商务合作
动脉网APP
可切换为仅中文
AbstractReplication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging.
复制、遗传和进化是生命的特征。我们和其他人假设,实验室中合成生命系统的重建将取决于能够经历达尔文进化的遗传自我复制因子的发展。尽管基于DNA的生命占主导地位,但进化中的DNA自我复制子的体外重建仍然具有挑战性。
We hereby emulate in liposome compartments the principles according to which life propagates information and evolves. Using two different experimental configurations supporting intermittent or semi-continuous evolution (i.e., with or without DNA extraction, PCR, and re-encapsulation), we demonstrate sustainable replication of a linear DNA template – encoding the DNA polymerase and terminal protein from the Phi29 bacteriophage – expressed in the ‘protein synthesis using recombinant elements’ (PURE) system.
我们在此在脂质体隔室中模拟生命传播信息和进化的原理。使用支持间歇性或半连续进化的两种不同实验配置(即有或没有DNA提取,PCR和重新包封),我们证明了线性DNA模板的可持续复制-编码来自Phi29噬菌体的DNA聚合酶和末端蛋白-在“使用重组元件的蛋白质合成”(PURE)系统中表达。
The self-replicator can survive across multiple rounds of replication-coupled transcription-translation reactions in liposomes and, within only ten evolution rounds, accumulates mutations conferring a selection advantage. Combined data from next-generation sequencing with reverse engineering of some of the enriched mutations reveal nontrivial and context-dependent effects of the introduced mutations.
自我复制因子可以在脂质体中的多轮复制偶联转录-翻译反应中存活,并且仅在十轮进化中积累赋予选择优势的突变。将来自下一代测序的数据与一些富集突变的反向工程相结合,揭示了引入突变的非平凡和上下文依赖性影响。
The present results are foundational to build up genetic complexity in an evolving synthetic cell, as well as to study evolutionary processes in a minimal cell-free system..
目前的结果为在进化的合成细胞中建立遗传复杂性以及在最小无细胞系统中研究进化过程奠定了基础。。
IntroductionA fundamental goal of modern synthetic biology is the construction of synthetic systems with life-like properties. It is also likely that the learning-by-doing approach involved in the construction of a synthetic cell will spearhead advances in biomedicine, biotechnology, and fundamental biology1,2,3,4,5,6.
引言现代合成生物学的一个基本目标是构建具有生命特性的合成系统。参与合成细胞构建的边干边学方法也可能引领生物医学,生物技术和基础生物学的进步1,2,3,4,5,6。
In this quest, a number of life’s features have been reconstituted in a cell-free environment7,8,9,10,11,12,13, although a functionally integrated, autonomous synthetic cell seems still out of reach.One remarkable feature of extant living forms is evolution, i.e., the ability to diversify and gradually adapt to changing environments.
在这项研究中,许多生命特征已经在无细胞环境中重建7,8,9,10,11,12,13,尽管功能整合的自主合成细胞似乎仍然遥不可及。现存生物形式的一个显着特征是进化,即多样化并逐渐适应不断变化的环境的能力。
This ability is responsible for terrestrial Life’s extraordinary diversity and robustness, allowing it to colonize extremely diverse niches and survive multiple geological calamities in the past 3.5–3.8 billion years14,15. Importantly, it is thought that evolution, in an abiotic, molecular version also has allowed life’s emergence in the first place16,17,18,19,20.
。重要的是,人们认为,在非生物的分子版本中,进化首先也允许生命的出现16,17,18,19,20。
We therefore asked whether in vitro evolution could be used as a tool in our efforts to build a synthetic cell and better understand living processes.A key prerequisite for evolution is heredity. In contemporary life form, the dominant molecular mechanism supporting heredity is DNA replication21. In vitro reconstitution of replication thus represents a major step in crafting synthetic living systems from the ground up6.
因此,我们询问体外进化是否可以作为我们构建合成细胞和更好地理解生命过程的工具。进化的一个关键先决条件是遗传。在当代生命形式中,支持遗传的主要分子机制是DNA复制21。因此,复制的体外重建代表了从底层构建合成生命系统的重要一步6。
However, early molecular replicators could in principle have been based on molecules other than DNA22,23. A variety of self-replicating non-DNA systems have been created in the laboratory. For example, non-enzymatic self-replication based on autocatalytic template production24,25, cross-catalysing RNA replicators26, self-replicating peptides27,28,29,.
然而,早期的分子复制子原则上可能基于DNA22,23以外的分子。实验室中已经创建了各种自我复制的非DNA系统。例如,基于自催化模板产生的非酶促自我复制24,25,交叉催化RNA复制子26,自我复制肽27,28,29,。
Next, we investigated whether it is possible to minimize the researcher intervention in the in vitro evolution process via a more streamlined evolution protocol. In such a system, amplified DNA from a fraction of liposomes would be recursively passed on to an excess of fresh liposomes via vesicle fusion and fission.
