EN
登录

发育中小鼠大脑皮层中miRNA的阶段特异性表达模式和共靶向关系

Stage-specific expression patterns and co-targeting relationships among miRNAs in the developing mouse cerebral cortex

Nature 等信源发布 2024-10-22 09:59

可切换为仅中文


AbstractmicroRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages.

摘要microRNA是大脑发育的关键调节因子,然而,miRNA调控网络尚未得到充分表征。通过在E14,E17和P0以及神经祖细胞和神经元中对小鼠胚胎皮层进行小RNA-seq,我们在这里检测到在不同发育阶段共同调节的miRNA簇。

miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation.

miRNA如miR-92a/b在早期充当中枢,miR-124和miR-137在晚期神经发生期间充当中枢。值得注意的是,P0-hub miRNA的验证靶标富含与干细胞增殖,神经元分化的负调控和RNA剪接等相关的下调基因,这表明miRNA对于调节指导转换的关键因子的转录程序特别重要。神经元分化。

As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs.

由于大多数基因含有一个以上miRNA的结合位点,因此我们进一步构建了一个共靶向网络,其中许多miRNA共享的靶标比偶然预期的要多。使用荧光素酶报告基因测定,我们证明与单个miRNA相比,miRNA对与神经发育相关基因的同时结合发挥了增强的转录沉默作用。

Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development..

综上所述,我们提供了小鼠皮质发生过程中miRNA纵向表达变化的综合资源。此外,我们强调了miRNA调控网络可以塑造胚胎大脑发育的几种潜在机制。。

IntroductionMammalian brain development is an extraordinarily complex process where neural progenitor cells proliferate and give rise to all neuronal and glial cell types. Numerous transcriptional, post-transcriptional, and epigenetic mechanisms integrate with each other to control progenitor proliferation and self-renewal, differentiation, and lineage commitment as well as migration in a strictly spatio-temporal manner.

引言哺乳动物的大脑发育是一个非常复杂的过程,其中神经祖细胞增殖并产生所有神经元和神经胶质细胞类型。许多转录,转录后和表观遗传机制相互整合,以严格的时空方式控制祖细胞增殖和自我更新,分化和谱系承诺以及迁移。

One of the key regulators of these processes are microRNAs (miRNAs). In most cases, these small RNAs bind to their target mRNAs’ 3’- untranslated region (3’UTR) to induce mRNA degradation or translational inhibition. In the canonical pathway, miRNA genes are transcribed into a pri-miRNA in the cell nucleus by PolII/III1,2.

这些过程的关键调节因子之一是microRNA(miRNA)。在大多数情况下,这些小RNA与其靶mRNA“3”非翻译区(3'UTR)结合以诱导mRNA降解或翻译抑制。在经典途径中,miRNA基因通过PolII/III1,2在细胞核中转录成pri-miRNA。

In subsequent processing steps, the pri-miRNA is cleaved into a hairpin pre-miRNA by the microprocessor complex Drosha-Dgcr8 and transported to the cytoplasm by Exportin-53,4,5,6. In the cytoplasm, the pre-miRNA is bound and cleaved by a complex containing the RNase Dicer1 to form the mature miRNA duplex7.

在随后的加工步骤中,pri-miRNA被微处理器复合物Drosha-Dgcr8切割成发夹前miRNA,并通过Exportin-53,4,5,6转运至细胞质。在细胞质中,pre-miRNA被含有RNase Dicer1的复合物结合并切割,形成成熟的miRNA双链体7。

From this duplex, the functional strand is loaded into the RISC complex, guiding it to the 3′UTR’s target site8. Mice carrying conditional Dicer gene deletions in the embryonic telencephalon have shown a variety of phenotypes in the cerebral cortex, such as reduced cell proliferation and impaired neuronal differentiation, increased apoptosis, defective cortical layering and microcephaly9,10,11,12,13,14.In the brain, 70% of all miRNAs are expressed, most of them in a highly cell-type- and developmental-time-specific manner15.

从这个双链体中,功能链被加载到RISC复合体中,将其引导到3'UTR的目标位点8。。

Given that the total number of human miRNAs is estimated to be ∼2300, at least 1600 different miRNAs may be expressed in the brain16. While this suggests that miRNA regulation is generally important for brain de.

