillanders,W.E。临床开发中的新抗原疫苗平台:了解个性化免疫疗法的未来。专家。奥平。调查。药物30529-541(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct. Target. Ther. 8, 9 (2023).Article

Xie,N.等人。新抗原:癌症治疗的有希望的靶标。信号。Transduct公司。目标。他们。8,9(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fotakis, G., Trajanoski, Z. & Rieder, D. Computational cancer neoantigen prediction: current status and recent advances. Immuno-Oncol. Technol. 12, 100052 (2021).Article

Fotakis,G.,Trajanoski,Z。&Rieder,D。计算癌症新抗原预测:现状和最新进展。免疫Oncol。技术。12100052(2021年)。文章

CAS

中科院

Google Scholar

谷歌学者

Boegel, S., Castle, J. C., Kodysh, J., O’Donnell, T. & Rubinsteyn, A. Bioinformatic methods for cancer neoantigen prediction. Prog. Mol. Biol. Transl. Sci. 164, 25–60 (2019).Article

Boegel,S.,Castle,J.C.,Kodysh,J.,O'Donnell,T。&Rubinsteyn,A。癌症新抗原预测的生物信息学方法。程序。分子生物学。翻译。科学。164,25-60(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Thrift, W. J. et al. HLApollo: a superior transformer model for pan-allelic peptide–MHC-I presentation prediction, with diverse negative coverage, deconvolution and protein language features. Preprint at bioRxiv https://doi.org/10.1101/2022.12.08.519673 (2022).Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.

Thrift,W.J.等人,Hlapplo:泛等位基因肽-MHC-I呈递预测的优越变压器模型,具有多种负覆盖率,解卷积和蛋白质语言特征。bioRxiv预印本https://doi.org/10.1101/2022.12.08.519673(2022年)。Burger,M.L.等人。抗原优势等级塑造肿瘤中TCF1+祖细胞CD8 T细胞表型。

Cell 184, 4996–5014.e26 (2021).Article .

细胞1844996–5014.e26(2021)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bechter, O. et al. 706 NOUS-PEV, a novel personalized viral-based prime/boost cancer immunotherapy targeting patient-specific neoantigens: interim results from the first subjects in the phase 1b study [Regular and Young Investigator Award Abstract]. J. Immunother. Cancer 10, A738 (2022).D’Alise, A.

Bechter,O。等人,706 NOUS-PEV,一种针对患者特异性新抗原的新型个性化基于病毒的prime/boost癌症免疫疗法:1b期研究中第一批受试者的中期结果[常规和年轻研究者奖摘要]。J、 免疫疗法。癌症10,A738(2022)。达利斯,A。

M. et al. Phase I trial of viral vector based personalized vaccination elicits robust neoantigen specific antitumor T cell responses. Clin. Cancer Res. 30, 2412–2423 (2024).Article .

M、 基于病毒载体的个性化疫苗接种的I期试验引发了强大的新抗原特异性抗肿瘤T细胞应答。临床。癌症研究302412-2423(2024)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rappaport, A. R. et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 30, 1013–1022 (2024).Article

Rappaport,A.R.等人。一种共享新抗原疫苗联合免疫检查点阻断治疗晚期转移性实体瘤:1期临床试验中期结果。《自然医学》301013-1022(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).Article

Walter,S.等人。单剂量环磷酰胺后对癌症疫苗IMA901的多肽免疫反应与更长的患者生存期相关。《自然医学》181254-1261(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 130, 5976–5988 (2020).Article

。J、 临床。投资。1305976-5988(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshitake, Y. et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin. Cancer Res. 21, 312–321 (2015).Article

Yoshitake,Y。等人。针对晚期头颈部癌症患者的多肽疫苗接种的II期临床试验显示诱导了免疫应答并改善了OS。临床。癌症研究21312-321(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Somaiah, N. et al. A phase 1b study evaluating the safety, tolerability, and immunogenicity of CMB305, a lentiviral-based prime-boost vaccine regimen, in patients with locally advanced, relapsed, or metastatic cancer expressing NY-ESO-1. OncoImmunology 9, 1847846 (2020).Article

Somaiah,N。等人进行了一项1b期研究,评估CMB305(一种基于慢病毒的初免增强疫苗方案)在表达NY-ESO-1的局部晚期,复发或转移性癌症患者中的安全性,耐受性和免疫原性。肿瘤免疫学91847846(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sundar, R. et al. A phase I/Ib study of OTSGC-A24 combined peptide vaccine in advanced gastric cancer. BMC Cancer 18, 332 (2018).Article

Sundar,R。等人。OTSGC-A24联合肽疫苗在晚期胃癌中的I/Ib期研究。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, Z. et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal. Transduct. Target. Ther. 6, 26 (2021).Article

Ding,Z.等人。用于晚期肺癌的个性化新抗原脉冲树突状细胞疫苗。信号。Transduct公司。目标。他们。6,26(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaida, M. et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J. Immunother. 34, 92–99 (2011).Article

Kaida,M。等人。肾母细胞瘤1(WT1)肽疫苗和吉西他滨联合治疗晚期胰腺癌或胆道癌患者的1期临床试验。J、 免疫疗法。34,92-99(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lanitis, E., Dangaj, D., Irving, M. & Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28, xii18–xii32 (2017).Article

Lanitis,E.,Dangaj,D.,Irving,M。&Coukos,G。调节实体瘤中T细胞浸润和活性的机制。安科。28,xii18–xii32(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).Article

。科学348,74-80(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosenbaum, P. et al. Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response. Front. Immunol. 12, 645210 (2021).Article

Rosenbaum,P。等人。疫苗接种途径调节早期免疫,从而调节抗原特异性免疫应答。正面。免疫。12645210(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).Article

Darrah,P.A。等人。静脉注射卡介苗免疫后猕猴结核病的预防。自然577,95-102(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baharom, F. et al. Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell 185, 4317–4332.e15 (2022).Article

Baharom,F。等人。全身疫苗接种诱导CD8+T细胞并重塑肿瘤微环境。细胞1854317–4332.e15(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sultan, H. et al. The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol. Immunother. 68, 455–466 (2019).Article