接下来,我们调查了是否有可能通过更简化的进化协议最大限度地减少研究人员对体外进化过程的干预。在这样的系统中,来自一部分脂质体的扩增DNA将通过囊泡融合和裂变递归传递给过量的新鲜脂质体。
This scheme would obviate out-of-liposome PCR amplification and controlled re-encapsulation of DNA (Fig. 3a). Fresh feeding vesicles supply additional lipids, PURE components, and additives for DNA replication. Both fusion and fission events are promoted by freeze-thaw (F/T) cycles, during which pooling and stochastic redistribution of the DNA content are expected.
该方案将避免脂质体PCR扩增和DNA的受控重新包封(图3a)。新鲜喂养囊泡为DNA复制提供额外的脂质,纯成分和添加剂。冻融(F/T)循环促进了融合和裂变事件,在此期间,预计DNA含量会汇集和随机重新分布。
A similar protocol was used by Tsuji et al. for the replication of RNA over multiple rounds of liposome cultivation60. We called this evolution scheme “semi-continuous”, as it is a step towards continuous in vitro evolution, where a synthetic cell can pass on its genetic information to the next generation without researcher intervention5.
Tsuji等人使用类似的方案在多轮脂质体培养中复制RNA 60。我们将这种进化方案称为“半连续”,因为它是迈向连续体外进化的一步,在这种进化中,合成细胞可以将其遗传信息传递给下一代,而无需研究人员的干预5。
Noteworthily, the fact that the output of the selection process is exactly the same molecule as the input is a critical feature to enable continuous evolution.Fig. 3: Semi-continuous evolution of mod-ori-p2p3.a Schematic illustration of the experimental set-up for a semi-continuous evolution approach in liposomes.
值得注意的是,选择过程的输出与输入完全相同的分子这一事实是实现连续进化的关键特征。图3:mod-ori-p2p3的半连续进化。脂质体中半连续进化方法的实验装置的示意图。
Step (i) in-liposome IVTTR (ii) 100-fold dilution of old vesicle suspension in a suspension of fresh vesicles, (iii) liposome fusion-fission promoted by cycles of F/T. b Trajectories of mod-ori-p2p3 concentrations in liposomes in the semi-continuous evolutionary campaign, Cont-WT, as measured by qPCR.
步骤(i)在脂质体IVTTR中(ii)将新鲜囊泡悬浮液中的旧囊泡悬浮液稀释100倍,(iii)由F/T循环促进的脂质体融合裂变。通过qPCR测量,脂质体中mod-ori-p2p3浓度的轨迹在半连续进化活动中,Cont-WT。
Each IVTTR was incubated for 16 h and liposomes were diluted 100 times with feeding vesicles. The target region for qPCR quantification ( ~ 200 bp) belong.
将每个IVTTR孵育16小时,并用喂食囊泡将脂质体稀释100倍。qPCR定量的目标区域(〜200 bp)属于。
Unlabelled nucleotides were purchased from GE Healthcare. The [γ-32P]ATP (3,000 Ci/mmol) and [α-32P]dATP (3000 Ci/mmol) were supplied by PerkinElmer. Oligonucleotides sp1 (5ʹ-GATCACAGTGAGTAC), sp1c + 6 (5ʹ-TCTATTGTACTCACTGTGATC), and M13 Universal Primer (5ʹ-GTAAAACGACGGCCAGT) were purchased from Sigma-Aldrich.
未标记的核苷酸购自GE Healthcare。[γ-32P]ATP(3000 Ci/mmol)和[α-32P]dATP(3000 Ci/mmol)由PerkinElmer提供。寡核苷酸sp1(5'-GATCACAGTGAGTAC),sp1c+ 6(5'-TCTATTGTACTCACTGTGATC)和M13通用引物(5'-GTAAAACGACGGCCAGT)购自Sigma-Aldrich。
T4 polynucleotide kinase (T4PNK) was purchased from New England Biolabs. Oligonucleotide sp1 was 5ʹ-labelled with 32P using [γ-32P]ATP (10 μCi) and T4PNK and further hybridised to oligonucleotide sp1c + 6 (1:2 ratio) to get the primer/template substrate sp1/sp1c + 6 for the Exonuclease/Polymerisation balance assays (see below).
T4多核苷酸激酶(T4PNK)购自New England Biolabs。使用[γ-32P]ATP(10μCi)和T4PNK用32P标记寡核苷酸sp1,并进一步与寡核苷酸sp1c+6(1:2比例)杂交,得到引物/模板底物sp1/sp1c+6用于核酸外切酶/聚合平衡测定(见下文)。
Oligonucleotides were annealed in the presence of 50 mM Tris-HCl (pH 7.5) and 0.2 M NaCl, heating to 90 °C for 10 min before slowly cooling to room temperature overnight. M13mp18 (+) strand ssDNA (Sigma-Aldrich) was hybridized to the universal primer as described above, and the resulting molecule was used as a primer/template complex to analyse processive DNA polymerisation coupled to strand displacement by the wild-type and variants of Φ29 DNAP.