鉴于人类miRNA的总数估计约为2300,至少1600种不同的miRNA可能在大脑中表达16。虽然这表明miRNA调节通常对大脑de很重要。

Data availability

数据可用性

The raw RNA-seq data were uploaded to the Sequence Read Archive (SRA) data base under the accession number PRJNA1018560. Individual values underlying figures are provided in Supplementary data 5.

原始RNA-seq数据以登录号PRJNA018560上传到序列读取存档(SRA)数据库。补充数据5中提供了数字背后的个人价值。

Code availability

代码可用性

All analysis scripts can be obtained from the corresponding authors upon reasonable request.

所有分析脚本都可以根据合理的要求从相应的作者那里获得。

ReferencesLee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051–4060 (2004).PubMed

参考文献Lee,Y。等人。MicroRNA基因由RNA聚合酶II转录。EMBO J 234051–4060(2004)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097–1101 (2006).PubMed

Borchert,G.M.,Lanier,W。和Davidson,B.L。RNA聚合酶III转录人类microRNA。Nat Struct Mol Biol 131097-1101(2006)。PubMed出版社

Google Scholar

谷歌学者

Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).PubMed

Denli,A.M.,Tops,B.B.,Plasterk,R.H.,Ketting,R.F。&Hannon,G.J。通过微处理器复合体处理初级microRNA。自然432231-235(2004)。PubMed出版社

Google Scholar

谷歌学者

Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).PubMed

Gregory,R.I.等人。微处理器复合体介导microRNA的发生。自然432235-240(2004)。PubMed出版社

Google Scholar

谷歌学者

Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016–3027 (2004).PubMed

Han,J。等人。初级microRNA加工中的Drosha-DGCR8复合物。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–3016 (2003).PubMed

Yi,R.,Qin,Y.,Macara,I.G。&Cullen,B.R。Exportin-5介导前microRNA和短发夹RNA的核输出。Genes Dev 173011–3016(2003)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654–2659 (2001).PubMed

Ketting,R.F。等人Dicer在RNA干扰和参与秀丽隐杆线虫发育时间的小RNA合成中起作用。Genes Dev 152654-2659(2001)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 9, 402 (2018).PubMed

O'Brien,J.,Hayder,H.,Zayed,Y。&Peng,C。MicroRNA生物发生,作用机制和循环概述。前内分泌(洛桑)9402(2018)。PubMed出版社

Google Scholar

谷歌学者

Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28, 4322–4330 (2008).PubMed

Dicer的条件性丧失破坏了皮层和海马的细胞和组织形态发生。神经科学杂志284322-4330(2008)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McLoughlin, H. S., Fineberg, S. K., Ghosh, L. L., Tecedor, L. & Davidson, B. L. Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience 223, 285–295 (2012).PubMed

McLoughlin,H.S.,Fineberg,S.K.,Ghosh,L.L.,Tecedor,L。&Davidson,B.L。Dicer是皮质神经发生中增殖,活力,迁移和分化所必需的。神经科学223285-295(2012)。PubMed出版社

Google Scholar

谷歌学者

Kawase-Koga, Y., Otaegi, G. & Sun, T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238, 2800–2812 (2009).PubMed

。Dev Dyn 2382800–2812(2009)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nowakowski, T. J., Mysiak, K. S., Pratt, T. & Price, D. J. Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS One 6, e23013 (2011).PubMed

Nowakowski,T.J.,Mysiak,K.S.,Pratt,T。&Price,D.J。功能dicer对于在小鼠端脑早期发育过程中适当指定放射状胶质细胞是必要的。PLoS One 6,e23013(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saurat, N., Andersson, T., Vasistha, N. A., Molnar, Z. & Livesey, F. J. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev 8, 14 (2013).PubMed

Saurat,N.,Andersson,T.,Vasistha,N.A.,Molnar,Z。&Livesey,F.J。Dicer是大脑皮层发育过程中神经干细胞多能性和谱系进展所必需的。神经发展8,14(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).PubMed

De Pietri-Tonelli,D。等人。miRNA对于新生神经元的存活和分化至关重要,但对于小鼠胚胎新皮层早期神经发生过程中神经祖细胞的扩增却至关重要。发展1353911-3921(2008)。PubMed出版社