Sultan,H。等人。给药途径决定了基于肽的癌症疫苗在小鼠中的免疫原性。癌症免疫。免疫疗法。68455-466(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynn, G. M. et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332 (2020).Article

Lynn,G.M.等人,肽-TLR-7/8a偶联疫苗化学编程用于纳米粒子自组装,可增强CD8 T细胞对肿瘤抗原的免疫力。美国国家生物技术公司。38320–332(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramirez-Valdez, R. A. et al. Intravenous heterologous prime-boost vaccination activates innate and adaptive immunity to promote tumor regression. Cell Rep. 42, 112599 (2023).Article

Ramirez-Valdez,R.A.等人。静脉注射异源初免加强疫苗可激活先天性和适应性免疫以促进肿瘤消退。细胞代表42112599(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Verma, N. K. et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. eBioMedicine 83, 104216 (2022).Article

Verma,N.K.等人,《肿瘤微环境中T淋巴细胞的障碍:免疫检查点之外的治疗挑战,进展和机遇》。eBioMedicine 83104216(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Neo, S. Y. & Lundqvist, A. The multifaceted roles of CXCL9 within the tumor microenvironment. Adv. Exp. Med. Biol. 1231, 45–51 (2020).Article

Neo,S.Y。&Lundqvist,A。CXCL9在肿瘤微环境中的多方面作用。高级实验医学生物学。1231,45-51(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).Article

Zitvogel,L.,Galluzzi,L.,Kepp,O.,Smyth,M.J。&Kroemer,G。I型干扰素在抗癌免疫中的作用。国家免疫修订版。15405-414(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 7, eabi6899 (2022).Article

Xue,D。等人。肿瘤特异性前IL-12激活先前存在的细胞毒性T细胞以控制已建立的肿瘤。科学。免疫。7,eabi6899(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).Article

Cheng,S.等人。肿瘤浸润性骨髓细胞的泛癌单细胞转录图谱。细胞184792-809.e23(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).Article

Mulder,K.等人。健康和疾病中人类单核细胞和巨噬细胞的跨组织单细胞景观。豁免541883–1900.e5(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).Article

Zhang,Y。等人。单细胞分析揭示了与三阴性乳腺癌中PD-L1阻断反应相关的关键免疫细胞亚群。癌细胞391578-1593.e8(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).Article

Pittet,M.J.,Michielin,O。&Migliorini,D。肿瘤相关巨噬细胞的临床相关性。国家修订临床。Oncol公司。19402-421(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Komohara, Y., Jinushi, M. & Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 105, 1–8 (2014).Article

Komohara,Y.,Jinushi,M。&Takeya,M。巨噬细胞异质性在人类恶性肿瘤中的临床意义。癌症科学。105,1-8(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hirano, R. et al. Tissue-resident macrophages are major tumor-associated macrophage resources, contributing to early TNBC development, recurrence, and metastases. Commun. Biol. 6, 144 (2023).Article

Hirano,R。等人。组织驻留巨噬细胞是主要的肿瘤相关巨噬细胞资源,有助于TNBC的早期发展,复发和转移。Commun公司。生物学6144(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dunsmore, G. et al. Timing and location dictate monocyte fate and their transition to tumor-associated macrophages. Sci. Immunol. 9, eadk3981 (2024).Article

Dunsmore,G。等人。时间和位置决定单核细胞的命运及其向肿瘤相关巨噬细胞的转变。科学。免疫。9,eadk3981(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).Article

Zhang,L.等人。单细胞分析为结肠癌骨髓靶向治疗的机制提供了信息。细胞181442-459.e29(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sharma, A., Blériot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and progression. Nat. Rev. Cancer 22, 593–602 (2022).Article

。《国家癌症评论》22593-602(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).Article

Sharma,A。等人。内皮细胞的Onco胎儿重编程驱动肝细胞癌中的免疫抑制性巨噬细胞。细胞183377-394.e21(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ramos, R. N. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).Article

Ramos,R.N.等人。组织驻留的FOLR2+巨噬细胞与人乳腺癌中的CD8+T细胞浸润相关。细胞1851189-1207.e25(2022)。文章

Google Scholar

谷歌学者

van Elsas, M. J. et al. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy. Cancer Cell 42, 1032–1050.e10 (2024).Article

van Elsas,M.J.等人。免疫疗法激活的T细胞募集并扭曲晚期激活的M1样巨噬细胞,这对治疗效果至关重要。癌细胞421032-1050.e10(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kiss, M., Caro, A. A., Raes, G. & Laoui, D. Systemic reprogramming of monocytes in cancer. Front. Oncol. 10, 1399 (2020).Article

Kiss,M.,Caro,A.A.,Raes,G。&Laoui,D。癌症中单核细胞的系统重编程。正面。Oncol公司。101399(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ugel, S., Canè, S., Sanctis, F. D. & Bronte, V. Monocytes in the tumor microenvironment. Annu. Rev. Pathol. Mech. Dis. 16, 93–122 (2021).Article

Ugel,S.,Canè,S.,Sanctis,F.D。和Bronte,V。肿瘤微环境中的单核细胞。年。Pathol牧师。机械。Dis。16,93-122(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target. Ther. 8, 70 (2023).Article

Chen,Z.,Han,F.,Du,Y.,Shi,H。&Zhou,W。癌症中的低氧微环境:分子机制和治疗干预。信号。Transduct公司。目标。他们。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, N. & Simon, M. C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J. Clin. Invest. 126, 3661–3671 (2016).Article

Lin,N。&Simon,M.C。缺氧诱导因子:炎症过程中髓样细胞的关键调节因子。J、 临床。投资。1263661-3671(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).Article

盖革,R。等人。l-精氨酸调节T细胞代谢并增强存活和抗肿瘤活性。细胞167829-842.e13(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).Article

Hanna,R.N。等人。巡逻单核细胞控制肿瘤向肺的转移。科学350985-990(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patysheva, M. et al. Monocyte programming by cancer therapy. Front. Immunol. 13, 994319 (2022).Article