寡核苷酸在50mM Tris-HCl(pH 7.5)和0.2M NaCl存在下退火,加热至90℃10分钟,然后缓慢冷却至室温过夜。如上所述,将M13mp18(+)链ssDNA(Sigma-Aldrich)与通用引物杂交,并将所得分子用作引物/模板复合物,以分析与野生型和Φ29 DNAP变体的链置换偶联的进行性DNA聚合。
Terminal protein-Φ29 DNAP complex (TP-DNA) was obtained as described in ref. 86.Primed M13 DNA replication assayThe incubation mixture contained, in 25 μL, 50 mM Tris–HCl, pH 7.5, 10 mM MgCl2, 1 mM DTT, 4% (v/v) glycerol, 0.1 mg/mL of BSA, 40 μM dNTPs and [α-32P]dATP (1 μCi), 4.2 nM of primed M13mp18 ssDNA, and 60 nM of either the wild-type or the indicated mutant Φ29 DNA polymerase.
如参考文献86所述获得末端蛋白-Φ29 DNAP复合物(TP-DNA)。引发的M13 DNA复制测定孵育混合物含有25μL,50mM Tris-HCl,pH 7.5,10mM MgCl2,1mM DTT,4%(v/v)甘油,0.1mg/mL BSA,40m dNTPs和[α-32P]dATP(1μCi),4.2nM引发的M13mp18 SSP DNA和60 nM的野生型或指定的突变Φ29 DNA聚合酶。
After incubation at 30 °C for the indicated times, the reactions were stopped by adding 10 mM EDTA-0.1% SDS and the samples were filtered through Sephadex G-50 spin columns. For size analyses of the synthesised DNA, the labelled DNA was denatured by treatment with 0.7 M NaOH and subjected to electrophoresis in alkalin.
在30℃温育指定时间后,通过加入10mM EDTA-0.1%SDS终止反应,并通过Sephadex G-50旋转柱过滤样品。为了对合成的DNA进行大小分析,通过用0.7M NaOH处理使标记的DNA变性,并在碱性中进行电泳。
Data availability
数据可用性
Data are available in the main manuscript, Supporting Information, and Supplementary Data 1. Protein mass spectrometry data are available on Panorama Public under ProteomeXchange ID PXD054024 and accession URL: https://panoramaweb.org/qxuWjQ.url. Raw NGS sequencing data have been uploaded to ENA (European Nucleotide Archive) under project_ID PRJEB75735.
。蛋白质质谱数据可在Panorama Public上以ProteomeXchange ID PXD054024和登录URL获得:https://panoramaweb.org/qxuWjQ.url.原始NGS测序数据已在project\u ID PRJEB75735下上传到ENA(欧洲核苷酸档案馆)。
The previously published protein structure used in this work is available from the Protein Data Bank under ID 2EX3. Raw data in multiple labelled files (Excel and GraphPad) are available within a zipped folder named ‘Source Data’. Source data are provided with this paper..
这项工作中使用的先前发布的蛋白质结构可从ID 2EX3的蛋白质数据库中获得。多个标签文件(Excel和GraphPad)中的原始数据可在名为“源数据”的压缩文件夹中找到。。。
Code availability
代码可用性
Galaxy workflow for mapping and quantifying mutation frequencies is available on the GitHub repository (https://github.com/DanelonLab/Illumina-NGS-Mutation-Mapping) and zenodo, with https://doi.org/10.5281/zenodo.13757341.
GitHub存储库中提供了用于映射和量化突变频率的Galaxy工作流程(https://github.com/DanelonLab/Illumina-NGS-Mutation-Mapping)和zenodohttps://doi.org/10.5281/zenodo.13757341.
ReferencesBuddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).PubMed
参考文献Buddingh,B.C。&van Hest,J.C.M。人工细胞:具有生命功能和适应性的合成区室。。第50769-777号决议(2017年)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, C., Hu, S. & Chen, X. Artificial cells: from basic science to applications. Mater. Today (Kidlington) 19, 516–532 (2016).PubMed
Xu,C.,Hu,S。&Chen,X。人工细胞:从基础科学到应用。马特。《今日》(Kidlington)19516–532(2016)。PubMed出版社
Google Scholar
谷歌学者
Glass, J. I., Merryman, C., Wise, K. S., Hutchison, C. A. & Smith, H. O. Minimal cells—real and imagined. Cold Spring Harb. Perspect. Biol. 9, a023861 (2017).PubMed
Glass,J.I.,Merryman,C.,Wise,K.S.,Hutchison,C.A。&Smith,H.O。真实和想象的最小细胞。冷泉兔。透视图。生物学杂志9,a023861(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).PubMed
Yewdall,N.A.,Mason,A.F。和van Hest,J.C.M。生命系统的标志:朝向创造人工细胞。界面焦点820180023(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abil, Z. & Danelon, C. Roadmap to building a cell: an evolutionary approach. Front. Bioeng. Biotechnol. 8, 927 (2020).PubMed
Abil,Z。&Danelon,C。构建细胞的路线图:进化方法。正面。生物能源。生物技术。8927(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).PubMed
Adamski,P。等人。从自我复制到复制系统,再到新生生命。。4386-403(2020)。PubMed出版社
Google Scholar
谷歌学者
van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).ADS
van Nies,P.等人。脂质体合成细胞中DNA编码蛋白的自我复制。国家公社。91583(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Godino, E. et al. De novo synthesized Min proteins drive oscillatory liposome deformation and regulate FtsA-FtsZ cytoskeletal patterns. Nat. Commun. 10, 4969 (2019).ADS
Godino,E。等人,从头合成的Min蛋白驱动振荡脂质体变形并调节FtsA-FtsZ细胞骨架模式。国家公社。104969(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blanken, D., Foschepoth, D., Serrão, A. C. & Danelon, C. Genetically controlled membrane synthesis in liposomes. Nat. Commun. 11, 4317 (2020).ADS
。国家公社。114317(2020)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Godino, E. et al. Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes. Commun. Biol. 3, 1–11 (2020).
