商务合作
动脉网APP
可切换为仅中文
AbstractEarly detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal–precancer–cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer.
摘要癌症或癌前病变的早期发现和干预有望提高患者的生存率。然而,在非癌组织背景下,癌症的发生过程和正常的癌前癌症进展仍然知之甚少。这部分是由于缺乏早期临床样本或研究早期癌症的合适模型。
In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models.
在这篇综述中,我们介绍了临床样本和模型系统,例如原生小鼠和类器官衍生或干细胞衍生的模型,这些模型可以对早期癌症发展进行纵向分析。我们还介绍了新兴技术和计算工具,以增强我们对癌症发生和早期进展的理解,包括直接成像,谱系追踪,单细胞和空间多组学以及人工智能模型。
Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention..
总之,这些模型和技术有助于更全面地了解表征不佳的早期恶性转化级联反应,具有揭示癌症发展的关键驱动因素和早期生物标志物的巨大潜力。最后,我们讨论如何将这些新见解转化为基于机制的早期癌症检测和预防策略。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: The multistage malignant transformation cascade of normal cells.Fig. 2: Clinical samples and preclinical models for early cancer.
图1:正常细胞的多阶段恶性转化级联。图2:早期癌症的临床样本和临床前模型。
ReferencesCrosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).Article
。科学375,eaay9040(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jamieson, C. H. M. & Weissman, I. L. Stem-cell aging and pathways to precancer evolution. N. Engl. J. Med. 389, 1310–1319 (2023).Article
Jamieson,C.H.M。和Weissman,I.L。干细胞衰老和癌前进化途径。N、 英语。J、 医学3891310-1319(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jassim, A., Rahrmann, E. P., Simons, B. D. & Gilbertson, R. J. Cancers make their own luck: theories of cancer origins. Nat. Rev. Cancer 23, 710–724 (2023).Article
。《国家癌症评论》23710–724(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).Article
Greaves,M。&Maley,C.C。癌症中的克隆进化。自然481306-313(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).Article
。《国家癌症评论》21239-256(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).Article
Li,R。等人。形态正常人体组织中体细胞诱变的体图。自然597398-403(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuipers, E. J. et al. Colorectal cancer. Nat. Rev. Dis. Primers 1, 15065 (2015).Article
Kuipers,E.J.等人,《癌症结直肠》。国家牧师。《入门》[UNK]115065(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).Article
Herbst,R.S.,Heymach,J.V。和Lippman,S.M。肺癌。N、 英语。J、 医学3591367-1380(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, S., Almagro, J. & Fuchs, E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat. Rev. Cancer 24, 274–286 (2024).Article
Yuan,S.,Almagro,J。&Fuchs,E。Beyond genetics:用车轮后面的肿瘤微环境驱动癌症。《国家癌症评论》24274-286(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pashayan, N. & Pharoah, P. D. P. The challenge of early detection in cancer. Science 368, 589–590 (2020).Article
Pashayan,N。&Pharoah,P.D.P。癌症早期发现的挑战。科学368589-590(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Le Magnen, C., Dutta, A. & Abate-Shen, C. Optimizing mouse models for precision cancer prevention. Nat. Rev. Cancer 16, 187–196 (2016).Article
Le Magnen,C.,Dutta,A。和Abate Shen,C。优化小鼠模型以精确预防癌症。《国家癌症评论》16187-196(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Srivastava, S. et al. The making of a precancer atlas: promises, challenges, and opportunities. Trends Cancer 4, 523–536 (2018).Article
Srivastava,S.等人,《癌前病变图谱的制作:承诺、挑战和机遇》。趋势癌症4523-536(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).Article
Gengenbacher,N.,Singhal,M。&Augustin,H.G。临床前小鼠实体瘤模型:现状,挑战和前景。《国家癌症评论》17751-765(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. X. et al. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat. Commun. 8, 524 (2017).Article
Chen,X。X。等。通过多区域全外显子组测序对食管鳞状细胞癌及其前体病变进行基因组比较。国家公社。8524(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chitsazzadeh, V. et al. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat. Commun. 7, 12601 (2016).Article
Chitsazzadeh,V。等人。跨肿瘤前中间体鳞状细胞癌发展基因组驱动因素的跨物种鉴定。国家公社。712601(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wils, L. J. et al. Elucidating the genetic landscape of oral leukoplakia to predict malignant transformation. Clin. Cancer Res. 29, 602–613 (2023).Article
Wils,L.J.等人阐明口腔白斑的遗传景观以预测恶性转化。临床。癌症研究29602-613(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ganz, J. et al. Rates and patterns of clonal oncogenic mutations in the normal human brain. Cancer Discov. 12, 172–185 (2022).Article
Ganz,J。等人。正常人脑中克隆致癌突变的发生率和模式。癌症发现。12172-185(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).Article
Moore,L。等人。正常人子宫内膜上皮的突变景观。《自然》580640–646(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).Article
Lawson,A.R.J.等人,《人类膀胱中体细胞突变和选择的广泛异质性》。科学370,75-82(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).Article
Yokoyama,A。等人。突变癌症驱动因素对食管上皮的年龄相关重塑。自然565312-317(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).Article
Lee Six,H.等人。正常结直肠上皮细胞体细胞突变的前景。自然574532-537(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).Article
Brunner,S.F.等人。健康和肝硬化人肝脏中的体细胞突变和克隆动力学。自然574538-542(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).Article
Suda,K。等人。子宫内膜异位症和正常子宫内膜中癌症相关突变的克隆扩增和多样化。Cell Rep.241777–1789(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).Article
Martincorena,I。等人。体细胞突变克隆随着年龄的增长而定殖于人类食管。科学362911-917(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).Article
Martincorena,I。等人。肿瘤进化。正常人皮肤中体细胞突变的高负担和普遍阳性选择。科学34880-886(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370, 82–89 (2020).Article
Li,R。等人。形态正常的人尿路上皮中的宏观体细胞克隆扩增。科学370,82-89(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robles, A. I., Jen, J. & Harris, C. C. Clinical outcomes of TP53 mutations in cancers. Cold Spring Harb. Perspect. Med. 6, a026294 (2016).Article
Robles,A.I.,Jen,J。&Harris,C.C。癌症中TP53突变的临床结果。冷泉兔。透视图。医学杂志6,a026294(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ren, X. et al. Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma. Nat. Commun. 13, 6300 (2022).Article
Ren,X。等。单细胞转录组学分析突出了人类子宫内膜样子宫内膜癌的起源和病理过程。国家公社。136300(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liao, G. et al. Single-cell transcriptomics provides insights into the origin and microenvironment of human oesophageal high-grade intraepithelial neoplasia. Clin. Transl. Med. 12, e874 (2022).Article
Liao,G。等。单细胞转录组学为人类食管高度上皮内瘤变的起源和微环境提供了见解。临床。翻译。医学12,e874(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Owen, R. P. et al. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands. Nat. Commun. 9, 4261 (2018).Article
Owen,R.P.等人,单细胞RNA-seq揭示了Barrett食管和食管粘膜下腺之间的深刻转录相似性。国家公社。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joyce, R. et al. Identification of aberrant luminal progenitors and mTORC1 as a potential breast cancer prevention target in BRCA2 mutation carriers. Nat. Cell Biol. 26, 138–152 (2024).Article
Joyce,R。等人。鉴定异常管腔祖细胞和mTORC1作为BRCA2突变携带者中潜在的乳腺癌预防靶标。自然细胞生物学。26138-152(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nowicki-Osuch, K. et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science 373, 760–767 (2021).Article