Patysheva,M。等。癌症治疗的单核细胞编程。正面。免疫。13994319(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marciscano, A. E. & Anandasabapathy, N. The role of dendritic cells in cancer and anti-tumor immunity. Semin. Immunol. 52, 101481 (2021).Article

Marciscano,A.E。&Anandasabapathy,N。树突状细胞在癌症和抗肿瘤免疫中的作用。塞米。免疫。52101481(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moussion, C. & Delamarre, L. Antigen cross-presentation by dendritic cells: a critical axis in cancer immunotherapy. Semin. Immunol. 71, 101848 (2024).Article

Moussion,C。&Delamarre,L。树突状细胞的抗原交叉呈递:癌症免疫治疗的关键轴。塞米。免疫。71101848(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).Article

Wculek,S.K.等。树突状细胞在癌症免疫学和免疫治疗中的应用。国家免疫修订版。20,7-24(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Costa, M. Pda & Reis e Sousa, C.Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).Article

Cabeza Cabrerizo,M.,Cardoso,A.,Minutti,C.M.,Costa,M。Pda&Reis e Sousa,C。重新审视树突状细胞。年。修订版Immunol。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).Article

Ferris,S.T。等人cDC1引发并被CD4+T细胞许可诱导抗肿瘤免疫。《自然》584624–629(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kvedaraite, E. & Ginhoux, F. Human dendritic cells in cancer. Sci. Immunol. 7, eabm9409 (2022).Article

Kvedaraite,E。&Ginhoux,F。癌症中的人类树突状细胞。科学。免疫。7,eabm9409(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).Article

Lin,J.H。等人。1型常规树突状细胞在胰腺癌发生早期全身失调。J、 实验医学217,e20190673(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Böttcher, J. P. & Sousa, C. R. E. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).Article

Böttcher,J.P。&Sousa,C.R.E。1型常规树突状细胞在癌症免疫中的作用。趋势癌症4784-792(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 41, 1498–1515.e10 (2023).Article

Meiser,P。等人。一种独特的刺激性cDC1亚群扩增肿瘤中的CD8+T细胞反应,以保护性抗癌免疫。癌细胞411498-1515.e10(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duong, E. et al. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 55, 308–323.e9 (2022).Article

。免疫力55308–323.e9(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Speiser, D. E., Chijioke, O., Schaeuble, K. & Münz, C. CD4+ T cells in cancer. Nat. Cancer 4, 317–329 (2023).Article

Speiser,D.E.,Chijioke,O.,Schaeuble,K。&Münz,C。癌症中的CD4+T细胞。《自然癌症》4317-329(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Michea, P. et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat. Immunol. 19, 885–897 (2018).Article

Michea,P。等人。树突状细胞对乳腺癌微环境的调节是亚群特异性的。自然免疫。19885-897(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, B., Lawrence, T. & Liang, Y. The role of plasmacytoid dendritic cells in cancers. Front. Immunol. 12, 749190 (2021).Article

。正面。免疫。12749190(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).Article

Maier,B。等人。保守的树突状细胞调节程序限制了抗肿瘤免疫力。自然580257-262(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).Article

Zilionis,R。等人。人和小鼠肺癌的单细胞转录组学揭示了个体和物种之间保守的骨髓种群。免疫力501317-1334.e10(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).Article

Zhang,Q。等。肝细胞癌中单个免疫细胞的景观和动力学。细胞179829-845.e20(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 625, 166–174 (2023).Article

LaMarche,N.M。等人。骨髓中的IL-4信号轴驱动促肿瘤发生性骨髓生成。自然625166-174(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J. et al. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): a novel population in the tumour microenvironment and immunotherapy target. Clin. Transl. Med. 13, e1199 (2023).Article

Li,J.等人。富含免疫调节分子的成熟树突状细胞(mregDCs):肿瘤微环境和免疫治疗靶点中的新型群体。临床。翻译。医学杂志13,e1199(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).Article

Oh,S.A.等人。树突状细胞表达PD-L1是癌症中T细胞免疫的关键调节剂。《自然癌症》1681-691(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).Article

人类非小细胞肺癌病变的单细胞分析改进了肿瘤分类和患者分层。癌细胞391594-1609.e12(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, Y.-J. et al. Overcoming suppressive tumor microenvironment by vaccines in solid tumor. Vaccines 11, 394 (2023).Article

Xie,Y.-J.等。通过实体瘤疫苗克服抑制性肿瘤微环境。疫苗11394(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kwart, D. et al. Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Rep. 41, 111769 (2022).Article

Kwart,D。等人。癌细胞衍生的I型干扰素指导肿瘤单核细胞极化。Cell Rep.41111769(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Beck, J. D. et al. Long-lasting mRNA-encoded interleukin-2 restores CD8+ T cell neoantigen immunity in MHC class I-deficient cancers. Cancer Cell 42, 568–582.e11 (2024).Article

Beck,J.D.等人。长效mRNA编码的白细胞介素-2恢复MHC I类缺陷癌症中的CD8+T细胞新抗原免疫。癌细胞42568-582.e11(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).Article

Kranz,L.M.等人。向树突状细胞递送系统性RNA利用抗病毒防御进行癌症免疫治疗。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Salomon, N. et al. Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunol. Immunother. 71, 1975–1988 (2022).Article

Salomon,N。等人。局部放疗和E7 RNA-LPX疫苗接种在HPV16+癌症的临床前模型中显示出增强的治疗效果。癌症免疫。免疫疗法。711975年至1988年(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Z., Liu, X., Chen, D. & Yu, J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal. Transduct. Target. Ther. 7, 258 (2022).Article

Zhang,Z.,Liu,X.,Chen,D。&Yu,J。放射治疗与免疫治疗相结合:癌症治疗的黎明。信号。Transduct公司。目标。他们。7258(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).Article

Sahin,U。等人。个性化RNA突变体疫苗动员针对癌症的多特异性治疗免疫。自然547222-226(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hecht, J. R. et al. Abstract CT007: safety and immunogenicity of a personalized neoantigen–Listeria vaccine in cancer patients [abstract]. Cancer Res. 79, CT007 (2019).Article