Godino,E.等人。可以收缩脂质体的细菌分裂原环的无细胞生物发生。Commun公司。。
Google Scholar
谷歌学者
Doerr, A., Foschepoth, D., Forster, A. C. & Danelon, C. In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci. Rep. 11, 1898 (2021).ADS
Doerr,A.,Foschepoth,D.,Forster,A.C。&Danelon,C。从单个模板体外合成32种翻译因子蛋白显示核糖体合成能力受损。科学。Rep.111898(2021)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kattan, J., Doerr, A., Dogterom, M. & Danelon, C. Shaping liposomes by cell-free expressed bacterial microtubules. ACS Synth. Biol. 10, 2447–2455 (2021).PubMed
Kattan,J.,Doerr,A.,Dogterom,M。&Danelon,C。通过无细胞表达的细菌微管塑造脂质体。ACS合成。生物学102447-2455(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Godino, E., Restrepo Sierra, A. M. & Danelon, C. Imaging flow cytometry for high-throughput phenotyping of synthetic cells. ACS Synth. Biol. 12, 2015–2028 (2023).PubMed
Godino,E.,Restrepo Sierra,A.M。和Danelon,C。成像流式细胞术用于合成细胞的高通量表型分析。ACS合成。生物学杂志12015-2028(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daniel, I., Oger, P. & Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 35, 858–875 (2006).PubMed
Daniel,I.,Oger,P。&Winter,R。高压条件下生命和生物化学的起源。化学。Soc.Rev.35858–875(2006年)。PubMed出版社
Google Scholar
谷歌学者
Lenton, T. M. Testing Gaia: the effect of life on earth’s habitability and regulation. Climatic Change 52, 409–422 (2002).
Lenton,T.M。测试盖亚:生命对地球宜居性和调节的影响。气候变化52409-422(2002)。
Google Scholar
谷歌学者
Oparin, A. I. The origin of life and the origin of enzymes. Adv. Enzymol. Relat. areas Mol. Biol. 27, 347–380 (1965).PubMed
Oparin,A.I。生命的起源和酶的起源。高级酶学。相关。区域分子生物学。27347-380(1965)。PubMed出版社
Google Scholar
谷歌学者
Haldane, J. B. S. Origin of life. Rationalist Annual 3–10 (1929).Koonin, E. V. The origins of cellular life. Antonie van. Leeuwenhoek 106, 27–41 (2014).PubMed
霍尔丹,J.B.S。生命起源。理性主义年鉴3-10(1929)。Koonin,E.V。细胞生命的起源。安东尼·范。列文虎克106,27-41(2014)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ruiz-Mirazo, K., Briones, C. & De La Escosura, A. Chemical roots of biological evolution: The origins of life as a process of development of autonomous functional systems. Open Biol. 7, 170050 (2017).PubMed
Ruiz-Mirazo,K.,Briones,C。&De La Escosura,A。生物进化的化学根源:生命的起源是自主功能系统发展的过程。打开Biol。。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Annila, A. & Annila, E. Why did life emerge? Int. J. Astrobiol. 7, 293–300 (2008).ADS
Annila,A。和Annila,E。为什么生命会出现?Int.J.Astrobiol。7293-300(2008)。广告
Google Scholar
谷歌学者
Koonin, E. V., Krupovic, M., Ishino, S. & Ishino, Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol. 18, 61 (2020).PubMed
Koonin,E.V.,Krupovic,M.,Ishino,S。和Ishino,Y。LUCA的复制机制:DNA复制和转录的共同起源。BMC生物。18,61(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gilbert, W. Origin of life: The RNA world. Nature 319, 618 (1986).ADS
吉尔伯特,W。生命起源:RNA世界。自然319618(1986)。广告
Google Scholar
谷歌学者
Engelhart, A. E. & Hud, N. V. Primitive genetic polymers. Cold Spring Harb. Perspect. Biol. 2, a002196 (2010).PubMed
Engelhart,A.E。和Hud,N.V。原始遗传聚合物。冷泉兔。透视图。生物学2,a002196(2010)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
von Kiedrowski, G., Wlotzka, B., Helbing, J., Matzen, M. & Jordan, S. Parabolic Growth of a Self-Replicating Hexadeoxynucleotide Bearing a 3’−5’-Phosphoamidate Linkage. Angew. Chem. Int. Ed. Engl. 30, 423–426 (1991).
von Kiedrowski,G.,Wlotzka,B.,Helbing,J.,Matzen,M。&Jordan,S。带有3'-5'-磷酸酰胺键的自我复制六脱氧核苷酸的抛物线生长。安吉。化学。国际英语。30423-426(1991)。
Google Scholar
谷歌学者
von Kiedrowski, G. Minimal Replicator Theory I: Parabolic Versus Exponential Growth. in Bioorganic Chemistry Frontiers (eds Dugas, H. & Schmidtchen, F. P.) 113–146 (Springer, Berlin, Heidelberg, 1993). https://doi.org/10.1007/978-3-642-78110-0_4.Lincoln, T. A. & Joyce, G. F. Self-Sustained Replication of an RNA Enzyme.
von Kiedrowski,G。最小复制子理论I:抛物线与指数增长。《生物有机化学前沿》(eds Dugas,H.&Schmidtchen,F.P.)113-146(Springer,柏林,海德堡,1993)。https://doi.org/10.1007/978-3-642-78110-0_4.Lincoln,T.A。&Joyce,G.F。RNA酶的自我持续复制。
Science 323, 1229–1232 (2009).ADS .