Google Scholar

谷歌学者

De Pietri Tonelli, D., Clovis, Y. M. & Huttner, W. B. Detection and monitoring of microRNA expression in developing mouse brain and fixed brain cryosections. Methods Mol Biol 1092, 31–42 (2014).PubMed

De Pietri-Tonelli,D.,Clovis,Y.M。和Huttner,W.B。检测和监测发育中的小鼠脑和固定脑冷冻切片中microRNA的表达。方法Mol Biol 1092,31-42(2014)。PubMed出版社

Google Scholar

谷歌学者

Alles, J. et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res 47, 3353–3364 (2019).PubMed

Alles,J。等人。对真实人类miRNA总数的估计。核酸研究473353-3364(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prieto-Colomina, A., Fernández, V., Chinnappa, K. & Borrell, V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 43, e2100073 (2021).PubMed

Prieto Colomina,A.,Fernández,V.,Chinnappa,K。&Borrell,V。早期大脑发育和儿科癌症中的miRNA:处于健康和患病胚胎发育之间的交叉点。生物测定43,e2100073(2021)。PubMed出版社

Google Scholar

谷歌学者

Winter, J. MicroRNAs of the miR379-410 cluster: New players in embryonic neurogenesis and regulators of neuronal function. Neurogenesis (Austin) 2, e1004970 (2015).PubMed

Winter,J。miR379-410簇的microRNA:胚胎神经发生和神经元功能调节剂的新参与者。神经发生(奥斯汀)2,e1004970(2015)。PubMed出版社

Google Scholar

谷歌学者

Rago, L., Beattie, R., Taylor, V. & Winter, J. miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J 33, 906–920 (2014).PubMed

Rago,L.,Beattie,R.,Taylor,V。&Winter,J。miR379-410簇miRNA通过微调N-钙粘蛋白来调节神经发生和神经元迁移。EMBO J 33906-920(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cherone, J. M., Jorgji, V. & Burge, C. B. Cotargeting among microRNAs in the brain. Genome Res 29, 1791–1804 (2019).PubMed

Cherone,J.M.,Jorgji,V。&Burge,C.B。在大脑中的microRNA中共同靶向。基因组研究291791-1804(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krek, A. et al. Combinatorial microRNA target predictions. Nat Genet 37, 495–500 (2005).PubMed

Krek,A.等人。组合microRNA靶点预测。《自然遗传学》37495-500(2005)。PubMed

Google Scholar

谷歌学者

Nielsen, C. B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007).PubMed

Nielsen,C.B.等人。内源性和外源性microRNA和siRNA靶向的决定因素。RNA 131894-1910(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91–105 (2007).PubMed

Grimson,A。等人,《哺乳动物MicroRNA靶向特异性:种子配对以外的决定因素》。Mol Cell 27,91-105(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35, 2333–2342 (2007).PubMed

Saetrom,P。等人。microRNA靶位点之间的距离限制决定了功效和协同性。核酸研究352333-2342(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev 18, 504–511 (2004).PubMed

。Genes Dev 18504–511(2004)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, S. et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3’ untranslated region. Oncogene 29, 2302–2308 (2010).PubMed

Wu,S。等人。多种microRNA通过直接靶向其3'非翻译区来调节p21Cip1/Waf1的表达。癌基因292302-2308(2010)。PubMed出版社

Google Scholar

谷歌学者

Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nature Communications 10, 134 (2019).PubMed

Loo,L.等人。小鼠新皮层发育的单细胞转录组学分析。自然通讯10134(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mukhtar, T. & Taylor, V. Untangling Cortical Complexity During Development. Journal of Experimental Neuroscience 12, 1179069518759332 (2018).PubMed

Mukhtar,T。&Taylor,V。在发育过程中解开皮质复杂性。实验神经科学杂志121179069518759332(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ling, K.-H. et al. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics 12, 176 (2011).PubMed

Ling,K.-H.等人,《发育中的小鼠大脑的深度测序分析揭示了一种新的microRNA》。BMC Genomics 12176(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and Arealization of the Cerebral Cortex. Neuron 103, 980–1004 (2019).PubMed

Cadwell,C.R.,Bhaduri,A.,Mostajo Radji,M.A.,Keefe,M.G。&Nowakowski,T.J。大脑皮层的发育和区域化。神经元103980-1004(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naka-Kaneda, H. et al. The miR-17/106–p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proceedings of the National Academy of Sciences 111, 1604–1609 (2014).