Nowicki-Osuch,K。等人。分子表型揭示了Barrett食管的身份及其恶性转变。科学3737760-767(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280.e26 (2021).Article
Chen,B.等。差异性恶变前程序和微环境图人类结直肠息肉恶性肿瘤的不同途径。细胞1846262-6280.e26(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, R. et al. Co-evolution of tumor and immune cells during progression of multiple myeloma. Nat. Commun. 12, 2559 (2021).Article
Liu,R.等。多发性骨髓瘤进展过程中肿瘤和免疫细胞的共同进化。国家公社。122559(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).Article
Becker,W.R.等人。单细胞分析定义了息肉向结直肠癌恶性转化过程中细胞状态和组成变化的连续统一体。纳特·吉内特。54985-995(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Z. et al. Single-cell chromatin accessibility analysis reveals the epigenetic basis and signature transcription factors for the molecular subtypes of colorectal cancers. Cancer Discov. 14, 1082–1105 (2024).Article
Liu,Z.等。单细胞染色质可及性分析揭示了结直肠癌分子亚型的表观遗传基础和特征转录因子。癌症发现。141082-1105(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, P. et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep. 27, 1934–1947.e5 (2019).Article
Zhang,P。等。解剖胃癌前病变和早期胃癌的单细胞转录组网络。Cell Rep.271934–1947.e5(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, K. K. et al. Spatiotemporal genomic profiling of intestinal metaplasia reveals clonal dynamics of gastric cancer progression. Cancer Cell 41, 2019–2037.e8 (2023).Article
Huang,K.K.等人。肠化生的时空基因组分析揭示了胃癌进展的克隆动力学。癌细胞412019-2037.e8(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Z. et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat. Commun. 12, 6500 (2021).Article
Wang,Z.等。用单细胞RNA测序破译人肺腺癌的细胞谱系规范。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, T. et al. Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine 92, 104612 (2023).Article
Zhang,T。等人。使用正常宫颈,宫颈癌前病变和宫颈癌的单细胞转录组鉴定宫颈癌干细胞。EBioMedicine 92104612(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zou, D. D. et al. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. eLife 12, e85270 (2023).Article
Zou,D.D.等人。单细胞测序突出了光化性角化病和皮肤鳞状细胞癌的异质性和恶性进展。eLife 12,e85270(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, J. H. et al. Single-cell transcriptome profiling of the stepwise progression of head and neck cancer. Nat. Commun. 14, 1055 (2023).Article
Choi,J.H.等人。头颈癌逐步进展的单细胞转录组分析。国家公社。141055(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. et al. Spatial transcriptomics analysis of esophageal squamous precancerous lesions and their progression to esophageal cancer. Nat. Commun. 14, 4779 (2023).Article
Liu,X。等。食管鳞状细胞癌前病变及其进展为食管癌的空间转录组学分析。国家公社。144779(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carpenter, E. S. et al. Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early neoplastic lesions. Cancer Discov. 13, 1324–1345 (2023).Article
Carpenter,E.S.等人对供体胰腺的分析定义了早期肿瘤病变的转录组特征和微环境。癌症发现。131324-1345(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut 69, 1283–1293 (2020).Article
Li,J.等人。家族性腺瘤性息肉病患者癌变的基因组和转录组学分析。肠道691283-1293(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chang, J. et al. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development. Cancer Cell 41, 2038–2050.e5 (2023). This paper delineates the inactivation of TP53 as a preliminary step in early carcinogenesis of esophageal SCC.Article
Chang,J。等人。基因组改变驱动食管癌发展中的癌前病变。癌细胞412038-2050.e5(2023)。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).Article
Patel,A.P.等人,《单细胞RNA-seq》强调了原发性胶质母细胞瘤的肿瘤内异质性。科学3441396-1401(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).Article
Erickson,A。等人在良性和恶性组织中空间解析克隆拷贝数改变。《自然》608360-367(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. Genet. 54, 1390–1405 (2022).Article
崔舟,D。等。空间受限的驱动因素和过渡细胞群与未经治疗和化疗耐药的胰腺癌的微环境合作。纳特·吉内特。541390-1405(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heiser, C. N. et al. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 186, 5620–5637.e16 (2023).Article
分子制图揭示了散发性结直肠肿瘤的进化和微环境动力学。细胞1865620–5637.e16(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luebeck, J. et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature 616, 798–805 (2023). This paper reveals that patients with Barrett’s esophagus who advanced to esophageal adenocarcinoma displayed significantly increased levels of ecDNA, housing a wide array of oncogenes and immunomodulatory genes.Article .
Luebeck,J。等人。Barrett食管癌性转化中的染色体外DNA。自然616798-805(2023)。本文揭示,进展为食管腺癌的Barrett食管患者的ecDNA水平显着升高,含有多种癌基因和免疫调节基因。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 1, 493–506 (2020).Article
Zavidij,O.等人。单细胞RNA测序揭示了多发性骨髓瘤前体阶段免疫微环境受损。《自然癌症》1493-506(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, C. et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci. Adv. 9, eadd8977 (2023).Article
Liu,C.等。人类宫颈鳞状细胞癌发生和发展的细胞和分子特征的单细胞解剖。科学。Adv.9,eadd8977(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, W. et al. An immune cell map of human lung adenocarcinoma development reveals an anti-tumoral role of the Tfh-dependent tertiary lymphoid structure. Cell Rep. Med. 5, 101448 (2024).Article
Liu,W。等人。人肺腺癌发展的免疫细胞图谱揭示了Tfh依赖性三级淋巴结构的抗肿瘤作用。Cell Rep.Med.5101448(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yanagawa, J. et al. Single-cell characterization of pulmonary nodules implicates suppression of immunosurveillance across early stages of lung adenocarcinoma. Cancer Res. 83, 3305–3319 (2023).Article
Yanagawa,J。等人。肺结节的单细胞表征暗示抑制肺腺癌早期的免疫监视。癌症研究833305-3319(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, S. et al. TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma. J. Clin. Invest. 132, e157649 (2022).Article
Hu,S。等。TDO2+肌成纤维细胞介导鳞状细胞癌恶性转化中的免疫抑制。J、 临床。投资。132,e157649(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Y. et al. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 41, 903–918.e8 (2023).Article
Chen,Y.等人。上皮细胞激活成纤维细胞以促进食管癌的发展。癌细胞41903-918.e8(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nowicki-Osuch, K. et al. Single-cell RNA sequencing unifies developmental programs of esophageal and gastric intestinal metaplasia. Cancer Discov. 13, 1346–1363 (2023).Article
Nowicki-Osuch,K。等人。单细胞RNA测序统一了食管和胃肠化生的发育程序。癌症发现。131346-1363(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, S.-H. et al. Apposition of fibroblasts with metaplastic gastric cells promotes dysplastic transition. Gastroenterology 165, 374–390 (2023).Article
Lee,S.-H.等人。成纤维细胞与化生胃细胞的并置促进了发育异常的转变。胃肠病学165374-390(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, R. et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 41, 1407–1426.e9 (2023). This paper describes a landscape of the tumour microenvironment at various stages of gastric adenocarcinoma, identifying the crucial tumour microenvironment ecotypes associated with the phenotypic progression and results of gastric adenocarcinoma.Article .