科学3231229-1232(2009)。广告。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).ADS
Lee,D.H.,Granja,J.R.,Martinez,J.A.,Severin,K。&Ghadiri,M.R。一种自我复制肽。自然382525-528(1996)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Issac, R., Ham, Y. W. & Chmielewski, J. The design of self-replicating helical peptides. Curr. Opin. Struct. Biol. 11, 458–463 (2001).PubMed
Issac,R.,Ham,Y.W。&Chmielewski,J。自我复制螺旋肽的设计。货币。奥平。结构。生物学11458-463(2001)。PubMed出版社
Google Scholar
谷歌学者
Issac, R. & Chmielewski, J. Approaching exponential growth with a self-replicating peptide. J. Am. Chem. Soc. 124, 6808–6809 (2002).PubMed
Issac,R。&Chmielewski,J。用自我复制肽接近指数增长。J、 上午化学。Soc.1246808–6809(2002年)。PubMed出版社
Google Scholar
谷歌学者
Mukherjee, R., Cohen-Luria, R., Wagner, N. & Ashkenasy, G. A bistable switch in dynamic thiodepsipeptide folding and template-directed ligation. Angew. Chem. Int Ed. Engl. 54, 12452–12456 (2015).PubMed
Mukherjee,R.,Cohen Luria,R.,Wagner,N。&Ashkenasy,G。动态硫代肽折叠和模板定向连接中的双稳态开关。安吉。化学。国际英语。5412452-12456(2015)。PubMed出版社
Google Scholar
谷歌学者
Zepik, H. H., Blöchliger, E. & Luisi, P. L. A Chemical Model of Homeostasis. Angew. Chem. Int Ed. Engl. 40, 199–202 (2001).PubMed
Zepik,H.H.,Blöchliger,E。和Luisi,P.L。稳态的化学模型。安吉。化学。国际英语。40199-202(2001)。PubMed出版社
Google Scholar
谷歌学者
Bachmann, P. A., Walde, P., Luisi, P. L. & Lang, J. Self-replicating reverse micelles and chemical autopoiesis. ACS Publications https://pubs.acs.org/doi/pdf/10.1021/ja00178a073 (2002).Colomer, I., Morrow, S. M. & Fletcher, S. P. A transient self-assembling self-replicator. Nat. Commun.
Bachmann,P.A.,Walde,P.,Luisi,P.L。&Lang,J。自复制反胶束和化学自生。ACS出版物https://pubs.acs.org/doi/pdf/10.1021/ja00178a073(2002年)。Colomer,I.,Morrow,S.M。和Fletcher,S.P。一种瞬时自组装自复制子。国家公社。
9, 2239 (2018).ADS .
92239(2018)。广告。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fuelled self-replicator. Nat. Commun. 10, 1011 (2019).ADS
Morrow,S.M.,Colomer,I。和Fletcher,S.P。一种化学燃料的自我复制器。国家公社。10101(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).ADS
Carnall,J.M.A.等人。由自组织驱动的机械敏感自我复制。科学3271502-1506(2010)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Vaidya, N. et al. Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77 (2012).ADS
Vaidya,N.等人。合作RNA复制子之间的自发网络形成。自然491,72-77(2012)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Crutchfield, J. P. & Schuster, P. Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function (Oxford University Press, 2003).Ichihashi, N. et al. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat.
《进化动力学:探索选择、偶然、中立和功能的相互作用》(牛津大学出版社,2003年)。。纳特。
Commun. 4, 2494 (2013).ADS .