Naka Kaneda,H。等人。miR-17/106-p38轴是发育中的神经干/祖细胞中神经源性向胶质细胞转化的关键调节因子。美国国家科学院院刊1111604-1609(2014)。

Google Scholar

谷歌学者

Rajman, M. & Schratt, G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 144, 2310–2322 (2017).PubMed

Rajman,M。&Schratt,G。神经发育中的microRNA:从主调节器到微调器。发展1442310-2322(2017)。PubMed出版社

Google Scholar

谷歌学者

Tsuyama, J. et al. MicroRNA-153 Regulates the Acquisition of Gliogenic Competence by Neural Stem Cells. Stem Cell Reports 5, 365–377 (2015).PubMed

Tsuyama,J。等人。MicroRNA-153调节神经干细胞获得胶质生成能力。干细胞报告5365-377(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bagot, R. C. et al. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron 90, 969–983 (2016).PubMed

Bagot,R.C。等人。全电路转录谱揭示了调节抑郁症易感性的大脑区域特异性基因网络。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lorsch, Z. S. et al. Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex. Nature Neuroscience 22, 1413–1423 (2019).PubMed

Lorsch,Z.S.等人。应激弹性是由前额叶皮层中Zfp189驱动的转录网络促进的。自然神经科学221413-1423(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).PubMed

Langfelder,P。&Horvath,S。WGCNA:用于加权相关网络分析的R包。BMC生物信息学9559(2008)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weyn-Vanhentenryck, S. M. et al. Precise temporal regulation of alternative splicing during neural development. Nature Communications 9, 2189 (2018).PubMed

Weyn Vanhentenryck,S.M.等人。神经发育过程中选择性剪接的精确时间调节。自然通讯92189(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, H. Y. et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 50, D222–d230 (2022).PubMed

Huang,H.Y.等人,《miRTarBase更新2022:用于实验验证的miRNA-靶标相互作用的信息资源》。核酸Res 50,D222–d230(2022)。PubMed出版社

Google Scholar

谷歌学者

Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27, 435–448 (2007).PubMed

Makeyev,E.V.,Zhang,J.,Carrasco,M.A。和Maniatis,T。MicroRNA miR-124通过触发大脑特异性替代前mRNA剪接来促进神经元分化。摩尔细胞27435-448(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).PubMed

Jensen,K.B.等人,Nova-1调节神经元特异性选择性剪接,对神经元活力至关重要。神经元25359-371(2000)。PubMed出版社

Google Scholar

谷歌学者

Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37, 844–852 (2005).PubMed

Nova调节大脑特异性剪接以形成突触。Nat Genet 37844-852(2005)。PubMed出版社

Google Scholar

谷歌学者

Tutukova, S., Tarabykin, V. & Hernandez-Miranda, L. R. The Role of Neurod Genes in Brain Development, Function, and Disease. Frontiers in Molecular Neuroscience 14, https://doi.org/10.3389/fnmol.2021.662774 (2021).Wang, J. T. et al. Src controls neuronal migration by regulating the activity of FAK and cofilin.

Tutukova,S.,Tarabykin,V。和Hernandez-Miranda,L.R。Neurod基因在大脑发育,功能和疾病中的作用。,https://doi.org/10.3389/fnmol.2021.662774(2021年)。Wang,J。T。等人。Src通过调节FAK和cofilin的活性来控制神经元迁移。

Neuroscience 292, 90–100 (2015).PubMed .

神经科学292,90-100(2015)。PubMed。

Google Scholar

谷歌学者

Li, M. & Ransohoff, R. M. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 84, 116–131 (2008).PubMed

Li,M。&Ransohoff,R.M。趋化因子CXCL12在中枢神经系统中的多种作用:从免疫学到神经生物学的迁移。Prog Neurobiol 84116-131(2008)。PubMed出版社

Google Scholar

谷歌学者

Mithal, D. S., Banisadr, G. & Miller, R. J. CXCL12 signaling in the development of the nervous system. J Neuroimmune Pharmacol 7, 820–834 (2012).PubMed

Mithal,D.S.,Banisadr,G。&Miller,R.J。CXCL12信号在神经系统发育中的作用。J神经免疫药理学7820-834(2012)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dori, M. et al. MicroRNA profiling of mouse cortical progenitors and neurons reveals miR-486-5p as a regulator of neurogenesis. Development 147, https://doi.org/10.1242/dev.190520 (2020).Shu, P. et al. The spatiotemporal expression pattern of microRNAs in the developing mouse nervous system.