Wang,R.等。胃腺癌进展过程中免疫和基质细胞状态和生态型的演变。癌细胞411407-1426.e9(2023)。本文描述了胃腺癌不同阶段的肿瘤微环境概况,确定了与胃腺癌表型进展和结果相关的关键肿瘤微环境生态型。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schutz, S. et al. Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat. Commun. 14, 5413 (2023).Article
Schutz,S.等人。功能不同的癌症相关成纤维细胞亚群在鳞状细胞癌中建立了促进肿瘤的环境。国家公社。145413(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, L. et al. Single-cell and spatial dissection of precancerous lesions underlying the initiation process of oral squamous cell carcinoma. Cell Discov. 9, 28 (2023).Article
Sun,L。等人。口腔鳞状细胞癌发生过程中癌前病变的单细胞和空间解剖。细胞Discov。9,28(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roelands, J. et al. Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut 72, 1326–1339 (2022).Article
转录组学和免疫表型分析揭示了结直肠癌肿瘤发生的分子和免疫学标志。肠道721326-1339(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, G. et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci. Transl. Med. 14, eabk2756 (2022).Article
Wang,G.等人。肺癌scRNA-seq和脂质组学揭示了异常的脂质代谢,可用于早期诊断。科学。翻译。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nie, M. et al. Evolutionary metabolic landscape from preneoplasia to invasive lung adenocarcinoma. Nat. Commun. 12, 6479 (2021).Article
Nie,M.等人。从肿瘤前期到浸润性肺腺癌的进化代谢景观。国家公社。126479(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).Article
Chiu,C.Y。和Miller,S.A。临床宏基因组学。Genet自然Rev。20341-355(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serrano-Villar, S. et al. Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat. Med. 29, 1738–1749 (2023).Article
Serrano-Villar,S.等人。微生物组衍生的钴胺素和琥珀酰辅酶A作为改进肛门癌筛查的生物标志物。《自然医学》291738-1749(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leshchiner, I. et al. Inferring early genetic progression in cancers with unobtainable premalignant disease. Nat. Cancer 4, 550–563 (2023). This paper reports a computational method named PhylogicNDT, which can predict the early genetic events in cancers that lack precancerous lesions.Article .
Leshchiner,I。等人,推断患有无法获得的癌前疾病的癌症的早期遗传进展。《自然癌症》4550-563(2023)。本文报道了一种称为PhylogicNDT的计算方法,该方法可以预测缺乏癌前病变的癌症的早期遗传事件。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, K. et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat. Med. 29, 3033–3043 (2023). This paper reports a deep learning model called PANDA, which effectively detects and classifies early-stage malignancies with high accuracy using non-contrast CT scans.Article .
Cao,K。等人。通过非对比CT和深度学习进行大规模胰腺癌检测。《自然医学》293033-3043(2023)。本文报道了一种称为PANDA的深度学习模型,该模型使用非对比CT扫描有效地高精度地检测和分类早期恶性肿瘤。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thirunavukarasu, A. J. et al. Large language models in medicine. Nat. Med. 29, 1930–1940 (2023).Article
。《自然医学》291930-1940(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).Article
Lipkova,J。等人。用于肿瘤学多模式数据集成的人工智能。癌细胞401095-1110(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol. 2, a003848 (2010).Article
Condeelis,J。&Weissleder,R。癌症的体内成像。冷泉兔。透视图。生物学2,a003848(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, X. L. et al. Effect of an artificial intelligence-assisted system on endoscopic diagnosis of superficial oesophageal squamous cell carcinoma and precancerous lesions: a multicentre, tandem, double-blind, randomised controlled trial. Lancet Gastroenterol. Hepatol. 9, 34–44 (2024).Article .
Yuan,X.L.等人。人工智能辅助系统对浅表食管鳞状细胞癌和癌前病变内镜诊断的影响:一项多中心,串联,双盲,随机对照试验。柳叶刀肠胃病。肝病。9,34-44(2024)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bao, H. et al. Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: a multicenter, clinical-based, observational study. Gynecol. Oncol. 159, 171–178 (2020).Article
Bao,H.等。人工智能辅助细胞学检测宫颈上皮内瘤变或浸润性癌:一项多中心,基于临床的观察性研究。妇科。Oncol公司。159171-178(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dong, Y. et al. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging 40, 3728–3738 (2021).Article
Dong,Y。等人。基于偏振成像的机器学习框架,用于宫颈癌前病变的定量病理诊断。IEEE Trans。医学成像403728-3738(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fockens, K. N. et al. A deep learning system for detection of early Barrett’s neoplasia: a model development and validation study. Lancet Digit. Health 5, e905–e916 (2023).Article
Fockens,K.N.等人。用于检测早期巴雷特瘤形成的深度学习系统:模型开发和验证研究。柳叶刀数字。健康5,e905–e916(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yin, J. et al. Differential diagnosis of DCIS and fibroadenoma based on ultrasound images: a difference-based self-supervised approach. Interdiscip. Sci. 15, 262–272 (2023).Article
Yin,J.等。基于超声图像的DCIS和纤维腺瘤的鉴别诊断:基于差异的自我监督方法。跨学科。科学。15262-272(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bhowmik, A. et al. Portable, handheld, and affordable blood perfusion imager for screening of subsurface cancer in resource-limited settings. Proc. Natl Acad. Sci. USA 119, e2026201119 (2022).Article
Bhowmik,A。等人。便携式,手持式和经济实惠的血液灌注成像仪,用于在资源有限的环境中筛查地下癌症。。国家科学院。科学。美国119,e2026201119(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Placido, D. et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat. Med. 29, 1113–1122 (2023).Article
Placido,D.等人。一种从疾病轨迹预测胰腺癌风险的深度学习算法。《自然医学》291113-1122(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).Article
Ardila,D.等人。低剂量胸部计算机断层扫描三维深度学习的端到端肺癌筛查。《自然医学》25954-961(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Salim, M. et al. AI-based selection of individuals for supplemental MRI in population-based breast cancer screening: the randomized ScreenTrustMRI trial. Nat. Med. 30, 2623–2630 (2024).Article
Salim,M.等人。基于AI的个体选择,用于基于人群的乳腺癌筛查中的补充MRI:随机ScreenTrustMRI试验。《自然医学》302623-2630(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Y. et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 15, 1657 (2024).Article
Chen,Y。等。代谢组学机器学习预测胃癌的诊断和预后。国家公社。151657(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, Z. et al. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network. Genome Med. 15, 93 (2023).Article
。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korber, V. et al. Evolutionary trajectories of IDH(WT) glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704.e12 (2019).Article
Korber,V。等人。IDH(WT)胶质母细胞瘤的进化轨迹揭示了早期肿瘤发生的共同途径,这是在初步诊断之前几年引发的。癌细胞35692-704.e12(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wu, L. et al. Natural coevolution of tumor and immunoenvironment in glioblastoma. Cancer Discov. 12, 2820–2837 (2022).Article
Wu,L。等。胶质母细胞瘤中肿瘤和免疫环境的自然共同进化。癌症发现。122820–2837(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stangis, M. M. et al. The hallmarks of precancer. Cancer Discov. 14, 683–689 (2024).Article
Stangis,M.M.等人,《癌前病变的标志》。癌症发现。14683-689(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).Article
Greener,J.G.,Kandathil,S.M.,Moffat,L。和Jones,D.T。生物学家机器学习指南。Nat。Rev。Mol。Cell Biol。23,40-55(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).Article
Kersten,K.,de Visser,K.E.,van Miltenburg,M.H。&Jonkers,J。肿瘤学研究和癌症医学中的基因工程小鼠模型。EMBO Mol.Med.9137-153(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hebert, J. D., Neal, J. W. & Winslow, M. M. Dissecting metastasis using preclinical models and methods. Nat. Rev. Cancer 23, 391–407 (2023).Article
Hebert,J.D.,Neal,J.W。和Winslow,M.M。使用临床前模型和方法解剖转移。《国家癌症评论》23391-407(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).Article
Sanchez-Rivera,F.J.等人。通过体细胞基因组编辑快速建模癌症中的合作遗传事件。《自然》516428–431(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, H. & Zhou, B. Dual genetic approaches for deciphering cell fate plasticity in vivo: more than double. Curr. Opin. Cell Biol. 61, 101–109 (2019).Article
Zhao,H。&Zhou,B。用于破译体内细胞命运可塑性的双重遗传方法:超过两倍。货币。奥平。细胞生物学。61101-109(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schonhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).Article
Schonhuber,N。等人。用于胰腺癌时间和宿主特异性靶向的下一代双重组酶系统。《自然医学》201340-1347(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robles-Oteiza, C. et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat. Commun. 6, 8783 (2015).Article