普通的。42494(2013)。广告。
PubMed
PubMed
Google Scholar
谷歌学者
Bansho, Y. et al. Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. Chem. Biol. 19, 478–487 (2012).PubMed
Bansho,Y。等人。寄生虫RNA种类抑制对延长翻译偶联RNA自我复制的重要性。化学。生物学19478-487(2012)。PubMed出版社
Google Scholar
谷歌学者
Mizuuchi, R., Ichihashi, N., Usui, K., Kazuta, Y. & Yomo, T. Adaptive evolution of an artificial RNA genome to a reduced ribosome environment. ACS Synth. Biol. 4, 292–298 (2015).PubMed
Mizuuchi,R.,Ichihashi,N.,Usui,K.,Kazuta,Y。&Yomo,T。人工RNA基因组向还原核糖体环境的适应性进化。ACS合成。生物学4292-298(2015)。PubMed出版社
Google Scholar
谷歌学者
Furubayashi, T. et al. Emergence and diversification of a host-parasite RNA ecosystem through Darwinian evolution. eLife 9, e56038 (2020).PubMed
Furubayashi,T.等人。通过达尔文进化,宿主-寄生虫RNA生态系统的出现和多样化。eLife 9,e56038(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mizuuchi, R. & Ichihashi, N. Sustainable replication and coevolution of cooperative RNAs in an artificial cell-like system. Nat. Ecol. Evol. 2, 1654–1660 (2018).PubMed
Mizuuchi,R。&Ichihashi,N。在人工细胞样系统中合作RNA的可持续复制和共同进化。自然生态。进化。。PubMed出版社
Google Scholar
谷歌学者
Yoshiyama, T., Ichii, T., Yomo, T. & Ichihashi, N. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci. Rep. 8, 11867 (2018).ADS
Yoshiyama,T.,Ichii,T.,Yomo,T。&Ichihashi,N。在液滴流反应器中自动体外进化翻译偶联的RNA复制系统。科学。代表811867(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forster, A. C. & Church, G. M. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006).PubMed
Forster,A.C。和Church,G.M。致力于合成最小细胞。分子系统。生物学2,45(2006)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Okauchi, H. & Ichihashi, N. Continuous cell-free replication and evolution of artificial genomic DNA in a compartmentalized gene expression system. ACS Synth. Biol. 10, 3507–3517 (2021).PubMed
Okauchi,H。&Ichihashi,N。在区室化基因表达系统中人工基因组DNA的连续无细胞复制和进化。ACS合成。生物学103507-3517(2021)。PubMed出版社
Google Scholar
谷歌学者
Sakatani, Y., Yomo, T. & Ichihashi, N. Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci. Rep. 8, 13089 (2018).ADS
Sakatani,Y.,Yomo,T。&Ichihashi,N。通过滚环复制和重组,通过自编码DNA聚合酶自我复制环状DNA。科学。代表813089(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sakatani, Y., Mizuuchi, R. & Ichihashi, N. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication. Protein Eng. Des. Sel. 32, 481–487 (2019).PubMed
Sakatani,Y.,Mizuuchi,R。&Ichihashi,N。通过区室化基因表达和滚环复制体外进化phi29 DNA聚合酶。。选择。32481-487(2019)。PubMed出版社
Google Scholar
谷歌学者
Okauchi, H., Sakatani, Y., Otsuka, K. & Ichihashi, N. Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach. ACS Synth. Biol. 9, 1771–1780 (2020).PubMed
Okauchi,H.,Sakatani,Y.,Otsuka,K。&Ichihashi,N。通过进化方法最小化等温DNA复制的元素。ACS合成。生物学91771-1780(2020)。PubMed出版社
Google Scholar
谷歌学者
Sunami, T. et al. Femtoliter compartment in liposomes for in vitro selection of proteins. Anal. Biochem. 357, 128–136 (2006).PubMed
Sunami,T。等人。脂质体中的Femtoliter隔室,用于体外选择蛋白质。肛门。生物化学。357128-136(2006)。PubMed出版社
Google Scholar
谷歌学者
Uno, K. et al. The evolutionary enhancement of genotype-phenotype linkages in the presence of multiple copies of genetic material. ChemBioChem 15, 2281–2288 (2014).PubMed
Uno,K.等人。在存在多拷贝遗传物质的情况下,基因型-表型联系的进化增强。化学生物化学152281-2288(2014)。PubMed出版社
Google Scholar
谷歌学者
Zadorin, A. S. & Rondelez, Y. Selection strategies for randomly partitioned genetic replicators. Phys. Rev. E 99, 062416 (2019).ADS
Zadorin,A.S。&Rondelez,Y。随机分配遗传复制子的选择策略。物理。修订版E 99062416(2019)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Mencía, M., Gella, P., Camacho, A., de Vega, M. & Salas, M. Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Φ29. Proc. Natl Acad. Sci. 108, 18655–18660 (2011).ADS
Mencía,M.,Gella,P.,Camacho,a.,de Vega,M。&Salas,M。末端蛋白引发的异源DNA扩增,具有基于噬菌体Φ29的最小复制系统。程序。国家科学院。科学。10818655–18660(2011)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abil, Z., Restrepo Sierra, A. M. & Danelon, C. Clonal amplification-enhanced gene expression in synthetic vesicles. ACS Synth. Biol. 12, 1187–1203 (2023).PubMed
Abil,Z.,Restrepo-Sierra,A.M。和Danelon,C。克隆扩增增强了合成囊泡中的基因表达。ACS合成。生物学121187-1203(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nishikawa, T., Sunami, T., Matsuura, T., Ichihashi, N. & Yomo, T. Construction of a gene screening system using giant unilamellar liposomes and a fluorescence-activated cell sorter. Anal. Chem. 84, 5017–5024 (2012).PubMed
Nishikawa,T.,Sunami,T.,Matsuura,T.,Ichihashi,N。&Yomo,T。使用巨大的单层脂质体和荧光激活细胞分选仪构建基因筛选系统。肛门。化学。845017-5024(2012)。PubMed出版社
Google Scholar
谷歌学者
Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. 110, 16796–16801 (2013).ADS
Fujii,S.,Matsuura,T.,Sunami,T.,Kazuta,Y。&Yomo,T。使用脂质体展示的α-溶血素的体外进化。程序。国家科学院。科学。11016796-16801(2013)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Uyeda, A. et al. Liposome-based in vitro evolution of aminoacyl-tRNA synthetase for enhanced pyrrolysine derivative incorporation. ChemBioChem 16, 1797–1802 (2015).PubMed
Uyeda,A。等人。基于脂质体的氨酰基-tRNA合成酶的体外进化,用于增强吡咯赖氨酸衍生物的掺入。化学生物化学161797-1802(2015)。PubMed出版社
Google Scholar
谷歌学者
Murase, Y., Nakanishi, H., Tsuji, G., Sunami, T. & Ichihashi, N. In vitro evolution of unmodified 16S rRNA for simple ribosome reconstitution. ACS Synth. Biol. 7, 675–583 (2018).