小鼠皮质祖细胞和神经元的MicroRNA分析揭示了miR-486-5p作为神经发生的调节剂。,https://doi.org/10.1242/dev.190520(2020年)。Shu,P。等人。发育中的小鼠神经系统中microRNA的时空表达模式。

Journal of Biological Chemistry 294, 3444–3453 (2019).PubMed .

生物化学杂志2943444-3453(2019)。PubMed。

Google Scholar

谷歌学者

Pilaz, L.-J. & Silver, D. L. Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain. WIREs RNA 6, 501–515 (2015).PubMed

Pilaz,L.-J.&Silver,D.L。皮质发生中的转录后调控:RNA结合蛋白如何帮助构建大脑。WIREs RNA 6501–515(2015)。PubMed出版社

Google Scholar

谷歌学者

Mukhtar, T. et al. Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. Embo j 41, e111132 (2022).PubMed

Mukhtar,T。等人。时间和顺序转录动力学定义了皮质发生中的谱系变化。Embo j 41,e111132(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).PubMed

Telley,L。等人。顺序转录波指导小鼠新皮层新生神经元的分化。科学3511443-1446(2016)。PubMed出版社

Google Scholar

谷歌学者

Nowakowski, T. J. et al. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature Neuroscience 21, 1784–1792 (2018).PubMed

Nowakowski,T.J.等人。人脑发育过程中microRNA网络对细胞类型特异性转录组的调节。自然神经科学211784-1792(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bian, S. et al. MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep 3, 1398–1406 (2013).PubMed

Bian,S。等人。MicroRNA簇miR-17-92调节发育中的小鼠新皮层中神经干细胞的扩增和向中间祖细胞的转变。Cell Rep 31398–1406(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, G. et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2, 529 (2011).PubMed

Sun,G。等人。miR-137在神经干细胞中与核受体TLX和LSD1形成调节环。《国家公社》2529(2011)。PubMed出版社

Google Scholar

谷歌学者

Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 Functions to Maintain Neural Progenitor Identity. Neuron 39, 749–765 (2003).PubMed

Graham,V.,Khudyakov,J.,Ellis,P。&Pevny,L。SOX2的功能是维持神经祖细胞的身份。神经元39749-765(2003)。PubMed出版社

Google Scholar

谷歌学者

Hagey, D. W. & Muhr, J. Sox2 Acts in a Dose-Dependent Fashion to Regulate Proliferation of Cortical Progenitors. Cell Reports 9, 1908–1920 (2014).PubMed

Hagey,D。W。&Muhr,J。Sox2以剂量依赖性方式调节皮质祖细胞的增殖。细胞报告91908-1920(2014)。PubMed出版社

Google Scholar

谷歌学者

Fabra-Beser, J. et al. Differential Expression Levels of Sox9 in Early Neocortical Radial Glial Cells Regulate the Decision between Stem Cell Maintenance and Differentiation. J Neurosci 41, 6969–6986 (2021).PubMed

Fabra-Beser,J。等人。早期新皮层放射状神经胶质细胞中Sox9的差异表达水平调节干细胞维持和分化之间的决定。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stevanovic, M., Stanisavljevic Ninkovic, D., Mojsin, M., Drakulic, D. & Schwirtlich, M. Interplay of SOX transcription factors and microRNAs in the brain under physiological and pathological conditions. Neural Regen Res 17, 2325–2334, (2022).PubMed

Stevanovic,M.,Stanisavljevic-Ninkovic,D.,Mojsin,M.,Drakulic,D。&Schwirtlich,M。SOX转录因子和microRNA在生理和病理条件下在大脑中的相互作用。神经再生研究172325-2334,(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imayoshi, I., Sakamoto, M., Masahiro, Y., Mori, K. & Kageyama, R. Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. The Journal of Neuroscience 30, 3489 (2010).PubMed