Robles Oteiza,C.等人。通过XTR等位基因进行基于重组酶的条件性和可逆性基因调控。国家公社。68783(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).Article
Hingorani,S.R.等人。浸润前和浸润性导管胰腺癌及其在小鼠中的早期检测。癌细胞4437-450(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).Article
Hingorani,S.R.等人Trp53R172H和KrasG12D合作促进小鼠染色体不稳定性和广泛转移的胰腺导管腺癌。癌细胞7469-483(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).Article
。Genes Dev.173112–3126(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kemp, C. J. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb. Protoc. 2015, 865–874 (2015).Article
Kemp,C.J。化学致癌作用的动物模型:推动癌症研究取得突破100年。冷泉兔。普罗托克。2015865-874(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). This paper reports that PM2.5 contributes to lung cancer by impacting cells that already have oncogenic events in healthy lung tissue.Article
Hill,W。等人。空气污染物促进肺腺癌。自然616159-167(2023)。本文报道PM2.5通过影响健康肺组织中已经具有致癌事件的细胞而导致肺癌。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 52, 1139–1143 (2020).Article
Balmain,A。体细胞突变和环境肿瘤促进剂在癌症风险中的关键作用。纳特·吉内特。521139-1143(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Colom, B. et al. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52, 604–614 (2020).Article
空间竞争塑造了正常食管上皮的动态突变景观。纳特·吉内特。52604-614(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Murai, K. p53 mutation in normal esophagus promotes multiple stages of carcinogenesis but is constrained by clonal competition. Nat. Commun. 13, 6206 (2022).Article
Murai,K。正常食管中的p53突变促进癌发生的多个阶段,但受到克隆竞争的限制。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Scheele, C. et al. Multiphoton intravital microscopy of rodents. Nat. Rev. Methods Primers 2, 89 (2022).Article
Scheele,C。等人。啮齿动物的多光子活体显微镜检查。Nat.Rev.Methods引物2,89(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Entenberg, D., Oktay, M. H. & Condeelis, J. S. Intravital imaging to study cancer progression and metastasis. Nat. Rev. Cancer 23, 25–42 (2023).Article
Entenberg,D.,Oktay,M.H。&Condeelis,J.S。活体成像研究癌症进展和转移。《国家癌症评论》23,25-42(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xin, T. et al. Oncogenic Kras induces spatiotemporally specific tissue deformation through converting pulsatile into sustained ERK activation. Nat. Cell Biol. 26, 859–867 (2024). This paper reports that the KrasG12D mutation induces epithelial tissue deformation in a spatiotemporally specific manner, primarily through the continuous activation of ERK signals.Article .
Xin,T。等人。致癌Kras通过将脉动转化为持续的ERK激活来诱导时空特异性组织变形。自然细胞生物学。26859-867(2024)。本文报道,KrasG12D突变主要通过ERK信号的连续激活,以时空特异性方式诱导上皮组织变形。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J. & Behrens, A. Tissue clearing to examine tumour complexity in three dimensions. Nat. Rev. Cancer 21, 718–730 (2021).Article
Almagro,J.,Messal,H.A.,Zaw Thin,M.,van Rheenen,J。&Behrens,A。组织清除以检查三维肿瘤的复杂性。《国家癌症评论》21718-730(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Messal, H. A. et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 566, 126–130 (2019).Article
。自然566126-130(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, P. et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 606, 550–556 (2022).Article
Chen,P。等人。嗅觉感觉经验通过神经元IGF1调节神经胶质瘤的发生。自然606550–556(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).Article
Iwano,S.等人。自由活动动物深部组织的单细胞生物发光成像。科学359935-939(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Su, Y. et al. An optimized bioluminescent substrate for non-invasive imaging in the brain. Nat. Chem. Biol. 19, 731–739 (2023).CAS
Su,Y.等人。一种用于大脑非侵入性成像的优化生物发光底物。自然化学。生物学19731-739(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, e129212 (2019).Article
。JCI Insight 5,e129212(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yao, J. et al. Single-cell transcriptomic analysis in a mouse model deciphers cell transition states in the multistep development of esophageal cancer. Nat. Commun. 11, 3715 (2020).Article
Yao,J.等人。小鼠模型中的单细胞转录组学分析破译了食管癌多步骤发展中的细胞过渡状态。国家公社。113715(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, D. et al. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. Sci. Adv. 9, eadc9446 (2023).Article
Li,D。等人,ETV4介导剂量依赖性前列腺肿瘤的发生,并与p53缺失协同产生前列腺癌。科学。Adv.9,eadc9446(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, S. et al. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 612, 555–563 (2022).Article
Yuan,S。等人。Ras通过干细胞与微环境的串扰来驱动恶性肿瘤。自然612555-563(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abu El Maaty, M. A. et al. Single-cell analyses unravel cell type-specific responses to a vitamin D analog in prostatic precancerous lesions. Sci. Adv. 7, eabg5982 (2021).Article
Abu El-Maaty,M.A.等人的单细胞分析揭示了前列腺癌前病变中对维生素D类似物的细胞类型特异性反应。科学。Adv.7,eabg5982(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abu El Maaty, M. A. et al. Hypoxia-mediated stabilization of HIF1A in prostatic intraepithelial neoplasia promotes cell plasticity and malignant progression. Sci. Adv. 8, eabo2295 (2022).Article
Abu El-Maaty,M.A。等人。缺氧介导的前列腺上皮内瘤变中HIF1A的稳定促进细胞可塑性和恶性进展。科学。Adv.8,eabo2295(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).Article
Prieto,L.I.等人。衰老的肺泡巨噬细胞促进早期肺肿瘤发生。癌细胞411261-1275.e6(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haston, S. et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 41, 1242–1260.e6 (2023).Article
Haston,S。等人。清除衰老巨噬细胞可改善KRAS驱动的肺癌的肿瘤发生。癌细胞411242-1260.e6(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kolodkin-Gal, D. et al. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut 71, 345–355 (2022).Article
Kolodkin Gal,D。等人。表达Cox2的衰老细胞的溶解消除抑制癌前胰腺病变的生长。肠道71345-355(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yeo, A. T. et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat. Immunol. 23, 971–984 (2022).Article
Yeo,A.T.等人。单细胞RNA测序揭示了胶质母细胞瘤进展过程中免疫景观的演变。自然免疫。23971-984(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rajendran, S. et al. Single-cell RNA sequencing reveals immunosuppressive myeloid cell diversity during malignant progression in a murine model of glioma. Cell Rep. 42, 112197 (2023).Article
Rajendran,S.等人。单细胞RNA测序揭示了胶质瘤小鼠模型恶性进展期间免疫抑制性骨髓细胞的多样性。细胞代表42112197(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).Article
Wagner,D.E。&Klein,A.M。谱系追踪满足单细胞组学:机遇和挑战。Genet自然Rev。21410-427(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).Article
Visvader,J.E。癌症起源细胞。自然469314-322(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, C. et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146, 209–221 (2011).Article
Liu,C.等。双重标记的镶嵌分析揭示了胶质瘤中起源的肿瘤细胞。细胞146209-221(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sket, T., Falcomata, C. & Saur, D. Dual recombinase-based mouse models help decipher cancer biology and targets for therapy. Cancer Res. 83, 2279–2282 (2023).Article
Sket,T.,Falcomata,C。&Saur,D。基于双重重组酶的小鼠模型有助于破译癌症生物学和治疗靶点。癌症研究832279-2282(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boone, P. G. et al. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat. Commun. 10, 5490 (2019).Article
Boone,P.G。等人。一种癌症彩虹小鼠,用于可视化致癌克隆扩增的功能基因组学。国家公社。105490(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal dynamics in disease. Science 378, eabm5874 (2022).Article
Sankaran,V.G.,Weissman,J.S。和Zon,L.I。细胞条形码来破译疾病中的克隆动力学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804 (2018).Article
Kalhor,R。等人。通过归巢CRISPR对整个小鼠进行发育条形码。科学361,eaat9804(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422.e27 (2020).Article
Bowling,S。等人。一种工程化的CRISPR-Cas9小鼠系,用于同时读取单细胞中的谱系历史和基因表达谱。细胞1811410-1422.e27(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285–294 (2022).Article
Ratz,M.等人。单细胞和空间转录组学揭示了小鼠大脑中的克隆关系。自然神经科学。25285-294(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022). This paper reports a PDAC mouse model, which allows tracing precancerous cells by monitoring the loss of heterozygosity of the second wild-type Trp53 allele, and uncovers a sequential pattern of genome evolution throughout tumorigenesis.Article .