Hecht,J.R.等人摘要CT007:个性化新抗原-李斯特菌疫苗在癌症患者中的安全性和免疫原性[摘要]。癌症研究79,CT007(2019)。文章

Google Scholar

谷歌学者

Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).Article

Weber,J.S.等人,《个体化新抗原治疗mRNA-4157(V940)加pembrolizumab与pembrolizumab单药治疗切除黑色素瘤(KEYNOTE-942):一项随机2b期研究》。柳叶刀403632-644(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Di, J. et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm. Res. 39, 105–114 (2022).Article

。《药学》第39105-114号决议(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).Article

Hotz,C。等人。编码细胞因子的mRNA的局部递送在多种临床前肿瘤模型中促进抗肿瘤免疫和肿瘤根除。科学。翻译。医学杂志13,eabc7804(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).Article

Ablasser,A。&Chen,Z。J。cGAS在行动中:扩大免疫和炎症的作用。科学363,eaat8657(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Samson, N. & Ablasser, A. The cGAS–STING pathway and cancer. Nat. Cancer 3, 1452–1463 (2022).Article

Samson,N。和Ablasser,A。cGAS-STING途径与癌症。《自然癌症》31452-1463(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lellahi, S. M. et al. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front. Immunol. 13, 1058963 (2023).Article

Lellahi,S.M.等人,GM-CSF,Flt3-L和IL-4影响常规1型和2型树突状细胞的活力和功能。正面。免疫。131058963(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mooney, C. J., Cunningham, A., Tsapogas, P., Toellner, K.-M. & Brown, G. Selective expression of Flt3 within the mouse hematopoietic stem cell compartment. Int. J. Mol. Sci. 18, 1037 (2017).Article

。Int.J.Mol.Sci。181037(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, T. et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal. Transduct. Target. Ther. 6, 72 (2021).Article

Tang,T。等人。在癌症免疫治疗中,靶向肿瘤免疫微环境优于阻断免疫检查点的优势。信号。Transduct公司。目标。他们。6,72(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).Article

Diamond,M.S.等人。树突状细胞选择性地需要I型干扰素来免疫排斥肿瘤。J、 实验医学2081989-2003(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).Article

。自然免疫。23543-555(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liao, J. et al. Type I IFNs repolarized a CD169+ macrophage population with anti-tumor potentials in hepatocellular carcinoma. Mol. Ther. 30, 632–643 (2022).Article

Liao,J。等人。I型干扰素使肝细胞癌中具有抗肿瘤潜力的CD169+巨噬细胞群重新极化。摩尔热。30632-643(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).Article

Gajewski,T.F.,Louahed,J。&Brichard,V.G。黑色素瘤中与临床活动相关的基因特征:解开癌症免疫疗法的潜在线索。《癌症杂志》16399-403(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeestraten, E. C. M. et al. Addition of interferon‐α to the p53‐SLP® vaccine results in increased production of interferon‐γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int. J. Cancer 132, 1581–1591 (2013).Article

Zeestraten,E.C.M.等人。在p53-SLP®疫苗中添加干扰素-α导致接种疫苗的结直肠癌患者中干扰素-γ的产生增加:I/II期临床试验。Int.J.Cancer 1321581–1591(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cao, X. et al. Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat. Commun. 12, 5866 (2021).Article

Cao,X。等人。下一代肿瘤激活I型IFN增强抗肿瘤免疫反应以克服治疗耐药性。国家公社。125866(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palma, M. D. et al. Tumor-targeted interferon-α delivery by tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).Article

Palma,M.D.等人。通过表达tie2的单核细胞递送肿瘤靶向干扰素-α抑制肿瘤生长和转移。癌细胞14299-311(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pogue, S. L. et al. Targeting attenuated interferon-α to myeloma cells with a CD38 antibody induces potent tumor regression with reduced off-target activity. PLoS ONE 11, e0162472 (2016).Article

Pogue,S.L.等人。用CD38抗体将减毒干扰素-α靶向骨髓瘤细胞可诱导有效的肿瘤消退,同时降低脱靶活性。PLoS ONE 11,e0162472(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rolfo, C., Giovannetti, E., Martinez, P., McCue, S. & Naing, A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 7, 26 (2023).Article

Rolfo,C.,Giovannetti,E.,Martinez,P.,McCue,S。&Naing,A。使用Toll样受体激动剂降低癌症死亡率的应用和临床试验前景。NPJ精度。Oncol公司。7,26(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kyi, C. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin. Cancer Res. 24, 4937–4948 (2018).Article

Kyi,C.等人。肿瘤内poly-ICLC对实体癌的治疗性免疫调节:一项初步试验。临床。癌症研究244937-4948(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).Article

。《自然医学》25814-824(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).Article

Hu,Z.等人。个人新抗原疫苗在黑色素瘤患者中诱导持续记忆T细胞应答和表位扩散。《自然医学》27515-525(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).Article

Keskin,D.B.等人,新抗原疫苗在Ib期胶质母细胞瘤试验中产生肿瘤内T细胞反应。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Everson, R. G. et al. TLR agonists polarize interferon responses in conjunction with dendritic cell vaccination in malignant glioma: a randomized phase II trial. Nat. Commun. 15, 3882 (2024).Article

在恶性胶质瘤中,TLR激动剂与树突状细胞疫苗一起极化干扰素反应:一项随机II期试验。国家公社。153882(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Williams, B. B., Paul, R. T. & Lerner, A. M. Pharmacokinetics of interferon in blood, cerebrospinal fluid, and brain after administration of modified polyriboinosinic-polyribocytidylic acid and amphotericin B. J. Infect. Dis. 146, 819–825 (1982).Article

Williams,B.B.,Paul,R.T.&Lerner,A.M。服用修饰的多核糖肌苷多核糖胞苷酸和两性霉素B.J.感染后,干扰素在血液,脑脊液和大脑中的药代动力学。Dis。146819-825(1982)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ye, J. et al. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J. Immunother. Cancer 10, e004784 (2022).Article

Ye,J。等人。Toll样受体7/8激动剂R848改变免疫肿瘤微环境并增强SBRT诱导的胰腺癌小鼠模型中的抗肿瘤功效。J、 免疫疗法。癌症10,e004784(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mullins, S. R. et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J. Immunother. Cancer 7, 244 (2019).Article