Imayoshi,I.,Sakamoto,M.,Masahiro,Y.,Mori,K。&Kageyama,R。Notch信号在发育中和成年大脑中维持神经干细胞的重要作用。《神经科学杂志》303489(2010)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Munji, R. N., Choe, Y., Li, G., Siegenthaler, J. A. & Pleasure, S. J. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 31, 1676–1687 (2011).PubMed

Munji,R.N.,Choe,Y.,Li,G.,Siegenthaler,J.A。&Pleasy,S.J。Wnt信号调节皮质中间祖细胞的神经元分化。J Neurosci 311676-1687(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, X. et al. Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell 166, 1147–1162.e1115 (2016).PubMed

Zhang,X。等人。细胞类型特异性选择性剪接控制发育中大脑皮层的细胞命运。细胞1661147-1162.e1115(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, M. et al. Axonogenesis Is Coordinated by Neuron-Specific Alternative Splicing Programming and Splicing Regulator PTBP2. Neuron 101, 690–706.e610 (2019).PubMed

Zhang,M。等人。轴突发生由神经元特异性选择性剪接编程和剪接调节因子PTBP2协调。神经元101690–706.e610(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, Y. S. et al. Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis. PLoS One 11, e0164164 (2016).PubMed

Lin,Y。S。等人。神经元剪接调节因子RBFOX3(NeuN)调节成年海马神经发生和突触发生。PLoS One 11,e0164164(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. Nature Reviews Neuroscience 17, 265–281 (2016).PubMed

Vuong,C.K.,Black,D.L。和Zheng,S。选择性剪接的神经遗传学。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Linsen, S. E. V., Tops, B. B. J. & Cuppen, E. miRNAs: small changes, widespread effects. Cell Research 18, 1157–1159 (2008).PubMed

Linsen,S.E.V.,Tops,B.B.J。&Cuppen,E.miRNA:微小变化,广泛影响。细胞研究181157-1159(2008)。PubMed出版社

Google Scholar

谷歌学者

Ramsköld, D., Wang, E. T., Burge, C. B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5, e1000598 (2009).PubMed

Ramsköld,D.,Wang,E.T.,Burge,C.B。&Sandberg,R。组织转录组序列数据揭示了大量普遍表达的基因。PLoS Comput Biol 5,e1000598(2009)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O. & Lai, E. C. Widespread and extensive lengthening of 3’ UTRs in the mammalian brain. Genome Res 23, 812–825 (2013).PubMed

Miura,P.,Shenker,S.,Andreu Agullo,C.,Westholm,J.O.&Lai,E.C。哺乳动物大脑中3'UTR的广泛延长。Genome Res 23812–825(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).PubMed

Agarwal,V.,Bell,G.W.,Nam,J.-W。和Bartel,D.P。预测哺乳动物mRNA中有效的microRNA靶位点。eLife 4E05005(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Margolin, A. A. et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics 7, S7 (2006).PubMed

Margolin,A.A.等人,《ARACNE:在哺乳动物细胞环境中重建基因调控网络的算法》。BMC生物信息学7,S7(2006)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsH.T. and S.G. acknowledge funding by the Landesinitiative Rheinland-Pfalz and the Resilience, Adaptation, and Longevity (ReALity) initiative of the Johannes Gutenberg University of Mainz. S.W. was funded by the Emergent Algorithmic Intelligence initiative of the Johannes Gutenberg University Mainz supported by the Carl-Zeiss foundation.

下载referencesAcknowledgementsH。T、 和S.G.感谢LandeInitiative Rheinland Pfalz和美因茨约翰内斯·古腾堡大学的弹性,适应和长寿(现实)倡议的资助。S、 W.由美因茨约翰内斯古腾堡大学的紧急算法智能计划资助,该计划由卡尔·蔡司基金会支持。

J.W. acknowledges funding from the Deutsche Forschungsgemeinschaft (WI-3837 / 8-1).FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsInstitute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, GermanyHristo Todorov, Stephan Weißbach, Laura Schlichtholz, Hanna Mueller, Dewi Hartwich, Susanne Gerber & Jennifer WinterInstitute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, Mainz, GermanyStephan WeißbachFocus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, GermanyLaura SchlichtholzAuthorsHristo TodorovView author publicationsYou can also search for this author in.