Baslan,T。等人。p53丢失后有序和确定性的癌症基因组进化。。本文报道了一种PDAC小鼠模型,该模型通过监测第二个野生型Trp53等位基因杂合性的丧失来追踪癌前细胞,并揭示了整个肿瘤发生过程中基因组进化的顺序模式。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, P. et al. Protein-level mutant p53 reporters identify druggable rare precancerous clones in noncancerous tissues. Nat. Cancer 4, 1176–1192 (2023). This paper reports a protein-level mutant p53 reporter that effectively replicates the functionality of mutant p53 proteins in vivo, facilitating the detection and monitoring of rare precancerous clones in deep non-cancerous tissues.Article .
Yao,P。等人。蛋白质水平突变型p53报告基因在非癌组织中鉴定出可药用的罕见癌前克隆。。本文报道了一种蛋白质水平的突变型p53报告基因,可在体内有效复制突变型p53蛋白的功能,有助于检测和监测深层非癌组织中罕见的癌前克隆。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Johnsson, A. E. et al. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep. 6, 1153–1164 (2014).Article
Johnsson,A.E.等人。Rac-FRET小鼠揭示了原代细胞和组织中Rac活性的严格时空控制。Cell Rep.61153–1164(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152, 340–351 (2013).Article
Burd,C.E.等人。用p16(INK4a)-荧光素酶模型监测体内肿瘤发生和衰老。细胞152340-351(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).Article
Yum,M.K.等人追踪致癌基因驱动的肠干细胞生态位重塑。自然594442-447(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e25 (2022). This paper reports a lung mouse model that enables continuous cell lineage tracing and identifies rare clonal expansion during tumour development.Article .
。细胞1851905-1923.e25(2022)。本文报道了一种肺小鼠模型,该模型可以进行连续的细胞谱系追踪,并在肿瘤发展过程中识别罕见的克隆扩增。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ceresa, D. et al. Early clonal extinction in glioblastoma progression revealed by genetic barcoding. Cancer Cell 41, 1466–1479.e9 (2023).Article
Ceresa,D。等人。通过遗传条形码揭示胶质母细胞瘤进展中的早期克隆灭绝。癌细胞411466-1479.e9(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).Article
Colom,B。等人。正常上皮细胞中的突变克隆胜过并消除了新出现的肿瘤。自然598510-514(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, Z. et al. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis. Cell Stem Cell 30, 1091–1109.e7 (2023).Article
Jiang,Z。等人,Tff2定义了缺乏再生潜力并且对Kras驱动的致癌作用具有保护作用的转运扩增胰腺腺泡祖细胞。细胞干细胞301091-1109.e7(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Y. et al. Club cells employ regeneration mechanisms during lung tumorigenesis. Nat. Commun. 13, 4557 (2022).Article
Chen,Y。等人。Club细胞在肺肿瘤发生过程中采用再生机制。国家公社。134557(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taylor, M. A. et al. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science 384, eadi7453 (2024).Article
Taylor,M.A.等人。干细胞状态在多阶段皮肤鳞状细胞癌发展中会聚。科学384,eadi7453(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).Article
Marjanovic,N.D.等人。肺癌进化过程中高可塑性细胞状态的出现。癌细胞38229-246.e13(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rajbhandari, N. et al. Single-cell mapping identifies MSI+ cells as a common origin for diverse subtypes of pancreatic cancer. Cancer Cell 41, 1989–2005.e9 (2023).Article
Rajbhandari,N。等人。单细胞定位将MSI+细胞鉴定为胰腺癌不同亚型的共同起源。癌细胞411989-2005.e9(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schlesinger, Y. et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun. 11, 4516 (2020).Article
Schlesinger,Y。等人。胰腺浸润前病变和癌症的单细胞转录组揭示了腺泡化生细胞的异质性。国家公社。114516(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burdziak, C. et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023).Article
Burdziak,C。等人。表观遗传可塑性与细胞-细胞相互作用协同作用以指导胰腺肿瘤发生。科学380,eadd5327(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Y. et al. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. Nat. Cancer 2, 49–65 (2021).Article
Li,Y。等人。突变Kras在炎症诱导的化生祖细胞中共同选择原癌基因增强子网络以引发胰腺癌。《自然癌症2》,49-65(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).Article
Alonso-Curbelo,D。等人。基因环境诱导的表观遗传程序启动肿瘤发生。自然590642-648(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).Article
Del Poggetto,E。等人。炎症的上皮记忆在促进胰腺肿瘤发生的同时限制组织损伤。科学373,eabj0486(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brubaker, D. K. & Lauffenburger, D. A. Translating preclinical models to humans. Science 367, 742–743 (2020).Article
Brubaker,D.K。和Lauffenburger,D.A。将临床前模型转化为人类。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dudgeon, C. et al. The evolution of thymic lymphomas in p53 knockout mice. Genes Dev. 28, 2613–2620 (2014).Article
Dudgeon,C。等人。p53基因敲除小鼠胸腺淋巴瘤的演变。基因发展282613-2620(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McFadden, D. G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).Article
McFadden,D.G.等人。通过基因组测序对小鼠小细胞肺癌进展的遗传和克隆解剖。细胞1561298-1311(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).Article
。Nat.Rev.Methods引物2,94(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).Article
Tuveson,D。&Clevers,H。癌症建模符合人类类器官技术。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Koster, S. et al. Modelling chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming. Nat. Commun. 13, 1030 (2022).Article
Koster,S.等人在患者来源的外宫颈类器官中对衣原体和HPV共感染进行建模揭示了不同的细胞重编程。国家公社。131030(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, B. et al. A promising new model: establishment of patient-derived organoid models covering HPV-related cervical pre-cancerous lesions and their cancers. Adv. Sci. 11, e2302340 (2024).Article
Hu,B。等人。一种有前途的新模型:建立覆盖HPV相关宫颈癌前病变及其癌症的患者来源的类器官模型。高级科学。11,e2302340(2024)。文章
Google Scholar
谷歌学者
Karlsson, K. et al. Deterministic evolution and stringent selection during preneoplasia. Nature 618, 383–393 (2023). This paper reveals that loss of TP53 results in progressive aneuploidy that follows a specific temporal order.Article
Karlsson,K.等人,《肿瘤前期的确定性进化和严格选择》。自然618383-393(2023)。本文揭示了TP53的丢失会导致按照特定时间顺序进行的非整倍性。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, L. et al. Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis. Nat. Methods 20, 2021–2033 (2023). This paper presents an organoid system designed for in vitro investigation of tumour initiation and evaluation of prospective cancer therapies.Article .