Mullins,S.R.等人。TLR7/8激动剂MEDI9197的肿瘤内免疫治疗可调节肿瘤微环境,从而与其他免疫疗法结合使用时可增强活性。J、 免疫疗法。癌症7244(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo, Y. J. et al. Nanoengineered macrophages armed with TLR7/8 agonist enhance remodeling of immunosuppressive tumor microenvironment. Small 20, e2307694 (2024).Article

Yoo,Y.J.等人。用TLR7/8激动剂武装的纳米工程巨噬细胞增强免疫抑制性肿瘤微环境的重塑。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Woo, S.-R., Corrales, L. & Gajewski, T. F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36, 250–256 (2015).Article

Woo,S.-R.,Corrales,L。&Gajewski,T.F。STING途径和T细胞发炎的肿瘤微环境。趋势免疫。36250–256(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).Article

Corrales,L。等人。在肿瘤微环境中直接激活STING会导致有效的全身性肿瘤消退和免疫。Cell Rep.111018–1030(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085.e5 (2018).Article

Sivick,K.E.等人。治疗性STING激活的程度决定了CD8+T细胞介导的抗肿瘤免疫力。Cell Rep.253074–3085.e5(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra52 (2015).Article

Fu,J。等人。STING激动剂配制的癌症疫苗可以治愈对PD-1阻断具有抗性的既定肿瘤。科学。翻译。医学杂志7283RA52(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, Y. et al. STING protein‐based in situ vaccine synergizes CD4+ T, CD8+ T, and NK cells for tumor eradication. Adv. Healthc. Mater. 12, e2300688 (2023).Article

He,Y。等人。基于STING蛋白的原位疫苗协同CD4+T,CD8+T和NK细胞根除肿瘤。健康顾问。马特。12,e2300688(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Meric-Bernstam, F. et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ib study. Clin. Cancer Res. 29, 110–121 (2022).Article

Meric-Bernstam,F。等人。STING激动剂MIW815(ADU-S100)和PD-1抑制剂斯巴他珠单抗在晚期/转移性实体瘤或淋巴瘤中的组合:一项开放标签,多中心,Ib期研究。临床。癌症研究29110-121(2022)。文章

Google Scholar

谷歌学者

Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).Article

Larkin,B。等人。前沿:T细胞中STING的激活诱导I型IFN反应和细胞死亡。J、 免疫。199397-402(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).Article

Cerboni,S.等人。先天传感器STING在T淋巴细胞中的内在抗增殖活性。J、 实验医学2141769-1785(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, Y. et al. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019).Article

Zhu,Y.等人。STING:癌症免疫周期中的主要调节剂。摩尔癌症18152(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, K. E., Deronic, A., Hägerbrand, K., Norlén, P. & Ellmark, P. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert. Opin. Biol. Ther. 21, 1635–1646 (2021).Article

Smith,K.E.,Deronic,A.,Hägerbrand,K.,Norlén,P。&Ellmark,P。用于癌症免疫疗法的CD40激动性抗体的基本原理和临床开发。专家。奥平。生物疗法。211635-1646(2021)。文章

Google Scholar

谷歌学者

Morrison, A. H., Diamond, M. S., Hay, C. A., Byrne, K. T. & Vonderheide, R. H. Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc. Natl Acad. Sci. USA 117, 8022–8031 (2020).Article

Morrison,A.H.,Diamond,M.S.,Hay,C.A.,Byrne,K.T。&Vonderheide,R.H。CD40活化和免疫检查点阻断对T细胞引发和肿瘤免疫的充分性。。国家科学院。科学。美国1178022-8031(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wattenberg, M. M. et al. Cancer immunotherapy via synergistic coactivation of myeloid receptors CD40 and Dectin-1. Sci. Immunol. 8, eadj5097 (2023).Article

Wattenberg,M.M.等人。通过骨髓受体CD40和Dectin-1的协同共激活进行癌症免疫治疗。科学。免疫。8,eadj5097(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salomon, R. & Dahan, R. Next generation CD40 agonistic antibodies for cancer immunotherapy. Front. Immunol. 13, 940674 (2022).Article

Salomon,R。&Dahan,R。用于癌症免疫治疗的下一代CD40激动性抗体。正面。免疫。13940674(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Soto, M. et al. Neoadjuvant CD40 agonism remodels the tumor immune microenvironment in locally advanced esophageal/gastroesophageal junction cancer. Cancer Res. Commun. 4, 200–212 (2024).Article

新辅助CD40激动剂重塑局部晚期食管/胃食管交界癌的肿瘤免疫微环境。Cancer Res.Commun公司。4200–212(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anandasabapathy, N. et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transpl. 50, 924–930 (2015).Article

Anandasabapathy,N。等人。CDX-301(重组人Flt3L)在健康人类志愿者中扩增树突状细胞和造血干细胞的功效和安全性。骨髓移植。50924-930(2015)。文章

CAS

中科院

Google Scholar

谷歌学者

Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).Article

Maraskovsky,E。等人。Flt3配体处理的小鼠中功能成熟的树突状细胞数量急剧增加:鉴定出多个树突状细胞亚群。J、 实验医学1841953-1962(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sánchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti–PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).Article

Sánchez-Paulete,A.R.等人。使用免疫调节性抗CD137和抗PD-1单克隆抗体进行癌症免疫治疗需要BATF3依赖性树突状细胞。癌症发现。6,71-79(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).Article

Broz,M.L.等人解剖肿瘤髓样区室,发现罕见的活化抗原呈递细胞对T细胞免疫至关重要。癌细胞26638-652(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bhardwaj, N. et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat. Cancer 1, 1204–1217 (2020).Article

Bhardwaj,N。等人。Flt3配体通过扩增树突状细胞亚群增强对抗DEC-205-NY-ESO-1疫苗的免疫应答。《自然癌症》11204-1217(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).Article

Cannarile,M.A。等人。癌症治疗中的集落刺激因子1受体(CSF1R)抑制剂。J、 免疫疗法。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).Article