J、 W.感谢Deutsche Forschungsgemeinschaft(WI-3837/8-1)的资助。资金开放获取资金由Projekt交易启用和组织。作者信息作者和附属机构约翰内斯·古腾堡大学美因茨大学医学中心人类遗传学研究所,美因茨,GermanyHristo Todorov,Stephan Weißbach,Laura Schlichtholz,Hanna Mueller,Dewi Hartwich,SusanneGerber&Jennifer WinterInstitute of Development Biology and Neurobiology(iDN),约翰内斯Gutenberg大学美因茨,GermanyStephan Weißbach转化神经科学重点项目,美因茨大学医学中心,GermanyLaura SchlichtholzAuthorsHristo Todoroview作者出版物您也可以搜索对于本文作者。

PubMed Google ScholarStephan WeißbachView author publicationsYou can also search for this author in

PubMed Google ScholarStephan WeißbachView作者出版物您也可以在

PubMed Google ScholarLaura SchlichtholzView author publicationsYou can also search for this author in

PubMed Google ScholarLaura SchlichtholzView作者出版物您也可以在

PubMed Google ScholarHanna MuellerView author publicationsYou can also search for this author in

PubMed Google ScholarHanna MuellerView作者出版物您也可以在

PubMed Google ScholarDewi HartwichView author publicationsYou can also search for this author in

PubMed Google ScholarDewi HartwichView作者出版物您也可以在

PubMed Google ScholarSusanne GerberView author publicationsYou can also search for this author in

PubMed Google ScholarSusanne GerberView作者出版物您也可以在

PubMed Google ScholarJennifer WinterView author publicationsYou can also search for this author in

PubMed谷歌学者Jennifer WinterView作者出版物您也可以在

PubMed Google ScholarContributionsH.T., D.H., and S.W. performed the bioinformatics analysis. L.S. and H.M. performed miRNA sequencing, RT-qPCR and luciferase experiments. H.T. and J.W. wrote the manuscript. S.G. and J.W. supervised the study. All authors read and approved the final version of the manuscript.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献。T、 ,D.H.和S.W.进行了生物信息学分析。五十、 S.和H.M.进行了miRNA测序,RT-qPCR和荧光素酶实验。H、 T.和J.W.写了手稿。S、 G.和J.W.监督了这项研究。所有作者都阅读并批准了稿件的最终版本。通讯作者通讯。

Susanne Gerber or Jennifer Winter.Ethics declarations

苏珊·格伯或詹妮弗·温特。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics

伦理学

We have complied with all relevant ethical regulations for animal use. Ethical review and approval were not required for the animal study because the study did not include any animal experiments requiring approval. To carry out this study, mice were killed for organ removal. In Germany, this procedure is notifiable but does not require approval by an ethics committee..

我们遵守了动物使用的所有相关道德规范。动物研究不需要伦理审查和批准,因为该研究不包括任何需要批准的动物实验。为了进行这项研究,杀死小鼠进行器官切除。在德国,这一程序是应通报的,但不需要伦理委员会的批准。。

Peer review

同行评审

Peer review information

同行评审信息

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Kaliya Georgieva. A peer review file is available.

通讯生物学感谢匿名审稿人对这项工作的同行评议做出的贡献。主要处理编辑:卡莉亚·乔治耶娃。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationTransparent Peer Review fileSupplementary InformationDescription of Additional Supplementary FileSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Reporting SummaryRights and permissions.

。补充信息透明的同行评审文件补充信息其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5报告摘要权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleTodorov, H., Weißbach, S., Schlichtholz, L. et al. Stage-specific expression patterns and co-targeting relationships among miRNAs in the developing mouse cerebral cortex.

转载和许可本文引用本文Todorov,H.,Weißbach,S.,Schlichtholz,L。等人。发育中的小鼠大脑皮层中miRNA之间的阶段特异性表达模式和共靶向关系。

Commun Biol 7, 1366 (2024). https://doi.org/10.1038/s42003-024-07092-7Download citationReceived: 14 May 2024Accepted: 16 October 2024Published: 22 October 2024DOI: https://doi.org/10.1038/s42003-024-07092-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Commun Biol 71366(2024)。https://doi.org/10.1038/s42003-024-07092-7Download引文接收日期:2024年5月14日接受日期:2024年10月16日发布日期:2024年10月22日OI:https://doi.org/10.1038/s42003-024-07092-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供