Murase,Y.,Nakanishi,H.,Tsuji,G.,Sunami,T。&Ichihashi,N。用于简单核糖体重建的未修饰16S rRNA的体外进化。ACS合成。生物学7675-583(2018)。
Google Scholar
谷歌学者
Uyeda, A., Nakayama, S., Kato, Y., Watanabe, H. & Matsuura, T. Construction of an in vitro gene screening system of the E. coli EmrE transporter using liposome display. Anal. Chem. 88, 12028–12035 (2016).PubMed
Uyeda,A.,Nakayama,S.,Kato,Y.,Watanabe,H。&Matsuura,T。使用脂质体展示构建大肠杆菌EmrE转运蛋白的体外基因筛选系统。肛门。化学。8812028-12035(2016)。PubMed出版社
Google Scholar
谷歌学者
Ghadessy, F. J., Ong, J. L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl Acad. Sci. USA 98, 4552–4557 (2001).ADS
Ghadessy,F.J.,Ong,J.L。和Holliger,P。通过区室化自我复制指导聚合酶功能的进化。程序。国家科学院。科学。美国984552-4557(2001)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsuji, G., Fujii, S., Sunami, T. & Yomo, T. Sustainable proliferation of liposomes compatible with inner RNA replication. PNAS 113, 590–595 (2016).ADS
Tsuji,G.,Fujii,S.,Sunami,T。&Yomo,T。与内部RNA复制相容的脂质体的可持续增殖。。广告
PubMed
PubMed
Google Scholar
谷歌学者
de Vega, M., Lazaro, J. M., Salas, M. & Blanco, L. Primer-terminus stabilization at the 3′−5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. EMBO J. 15, 1182–1192 (1996).PubMed
de Vega,M.,Lazaro,J.M.,Salas,M。&Blanco,L。引物末端在phi29 DNA聚合酶的3'-5'核酸外切酶活性位点稳定。在校对DNA聚合酶中涉及两个高度保守的氨基酸残基。EMBO J.151182–1192(1996)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Davidson, E. A., Meyer, A. J., Ellefson, J. W., Levy, M. & Ellington, A. D. An in vitro autogene. ACS Synth. Biol. 1, 190–196 (2012).PubMed
。ACS合成。生物学1190-196(2012)。PubMed出版社
Google Scholar
谷歌学者
Esteban, J. A., Salas, M. & Blanco, L. Fidelity of phi 29 DNA polymerase. comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268, 2719–2726 (1993).PubMed
Esteban,J.A.,Salas,M。&Blanco,L。phi 29 DNA聚合酶的保真度。。J、 生物。化学。2682719-2726(1993)。PubMed出版社
Google Scholar
谷歌学者
Paez, J. G. et al. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 32, e71 (2004).PubMed
Paez,J.G.等人。基于phi29聚合酶的多链置换全基因组扩增的基因组覆盖率和序列保真度。核酸研究32,e71(2004)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Soengas, M. S. et al. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3’−5’ exonuclease and strand-displacement activities. EMBO J. 11, 4227–4237 (1992).PubMed
Soengas,M.S.等人。phi 29 DNA聚合酶Exo III基序的定点突变;3'-5'核酸外切酶和链置换活性的重叠结构域。EMBO J.114227–4237(1992)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLOS ONE 12, e0169774 (2017).PubMed
Potapov,V。&Ong,J.L。通过单分子测序检查PCR中错误的来源。PLOS ONE 12,e0169774(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McInerney, P., Adams, P. & Hadi, M. Z. Error rate comparison during polymerase chain reaction by DNA polymerase. Mol. Biol. Int 2014, 287430 (2014).PubMed
McInerney,P.,Adams,P。&Hadi,M.Z。通过DNA聚合酶进行聚合酶链反应期间的错误率比较。分子生物学。Int 2014287430(2014)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Laurent, G., Peliti, L. & Lacoste, D. Survival of self-replicating molecules under transient compartmentalization with natural selection. Life 9, 78 (2019).ADS
Laurent,G.,Peliti,L。&Lacoste,D。在自然选择的瞬时区室化下,自我复制分子的存活。生活9,78(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsumura, S. et al. Transient compartmentalization of RNA replicators prevents extinction due to parasites. Science 354, 1293–1296 (2016).ADS
Matsumura,S.等人。RNA复制子的瞬时区室化可防止寄生虫引起的灭绝。科学3541293-1296(2016)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Streisinger, G. et al. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb. Symp. Quant. Biol. 31, 77–84 (1966).PubMed
Streisinger,G。等人。移码突变和遗传密码。本文是在狄奥多西·多布赞斯基教授66岁生日之际献给他的。冷泉兔。症状。数量。生物学31,77-84(1966)。PubMed出版社
Google Scholar
谷歌学者