Cassetta,L。&Pollard,J.W。靶向巨噬细胞:癌症的治疗方法。《药物目录》修订版。17887-904(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).Article

Mantovani,A.,Allavena,P.,Marchesi,F。&Garlanda,C。巨噬细胞作为癌症治疗的工具和靶标。《药物目录》修订版。21799-820(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).Article

Timperi,E。等人。脂质相关巨噬细胞由癌症相关成纤维细胞诱导,并介导乳腺癌的免疫抑制。癌症研究823291-3306(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wolf, E. M., Fingleton, B. & Hasty, A. H. The therapeutic potential of TREM2 in cancer. Front. Oncol. 12, 984193 (2022).Article

Wolf,E.M.,Fingleton,B。&Hasty,A.H。TREM2在癌症中的治疗潜力。正面。Oncol公司。12984193(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).Article

Katzenelenbogen,Y.等人将scRNA-seq和细胞内蛋白活性偶联,揭示了TREM2在癌症中的免疫抑制作用。细胞182872-885.e19(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).Article

Binnewies,M。等人。在肿瘤相关巨噬细胞上靶向TREM2可增强免疫疗法。细胞代表37109844(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).Article

Molgora,M。等人。TREM2调节重塑肿瘤骨髓景观增强抗PD-1免疫疗法。细胞182886-900.e17(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, M. D. et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat. Immunol. 24, 792–801 (2023).Article

。自然免疫。24792-801(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patnaik, A. et al. A phase 1a dose-escalation study of PY314, a TREM2 (triggering receptor expressed on macrophages 2) targeting monoclonal antibody [abstract]. J. Clin. Oncol. 40, 2648 (2022).Article

Patnaik,A。等人,针对单克隆抗体的TREM2(巨噬细胞2上表达的触发受体)PY314的1a期剂量递增研究[摘要]。J、 临床。Oncol公司。402648(2022)。文章

Google Scholar

谷歌学者

Chan, M. K.-K. et al. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. Explor. Target. Anti-tumor Ther. 4, 316–343 (2023).Article

Chan,M.K.-K.等人。转化生长因子-β信号传导:从肿瘤微环境到抗癌治疗。探索。目标。抗肿瘤治疗。4316-343(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Wischhusen, J., Melero, I. & Fridman, W. H. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front. Immunol. 11, 951 (2020).Article

Wischhusen,J.,Melero,I。&Fridman,W.H。生长/分化因子-15(GDF-15):从生物标志物到新型可靶向免疫检查点。正面。免疫。11951(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huynh, L. K., Hipolito, C. J. & Dijke, Pten A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9, 743 (2019).Article

Huynh,L.K.,Hipolito,C.J。&Dijke,Pten关于开发用于癌症治疗的TGF-β抑制剂的观点。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J. & Driscoll, J. J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55 (2021).Article

Kim,B.-G.,Malek,E.,Choi,S.H.,Ignatz Hoover,J.J。&Driscoll,J.J。肿瘤学中出现的靶向TGF-β途径的新疗法。J、 血液学。Oncol公司。14,55(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ratnam, N. M. et al. NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. J. Clin. Invest. 127, 3796–3809 (2017).Article

Ratnam,N.M。等人。NF-κB调节GDF-15以抑制早期肿瘤发展过程中的巨噬细胞监测。J、 临床。投资。1273796-3809(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Urakawa, N. et al. GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathways. Lab. Invest. 95, 491–503 (2015).Article

Urakawa,N。等人。源自肿瘤相关巨噬细胞和食管鳞状细胞癌的GDF15通过Akt和Erk途径促进肿瘤进展。实验室投资。95491-503(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hong, G. et al. Plasma GDF15 levels associated with circulating immune cells predict the efficacy of PD-1/PD-L1 inhibitor treatment and prognosis in patients with advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 149, 159–171 (2023).Article

Hong,G。等人。与循环免疫细胞相关的血浆GDF15水平预测PD-1/PD-L1抑制剂治疗晚期非小细胞肺癌患者的疗效和预后。J、 癌症研究临床。Oncol公司。149159-171(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Haake, M. et al. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat. Commun. 14, 4253 (2023).Article

Haake,M。等人。肿瘤来源的GDF-15阻断LFA-1依赖性T细胞募集并抑制对抗PD-1治疗的反应。国家公社。144253(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bermejo, I. M. et al. Initial results from the phase 2A trial of visugromab (CTL-002) + nivolumab in advanced/metastatic anti-PD1/-L1 relapsed/refractory solid tumors (The GDFATHER-TRIAL). J. Clin. Oncol. 41, 2501 (2023).Article

Bermejo,I.M.等人,visugromab(CTL-002)+nivolumab在晚期/转移性抗PD1/-L1复发/难治性实体瘤中的2A期试验的初步结果(GDFADE-trial)。J。临床。Oncol公司。412501(2023)。文章

Google Scholar

谷歌学者

Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).Article

Bindea,G。等人。肿瘤内免疫细胞的时空动力学揭示了人类癌症的免疫景观。免疫39782-795(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Thorsson, V. et al. The immune landscape of cancer. Immunity 51, 411–412 (2019).Article

Thorsson,V。等人,《癌症的免疫景观》。豁免51411-412(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fitzgerald, B. G. et al. Abstract CT205: a phase I/Ib trial of intratumoral Poly-ICLC in resectable malignant pleural mesothelioma [abstract]. Cancer Res. 82, CT205 (2022).Article

Fitzgerald,B.G.等人摘要CT205:可切除恶性胸膜间皮瘤瘤内Poly-ICLC的I/Ib期试验[摘要]。癌症研究82,CT205(2022)。文章

Google Scholar

谷歌学者

Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev. 239, 27–44 (2011).Article

Klebanoff,C.A.,Acquavella,N.,Yu,Z。&Restifo,N.P。治疗性癌症疫苗:我们到了吗?免疫。修订版239,27–44(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).Article

Rosenberg,S.A.,Yang,J.C。和Restifo,N.P。癌症免疫疗法:超越目前的疫苗。《自然医学》10909-915(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynn, G. M. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015).Article