Yuan,L.等。体外重建动态乳腺小腺体以实现正常生理和肿瘤发生。自然方法2021-2033(2023)。本文介绍了一种用于体外研究肿瘤起始和评估前瞻性癌症治疗的类器官系统。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bian, S. et al. Genetically engineered cerebral organoids model brain tumor formation. Nat. Methods 15, 631–639 (2018).Article
Bian,S.等人。基因工程脑类器官模拟脑肿瘤形成。自然方法15631-639(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e6 (2018).Article
Seino,T。等人。人类胰腺肿瘤类器官揭示了疾病进展过程中干细胞生态位因子依赖性的丧失。细胞干细胞22454-467.e6(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).Article
来自子宫内膜疾病的患者来源的类器官捕获临床异质性,并且适合药物筛选。自然细胞生物学。211041-1051(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Goto, N. et al. SOX17 enables immune evasion of early colorectal adenomas and cancers. Nature 627, 636–645 (2024).Article
Goto,N。等人SOX17能够免疫逃避早期结肠直肠腺瘤和癌症。自然627636-645(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Breunig, M. et al. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 28, 1105–1124.e19 (2021).Article
Breunig,M.等人。模拟源自人多能干细胞的胰腺导管类器官的可塑性和发育异常。细胞干细胞281105-1124.e19(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).Article
。《自然医学》21256-262(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).Article
O'Rourke,K.P.等人。工程类器官的移植能够快速生成结直肠癌的转移性小鼠模型。美国国家生物技术公司。35577-582(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Na, F. et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nat. Cancer 3, 753–767 (2022).Article
Na,F。等人。KMT2C缺陷通过DNMT3A介导的表观遗传重编程促进小细胞肺癌转移。《自然癌症》3753-767(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21, 1015–1026 (2019).Article
Sun,L.等人用直接重编程的人肝细胞衍生的类器官模拟肝癌的发生。自然细胞生物学。211015-1026(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, L. et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 28, 1090–1104.e6 (2021).Article
Huang,L.等人。人类干细胞衍生的胰腺腺泡和导管类器官的承诺和癌基因诱导的可塑性。细胞干细胞281090–1104.e6(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Min, J. et al. Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach. Nat. Commun. 10, 5549 (2019).Article
。国家公社。105549(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, Y. et al. Reconstitution of human PDAC using primary cells reveals oncogenic transcriptomic features at tumor onset. Nat. Commun. 15, 818 (2024).Article
Xu,Y。等人。使用原代细胞重建人PDAC揭示了肿瘤发作时的致癌转录组学特征。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yucer, N. et al. Human iPSC-derived fallopian tube organoids with BRCA1 mutation recapitulate early-stage carcinogenesis. Cell Rep. 37, 110146 (2021).Article
Yucer,N。等人。具有BRCA1突变的人iPSC衍生的输卵管类器官概括了早期癌变。Cell Rep.37110146(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).Article
Clevers,H。用类器官建模发育和疾病。细胞1651586-1597(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guo, W. et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat. Genet. 52, 908–918 (2020).Article
Guo,W。等人。单细胞转录组学在远端前列腺内陷尖端鉴定出一种独特的管腔祖细胞类型。纳特·吉内特。52908-918(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lorenzo-Martin, L. F. et al. Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo. Nature 629, 450–457 (2024). This paper reports mini-colons, a 3D organoid culture system that enables spatial and temporal control of tumorigenesis through blue light exposure, allowing real-time tracking of emerging colon tumours at single-cell resolution.Article .
Lorenzo Martin,L.F.等人。体外小结肠中的时空分辨结直肠癌发生。自然629450-457(2024)。本文报道了mini-colons,一种3D类器官培养系统,可通过蓝光照射对肿瘤发生进行时空控制,从而以单细胞分辨率实时跟踪新出现的结肠肿瘤。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, B. et al. Single-cell transcriptome analyses reveal critical roles of RNA splicing during leukemia progression. PLoS Biol. 21, e3002088 (2023).Article
Wu,B。等人。单细胞转录组分析揭示了RNA剪接在白血病进展过程中的关键作用。《公共科学图书馆·生物学》。21,e3002088(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. et al. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma. Cell Res. 31, 684–702 (2021). This paper reports the oncogenic event-induced gliomagenic trajectories in human neural stem cells and discovers a sustained neural stem cell-like group that drives tumour progression throughout all stages of tumorigenesis.Article .
Wang,X。等人。干细胞样细胞中的顺序命运开关驱动从人类神经干细胞到恶性胶质瘤的致瘤轨迹。Cell Res.31684–702(2021)。本文报道了人类神经干细胞中致癌事件诱导的胶质瘤发生轨迹,并发现了一个持续的神经干细胞样组,可在肿瘤发生的所有阶段驱动肿瘤进展。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haag, D. et al. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 39, 407–422.e13 (2021).Article
Haag,D。等人,H3.3-K27M在人类iPSC衍生的模型中驱动神经干细胞特异性神经胶质瘤发生。癌细胞39407-422.e13(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Funato, K., Major, T., Lewis, P. W., Allis, C. D. & Tabar, V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 1529–1533 (2014).Article
Funato,K.,Major,T.,Lewis,P.W.,Allis,C.D。和Tabar,V。使用人类胚胎干细胞模拟具有H3.3K27M组蛋白突变的小儿神经胶质瘤。科学3461529-1533(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).Article
Flanagan,D.J。等人,来自Apc突变细胞的NOTUM偏向克隆竞争以引发癌症。自然594430-435(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594, 436–441 (2021).Article
van Neerven,S.M.等人,Apc突变细胞在肠道肿瘤发生中起着超级竞争剂的作用。自然594436-441(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dost, A. F. M. et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. Cell Stem Cell 27, 663–678.e8 (2020).Article
Dost,A.F.M.等人。类器官模拟肺上皮祖细胞中致癌KRAS激活的转录标志。细胞干细胞27663-678.e8(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Min, J. et al. Dysplastic stem cell plasticity functions as a driving force for neoplastic transformation of precancerous gastric mucosa. Gastroenterology 163, 875–890 (2022).Article
Min,J。等人。发育不良的干细胞可塑性是癌前胃粘膜肿瘤转化的驱动力。胃肠病学163875-890(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tao, Y. et al. Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and BrafV600E-induced tumorigenesis. Cancer Cell 35, 315–328.e6 (2019).Article
Tao,Y。等人。衰老样自发性表观遗传沉默促进Wnt活化,干性和BrafV600E诱导的肿瘤发生。癌细胞35315-328.e6(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).Article
Hofer,M。&Lutolf,M.P。工程类器官。自然修订材料。6402-420(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hicks, M. R. & Pyle, A. D. The emergence of the stem cell niche. Trends Cell Biol. 33, 112–123 (2023).Article
Hicks,M.R。&Pyle,A.D。干细胞生态位的出现。趋势细胞生物学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).Article
Kirschenbaum,D。等人。时间分辨单细胞转录组学定义了胶质母细胞瘤的免疫轨迹。细胞187149-165.e23(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dang, M. et al. Single cell clonotypic and transcriptional evolution of multiple myeloma precursor disease. Cancer Cell 41, 1032–1047.e4 (2023).Article
Dang,M.等。多发性骨髓瘤前体疾病的单细胞克隆型和转录进化。癌细胞411032-1047.e4(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, L. et al. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct. Target. Ther. 8, 453 (2023).Article
Chen,L.等。异常上皮细胞相互作用促进食管鳞状细胞癌的发展和进展。信号传输管。目标。他们。8453(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).Article
Roulis,M。等人。通过间充质生态位对肠道肿瘤发生的旁分泌协调。自然580524-529(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sethi, N. S. et al. Early TP53 alterations engage environmental exposures to promote gastric premalignancy in an integrative mouse model. Nat. Genet. 52, 219–230 (2020).Article
Sethi,N.S。等人。早期TP53改变使环境暴露在综合小鼠模型中促进胃癌前病变。纳特·吉内特。52219-230(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, H. et al. Generation and multiomic profiling of a TP53/CDKN2A double-knockout gastroesophageal junction organoid model. Sci. Transl. Med. 14, eabq6146 (2022).Article
Zhao,H。等人。TP53/CDKN2A双敲除胃食管连接器官模型的产生和多组学分析。科学。翻译。医学杂志14,eabq6146(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsY.W. gratefully acknowledges funding from the National Natural Science Foundation of China (82425037, 92359303, 82273117), the National Key R&D Program of China, Stem Cell and Translational Research (2022YFA1105200), Sichuan Science and Technology Program (2023ZYD0128, 2024NSFSC0059) and West China Hospital (ZYYC23023).