Lynn,G.M.等人。增强疫苗免疫原性的聚合物连接的TLR激动剂的物理化学性质的体内表征。美国国家生物技术公司。331201-1210(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zelba, H. et al. Adjuvant treatment for breast cancer patients using individualized neoantigen peptide vaccination—a retrospective observation. Vaccines 10, 1882 (2022).Article

Zelba,H。等人。使用个体化新抗原肽疫苗对乳腺癌患者进行辅助治疗-回顾性观察。疫苗101882(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. 30, 531–542 (2024).Article

Pant,S.等人。胰腺癌和结直肠癌中淋巴结靶向的mKRAS特异性两亲性疫苗:1期AMPLIFY-201试验。《自然医学》30531-542(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).Article

Kuai,R.,Ochyl,L.J.,Bahjat,K.S.,Schwendeman,A。&Moon,J.J。用于个性化癌症免疫治疗的Designer疫苗纳米盘。自然物质。16489-496(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).Article

Rosa,S.S.,Prazeres,D.M.F.,Azevedo,A.M。和Marques,M.P.C。mRNA疫苗制造:挑战和瓶颈。疫苗392190-2200(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).Article

IL-1和IL-1ra是RNA疫苗炎症反应的关键调节因子。自然免疫。23532-542(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gebre, M. S. et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022).Article

Gebre,M.S.等人。非修饰mRNA COVID-19疫苗非编码区的优化。自然601410-414(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morais, P., Adachi, H. & Yu, Y.-T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).Article

Morais,P.,Adachi,H。&Yu,Y.-T。假尿苷对mRNA COVID-19疫苗的关键贡献。正面。细胞开发生物学。9789427(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).Article

Pardi,N。等人。通过单次低剂量核苷修饰的mRNA疫苗接种来保护寨卡病毒。自然543248-251(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Comes, J. D. G., Pijlman, G. P. & Hick, T. A. H. Rise of the RNA machines—self-amplification in mRNA vaccine design. Trends Biotechnol. 41, 1417–1429 (2023).Article

Comes,J.D.G.,Pijlman,G.P。&Hick,T.A.H。RNA机器在mRNA疫苗设计中的自我扩增的兴起。趋势生物技术。411417-1429(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Amaya, L. et al. Circular RNA vaccine induces potent T cell responses. Proc. Natl Acad. Sci. USA 120, e2302191120 (2023).Article

Amaya,L。等人。环状RNA疫苗诱导有效的T细胞应答。。国家科学院。科学。美国120,e2302191120(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naka, T. et al. Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulocyte macrophage colony‐stimulating factor RNA. Cancer Sci. 99, 407–413 (2008).Article

Naka,T.等人。使用同时转染肿瘤RNA和粒细胞巨噬细胞集落刺激因子RNA的树突状细胞治疗复发性肿瘤的肿瘤疫苗。癌症科学。99407-413(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Minkis, K. et al. Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res. 68, 9441–9450 (2008).Article

Minkis,K。等人。通过IL-12p70 mRNA转染的树突状细胞,从黑色素瘤患者的血液中扩增出的T细胞的2型偏倚转变为1型。癌症研究689441-9450(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bergh, J. Vden et al. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget 6, 44123–44133 (2015).Article

Bergh,J。Vden等人。IL-15/IL-15RαmRNA工程化人树突状细胞对白细胞介素-15的表达增强了抗肿瘤自然杀伤细胞的活性。Oncotarget 644123–44133(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, J. et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol. Ther. Nucleic Acids 30, 184–197 (2022).Article

Yang,J。等人。肿瘤内递送了编码细胞因子的新型环状mRNA,用于免疫调节和癌症治疗。摩尔热。核酸30184-197(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Prim. 3, 63 (2023).Article

Chen,S.等人。基于纳米技术的mRNA疫苗。自然修订方法。3,63(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Kiaie, S. H. et al. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J. Nanobiotechnol. 20, 276 (2022).Article

Kiaie,S.H.等人。mRNA-LNP疗法的最新进展:免疫学和药理学方面。J、 纳米生物技术。20276(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).Article

Alameh,M.-G.等人。脂质纳米颗粒通过诱导强大的T滤泡辅助细胞和体液反应来增强mRNA和蛋白质亚单位疫苗的功效。免疫力542877–2892.e7(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Coughlan, L. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front. Immunol. 11, 909 (2020).Article

Coughlan,L。有助于非复制腺病毒载体疫苗免疫原性的因素。正面。免疫。11909(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Atmar, R. L. et al. Homologous and heterologous COVID-19 booster vaccinations. N. Engl. J. Med. 386, 1046–1057 (2022).Article

Atmar,R.L.等人。同源和异源COVID-19加强疫苗接种。N、 英语。J、 医学3861046-1057(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fausther-Bovendo, H. & Kobinger, G. P. Pre-existing immunity against Ad vectors. Hum. Vaccines Immunother. 10, 2875–2884 (2014).Article

Fausther-Bovendo,H。&Kobinger,G.P。预先存在的针对Ad载体的免疫力。嗯。疫苗免疫疗法。102875-2884(2014)。文章

Google Scholar

谷歌学者

Reyes-Sandoval, A. et al. Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity. Mol. Ther. 20, 1633–1647 (2012).Article

Reyes Sandoval,A。等人。用重组腺病毒和MVA混合载体免疫可以提高疫苗效力,同时降低抗载体免疫力。摩尔热。201633-1647(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harper, D. M. & DeMars, L. R. HPV vaccines—a review of the first decade. Gynecol. Oncol. 146, 196–204 (2017).Article

Harper,D.M。&DeMars,L.R。HPV疫苗-第一个十年的回顾。妇科。Oncol公司。146196-204(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banister, C. E., Liu, C., Pirisi, L., Creek, K. E. & Buckhaults, P. J. Identification and characterization of HPV-independent cervical cancers. Oncotarget 8, 13375–13386 (2017).Article

Banister,C.E.,Liu,C.,Pirisi,L.,Creek,K.E。&Buckhaults,P.J。HPV非依赖性宫颈癌的鉴定和表征。Oncotarget813375–13386(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tran, E., Urba, W. J. & Leidner, R. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 387, 573–574 (2022).Article

Tran,E.,Urba,W.J。&Leidner,R。胰腺癌中的新抗原T细胞受体基因治疗。N、 英语。J、 医学387573-574(2022)。文章

Google Scholar

谷歌学者

Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).Article

Tran,E.等人。基于上皮癌患者突变特异性CD4+T细胞的癌症免疫疗法。科学344641-645(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paston, S. J., Brentville, V. A., Symonds, P. & Durrant, L. G. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 12, 627932 (2021).Article

Paston,S.J.,Brentville,V.A.,Symonds,P。&Durrant,L.G。癌症疫苗,佐剂和递送系统。正面。免疫。12627932(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Diefenbach, C. S. M. et al. Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res. 14, 2740–2748 (2008).Article

Diefenbach,C.S.M.等人。高危首次缓解的上皮性卵巢癌患者接种NY-ESO-1b肽和montanide ISA-51疫苗的安全性和免疫原性研究。临床。癌症研究142740-2748(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).Article

Ott,P.A.等人。一种针对黑色素瘤患者的免疫原性个人新抗原疫苗。自然547217-221(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sabado, R. L. et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol. 3, 278–287 (2015).Article

Sabado,R。L。等人。瑞喹莫特作为高危黑色素瘤患者NY-ESO-1蛋白疫苗接种的免疫佐剂。癌症免疫。3278-287(2015)。文章

CAS

中科院

Google Scholar

谷歌学者

Karbach, J. et al. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naïve prostate cancer patients. Clin. Cancer Res. 17, 861–870 (2011).Article

Karbach,J。等人。通过在未接种抗原的前列腺癌患者中接种重组NY-ESO-1蛋白和CpG,进行有效的体内引发。临床。癌症研究17861-870(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).Article

Rojas,L.A。等人。个性化RNA新抗原疫苗刺激胰腺癌中的T细胞。自然618144-150(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).Article

Liang,F。等人。在恒河猴中施用改良的mRNA疫苗后,体内抗原呈递细胞的有效靶向和活化。摩尔热。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ewer, K. J. et al. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr. Opin. Immunol. 41, 47–54 (2016).Article

Ewer,K.J.等人。病毒载体作为疫苗平台:从免疫原性到影响。货币。奥平。免疫。41,47-54(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Balachandran, V. P. et al. Phase I trial of adjuvant autogene cevumeran, an individualized mRNA neoantigen vaccine, for pancreatic ductal adenocarcinoma [abstract]. J. Clin. Oncol. 40, 2516 (2022).Article

Balachandran,V.P.等人。胰腺导管腺癌个体化mRNA新抗原疫苗佐剂自体基因cevumeran的I期试验[摘要]。J、 临床。Oncol公司。402516(2022)。文章

Google Scholar

谷歌学者

Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022).Article

Palmer,C.D.等人。用于晚期转移性实体瘤的个体化异源黑猩猩腺病毒和自扩增mRNA新抗原疫苗:1期试验中期结果。《自然医学》281619-1629(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lopez, J. et al. Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial. Nat. Med. (in the press).Download referencesAuthor informationAuthor notesThese authors contributed equally: Faezzah Baharom, Dalton Hermans.These authors jointly supervised this work: Lélia Delamarre, Robert A.

Lopez,J.等人,《在晚期实体瘤中使用或不使用atezolizumab的自体cevumeran:1期临床试验》。国家医学院(新闻界)。。这些作者共同监督了这项工作:Lélia Delamarre,Robert A。

Seder.Authors and AffiliationsGenentech Inc., South San Francisco, CA, USAFaezzah Baharom & Lélia DelamarreVaccine Research Center, National Institutes of Health, Bethesda, MD, USADalton Hermans & Robert A. SederAuthorsFaezzah BaharomView author publicationsYou can also search for this author in.

莎草。作者和附属机构Genentech Inc.,加利福尼亚州南旧金山,USAFaezzah Baharom&Lélia DelamarreVaccine研究中心,国立卫生研究院,马里兰州贝塞斯达,USADalton Hermans&Robert A.SederAuthorsFaezzah BaharomView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarDalton HermansView author publicationsYou can also search for this author in

PubMed Google ScholarDalton HermansView作者出版物您也可以在

PubMed Google ScholarLélia DelamarreView author publicationsYou can also search for this author in

PubMed谷歌学术评论作者出版物您也可以在

PubMed Google ScholarRobert A. SederView author publicationsYou can also search for this author in

PubMed Google ScholarRobert A.SederView作者出版物您也可以在

PubMed Google ScholarContributionsThe authors contributed equally to all aspects of the article.Corresponding authorCorrespondence to

PubMed谷歌学术贡献作者对文章的各个方面都做出了同样的贡献。对应作者对应

Robert A. Seder.Ethics declarations

罗伯特·A·塞德。道德宣言

Competing interests

相互竞争的利益

F.B. and L.D. are employees of Genentech, a member of the Roche group, which develops and markets drugs for profit. The remaining authors declare no competing interests.

F、 B.和L.D.是罗氏集团(Roche group)成员基因泰克(Genentech)的员工,该集团以营利为目的开发和销售药物。其余作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Immunology thanks Cornelis Melief, Neeha Zaidi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然评论免疫学》感谢Cornelis Melief,Neeha Zaidi和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsReprints and permissionsAbout this articleCite this articleBaharom, F., Hermans, D., Delamarre, L. et al. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment..

。权利和许可打印和许可本文引用本文Baharom,F.,Hermans,D.,Delamarre,L。等人Vax Innate:通过调节T细胞和肿瘤微环境来改善治疗性癌症疫苗。。

Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01091-9Download citationAccepted: 02 September 2024Published: 21 October 2024DOI: https://doi.org/10.1038/s41577-024-01091-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Immunol(2024)。https://doi.org/10.1038/s41577-024-01091-9Download引文接受日期:2024年9月2日发布日期:2024年10月21日OI:https://doi.org/10.1038/s41577-024-01091-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Cancer microenvironmentImmunizationLymphocyte activationRNA vaccinesTumour immunology

癌症微环境免疫淋巴细胞活化RNA疫苗接种免疫学