下载referencesAcknowledgementsY。W、 感谢国家自然科学基金(824250379235930382273117)、国家重点研发计划、干细胞与转化研究(2022YFA1105200)、四川省科学技术计划(2023ZYD01282024NSFSC0059)和华西医院(ZYC23023)的资助。
R.Z. thanks the National Natural Science Foundation of China (82303975), the China Postdoctoral Science Foundation (2022TQ0226 and 2023M742492) and West China Hospital (2023HXBH100). After completing the final manuscript, the authors utilized ChatGPT (OpenAI, https://chat.openai.com/) to proofread the final draft.Author informationAuthors and AffiliationsDepartment of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, ChinaRan Zhou, Xiwen Tang & Yuan WangAuthorsRan ZhouView author publicationsYou can also search for this author in.
R、 Z.感谢国家自然科学基金(82303975),中国博士后科学基金(2022TQ0226和2023M742492)和华西医院(2023HXBH100)。,https://chat.openai.com/)校对定稿。作者信息作者和附属机构四川大学华西医院生物治疗与癌症中心国家重点实验室神经外科,中国成都,周冉,汤锡文和王元作者周冉观点作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarXiwen TangView author publicationsYou can also search for this author in
PubMed Google ScholarYuan WangView author publicationsYou can also search for this author in
PubMed Google ScholarYuan WangView作者出版物您也可以在
PubMed Google ScholarContributionsR.Z. and X.T. researched data for the article. R.Z. and Y.W. wrote the article. All authors reviewed or edited the manuscript before submission.Corresponding authorCorrespondence to
PubMed谷歌学术贡献。Z、 和X.T.为本文研究了数据。R、 。所有作者在提交前都审阅或编辑了手稿。对应作者对应
Yuan Wang.Ethics declarations
王元。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Cancer thanks Toshiro Sato, Rebecca Fitzgerald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论癌症》感谢佐藤敏弘、丽贝卡·菲茨杰拉德和另一位匿名审稿人对这项工作的同行评议做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksATCC: https://www.atcc.orginferCNV: https://github.com/broadinstitute/infercnvPreCancer Atlas: https://prevention.cancer.gov/major-programs/pre-cancer-atlas-pcasiCNV: https://github.com/aerickso/SpatialInferCNVGlossaryAcinar-to-ductal metaplasia.
。相关链接ATCC:https://www.atcc.orginferCNV:(笑声)https://github.com/broadinstitute/infercnvPreCancer地图集:https://prevention.cancer.gov/major-programs/pre-cancer-atlas-pcasiCNV:(笑声)https://github.com/aerickso/SpatialInferCNVGlossaryAcinar-to-ductal化生。
The transformation of pancreatic acinar cells into duct-like cells in response to pancreatic injury or chronic stress that is considered a precursor to pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma.
胰腺腺泡细胞向导管样细胞的转化,以响应胰腺损伤或慢性应激,这被认为是胰腺上皮内瘤变和胰腺导管腺癌的前兆。
Actinic keratosis
光化性角化病
A rough, dry and scaly patch or plaque on the skin, considered a precursor to squamous cell carcinoma of the skin, that is associated with risk factors such as sun exposure, human papillomavirus, fair skin, immunosuppressive therapy and age.
皮肤上粗糙、干燥、鳞状的斑块或斑块,被认为是皮肤鳞状细胞癌的前兆,与阳光照射、人乳头瘤病毒、皮肤白皙、免疫抑制治疗和年龄等危险因素有关。
Adenomas
腺瘤
Benign tumours originating from glandular epithelial tissue in various organs, including the colon, pituitary gland, thyroid, adrenal glands and liver.
良性肿瘤起源于各种器官的腺上皮组织,包括结肠、垂体、甲状腺、肾上腺和肝脏。
Assay for transposase-accessible chromatin with sequencing
转座酶可及染色质的测序分析
(ATAC-seq). A widely utilized method to assess the accessibility of chromatin within cells.
。一种广泛使用的评估细胞内染色质可及性的方法。
Assembloids
集合体
3D in vitro tissue models that integrates multiple organoid types or cell lineages to replicate the complex interactions and architecture of tissues.
3D体外组织模型,整合了多种类器官类型或细胞谱系,以复制组织的复杂相互作用和结构。
Atypical adenomatous hyperplasia
A term predominantly used in lung pathology to describe precursor lesions of lung adenocarcinoma; however, it can occasionally be applied to other organs to denote abnormal, precancerous growth patterns in glandular tissues.
一个主要用于肺部病理学的术语,用于描述肺腺癌的前体病变;然而,它偶尔也可以应用于其他器官,以表示腺组织中异常的癌前生长模式。
Atypical endometrial hyperplasia
不典型子宫内膜增生
Also known as endometrial intraepithelial neoplasia. A precancerous condition characterized by the abnormal proliferation of the cells lining the endometrium with atypical cellular features.
也称为子宫内膜上皮内瘤变。子宫内膜癌前病变,其特征是子宫内膜衬里细胞异常增殖,具有非典型细胞特征。
Autochthonous mouse models
本地鼠标模型
Mouse models in which cancer arises naturally within the mouse, typically induced through genetic modifications or exposure to carcinogens.
小鼠模型,其中癌症在小鼠体内自然产生,通常通过基因修饰或暴露于致癌物诱导。
Barrett’s oesophagus
Barrett’s oesophagus precedes the onset of oesophageal adenocarcinoma and involves a metaplastic change in the mucosal cells within the lower part of the oesophagus, a response to damage from gastro-oesophageal reflux.
Barrett食管先于食管腺癌发作,并涉及食管下部粘膜细胞的化生变化,这是对胃食管反流损伤的反应。
Chronic atrophic gastritis
慢性萎缩性胃炎
A long-term condition characterized by the chronic inflammation of the stomach lining, leading to the gradual loss of gastric glandular cells, resulting in stomach lining atrophy that can be accompanied by changes in the structure of the stomach lining, potentially leading to intestinal metaplasia and an increased risk of gastric cancer..
一种以胃粘膜慢性炎症为特征的长期疾病,导致胃腺细胞逐渐丧失,导致胃粘膜萎缩,并伴有胃粘膜结构的改变,可能导致肠化生和胃癌风险增加。。
Club cells
俱乐部细胞
A type of non-ciliated epithelial cells located in the bronchioles of the lungs, which is essential for maintaining the health and function of the respiratory epithelium.
位于肺细支气管中的一种非纤毛上皮细胞,对维持呼吸道上皮的健康和功能至关重要。
Dysplasia
发育不良
An abnormal growth or development of cells within a tissue, exhibiting irregularities in size, shape, organization and cellular structure, with severity ranging from mild to severe, with high-grade dysplasia carrying a risk of progressing to cancer.
组织内细胞的异常生长或发育,在大小、形状、组织和细胞结构上表现出不规则性,严重程度从轻度到重度不等,高度不典型增生有发展为癌症的风险。
Extrachromosomal DNA
染色体外DNA
(ecDNA). Any DNA that is often larger than 1 Mb and is located outside the chromosomes.
(ecDNA)。任何通常大于1 Mb且位于染色体之外的DNA。
Familial adenomatous polyposis
家族性腺瘤性息肉病
A type of syndromic polyp associated with genetic syndromes that predisposes individuals to the development of hundreds to thousands of adenomatous polyps in the colon and rectum, which almost inevitably progresses to colorectal cancer.
一种与遗传综合征相关的综合征性息肉,易使个体在结肠和直肠中发展成百上千的腺瘤性息肉,几乎不可避免地发展为结直肠癌。
Field cancerization
现场癌变
A process through which a broad region of cells within a tissue or organ undergoes genetic and epigenetic alterations, thereby predisposing the entire field to an elevated risk of developing cancer.
一种过程,通过该过程,组织或器官内的广泛细胞区域发生遗传和表观遗传改变,从而使整个领域易患癌症的风险升高。
Hyperplasia
增生
Hyperplasia is a reversible process that involves an increase in the number of cells in a tissue, which can occur owing to physiological or pathological triggers.
增生是一个可逆的过程,涉及组织中细胞数量的增加,这可能是由于生理或病理触发而发生的。
Intravital microscopy
活体显微镜检查
(IVM). A technique to visualize cells within a living organism using fluorescent markers or dyes that encompasses various methods, including confocal microscopy, two-photon microscopy and multiphoton microscopy.
(IVM)。一种使用荧光标记或染料可视化生物体内细胞的技术,包括各种方法,包括共聚焦显微镜、双光子显微镜和多光子显微镜。
Large language models
Advanced machine learning algorithms designed to grasp the intricacies, patterns and subtleties of human language by analysing data sets containing billions of words.
先进的机器学习算法,旨在通过分析包含数十亿个单词的数据集来掌握人类语言的复杂性、模式和微妙之处。
Leukoplakia
白斑
White patches or plaques in the oral or genital regions with the potential to progress to squamous cell carcinoma, which is associated with risk factors including tobacco use, alcohol consumption, chronic irritation, viral infections such as HPV, and age and gender.
口腔或生殖器区域的白色斑块或斑块有可能发展为鳞状细胞癌,这与危险因素有关,包括吸烟,饮酒,慢性刺激,HPV等病毒感染以及年龄和性别。
Low-grade intraepithelial neoplasia
低度上皮内瘤变
(LGIN). A precancerous condition characterized by the presence of mildly abnormal epithelial cells confined to the epithelial layer of the oesophagus that has a lower risk of progression to oesophageal cancer than high-grade intraepithelial neoplasia (HGIN).
(LGIN)。一种癌前病变,其特征是存在局限于食管上皮层的轻度异常上皮细胞,其进展为食管癌的风险低于高度上皮内瘤变(HGIN)。
Metaplasia
化生
A reversible process through which one differentiated cell is replaced by another cell type, typically in response to persistent irritation or inflammation.
一种可逆的过程,通过该过程,一种分化的细胞被另一种细胞类型取代,通常是对持续刺激或炎症的反应。
Monoclonal gammopathy of undetermined significance
意义不明的单克隆丙种球蛋白病
A precancerous condition with a modest risk of progression to more severe plasma cell disorders that is characterized by the presence of an abnormal monoclonal protein in the blood, produced by a clone of plasma cells.
一种癌前状态,具有发展为更严重浆细胞疾病的适度风险,其特征是血液中存在由浆细胞克隆产生的异常单克隆蛋白。
Neoplastic polyps
肿瘤性息肉
Polyps with the potential to develop into colorectal cancer that can be classified into adenomatous polyps (including tubular, tubulovillous and villous types) and serrated polyps (including sessile serrated lesions and traditional serrated adenomas).
息肉可能发展为结直肠癌,可分为腺瘤性息肉(包括管状,管状和绒毛型)和锯齿状息肉(包括无柄锯齿状病变和传统锯齿状腺瘤)。
Pancreatic intraepithelial neoplasia
(PanIN). These precursor lesions to pancreatic ductal adenocarcinoma that encompass a spectrum of dysplastic changes are microscopic abnormalities found in the epithelial cells lining the pancreatic ducts and are not detectable through standard imaging techniques.
(帕宁)。这些胰腺导管腺癌的前体病变包括一系列发育异常的变化,是在胰管内衬的上皮细胞中发现的微观异常,通过标准成像技术无法检测到。
Precancerous cells
癌前细胞
Cancer precursor cells that harbour common cancer driver mutations but exist in tissues without clinical evidence of precursor lesions.
癌症前体细胞具有常见的癌症驱动突变,但存在于没有前体病变临床证据的组织中。
Precancerous lesions
癌前病变
Morphological changes in tissues resulting from the acquisition of driver events in individual cells that undergo positive selection and clonal expansion within normal tissues, leading to tissue remodelling.
由于在正常组织内经历阳性选择和克隆扩增的单个细胞中获得驱动事件而导致的组织形态变化,导致组织重塑。
Pulmonary nodules
肺结节
Small, abnormal areas that appear in the lung tissue that can result from infections or scarring, which could potentially lead to lung cancer.
肺组织中出现的小而异常的区域,可能由感染或疤痕引起,可能导致肺癌。
Single-cell multi-omics
单细胞多组学
An advanced genomic technique that enables the simultaneous analysis of multiple types of biological signals such as the genome, transcriptome, proteome and metabolome within the same cell.
一种先进的基因组技术,可以同时分析同一细胞内的多种生物信号,例如基因组,转录组,蛋白质组和代谢组。
Smouldering multiple myeloma
闷烧性多发性骨髓瘤
An asymptomatic, precancerous condition that is considered an intermediate stage between monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma and is characterized by elevated levels of monoclonal protein and a higher percentage of abnormal plasma cells in the bone marrow..
一种无症状的癌前病变,被认为是意义不明的单克隆丙种球蛋白病和症状性多发性骨髓瘤之间的中间阶段,其特征是单克隆蛋白水平升高和骨髓中异常浆细胞百分比较高。。
Spatial transcriptomics
空间转录组学
A method that enables the spatial visualization and quantification of gene expression within a tissue.
一种能够对组织内的基因表达进行空间可视化和定量的方法。
Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleZhou, R., Tang, X.
权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Zhou,R.,Tang,X。
& Wang, Y. Emerging strategies to investigate the biology of early cancer..
&Wang,Y。研究早期癌症生物学的新兴策略。。
Nat Rev Cancer (2024). https://doi.org/10.1038/s41568-024-00754-yDownload citationAccepted: 06 September 2024Published: 21 October 2024DOI: https://doi.org/10.1038/s41568-024-00754-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Cancer(2024)。https://doi.org/10.1038/s41568-024-00754-yDownload引文接受日期:2024年9月6日发布日期:2024年10月21日OI:https://doi.org/10.1038/s41568-024-00754-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供