Koutmou, K. S. et al. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 4, e05534 (2015).PubMed
Koutmou,K.S.等人。核糖体在编码赖氨酸的均聚物A片段上滑动。eLife 4,e05534(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nieuwkoop, T., Finger-Bou, M., Van Der Oost, J. & Claassens, N. J. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol. Cell 80, 193–209 (2020).PubMed
Nieuwkoop,T.,Finger Bou,M.,Van Der Oost,J。&Claassens,N.J。正在进行的破解蛋白质生产遗传密码的探索。分子细胞80193-209(2020)。PubMed出版社
Google Scholar
谷歌学者
Jeng, S. T., Gardner, J. F. & Gumport, R. I. Transcription termination in vitro by bacteriophage T7 RNA polymerase. The role of sequence elements within and surrounding a rho-independent transcription terminator. J. Biol. Chem. 267, 19306–19312 (1992).PubMed
Jeng,S.T.,Gardner,J.F。&Gumport,R.I。通过噬菌体T7 RNA聚合酶在体外终止转录。序列元件在rho非依赖性转录终止子内部和周围的作用。J、 生物。化学。。PubMed出版社
Google Scholar
谷歌学者
Zhao, H. & Arnold, F. H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng., Des. Selection 12, 47–53 (1999).
Zhao,H.&Arnold,F.H.指导的进化将枯草杆菌蛋白酶E转化为热敏酶的功能等效物。蛋白质工程,Des。选择12,47-53(1999)。
Google Scholar
谷歌学者
Eigen, M. & Schuster, P. A principle of natural self-organization. Naturwissenschaften 64, 541–565 (1977).ADS
。Naturwissenschaften 64541-565(1977)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Matsuura, T. et al. Importance of compartment formation for a self-encoding system. Proc. Natl Acad. Sci. 99, 7514–7517 (2002).ADS
Matsuura,T。等人。隔室形成对自编码系统的重要性。程序。国家科学院。科学。997514-7517(2002)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 1–6 https://doi.org/10.1038/s41586-023-06288-x (2023).Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).PubMed
Moger-Reischer,R.Z.等人,《最小细胞的进化》。性质1-6https://doi.org/10.1038/s41586-023-06288-x(2023年)。吉布森(Gibson,D.G.)等人。酶促组装高达数百千碱基的DNA分子。《自然方法》6343-345(2009)。PubMed出版社
Google Scholar
谷歌学者
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).PubMed
Li,H。&Durbin,R。使用Burrows-Wheeler变换进行快速准确的短读比对。生物信息学251754-1760(2009)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed
。生物信息学26589-595(2010)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at http://arxiv.org/abs/1207.3907 (2012).Tange, O. GNU Parallel: The Command-Line Power Tool.Lázaro, J. M., Blanco, L. & Salas, M. Purification of bacteriophage phi 29 DNA polymerase. Methods Enzymol.
Garrison,E。&Marth,G。基于单倍型的短读测序变异检测。预印于http://arxiv.org/abs/1207.3907(2012年)。Tange,O.GNU Parallel:命令行电动工具。Lázaro,J.M.,Blanco,L。&Salas,M。噬菌体phi 29 DNA聚合酶的纯化。方法酶法。
262, 42–49 (1995).PubMed .
262, 42-49 (1995).Pub Med。
Google Scholar
谷歌学者
Soengas, M. S., Gutiérrez, C. & Salas, M. Helix-destabilizing activity of phi 29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication. J. Mol. Biol. 253, 517–529 (1995).PubMed
Soengas,M.S.,Gutiérrez,C。&Salas,M。phi 29单链DNA结合蛋白的螺旋去稳定活性:对链置换DNA复制过程中伸长率的影响。J、 分子生物学。253517-529(1995)。PubMed出版社
Google Scholar
谷歌学者
Del Prado, A. et al. Insights into the determination of the templating nucleotide at the initiation of φ29 DNA replication. J. Biol. Chem. 290, 27138–27145 (2015).PubMed
Del Prado,A.等人对φ29 DNA复制起始时模板核苷酸测定的见解。J、 生物。化学。29027138-27145(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peñalva, M. A. & Salas, M. Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5’-dAMP. Proc. Natl Acad. Sci. USA 79, 5522–5526 (1982).ADS
Peñalva,M.A。和Salas,M。体外启动噬菌体phi 29 DNA复制:在末端蛋白p3和5'-dAMP之间形成共价复合物。程序。国家科学院。科学。美国795522-5526(1982)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McDonell, M. W., Simon, M. N. & Studier, F. W. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. Mol. Biol. 110, 119–146 (1977).PubMed
McDonell,M.W.,Simon,M.N。&Studier,F.W。分析T7 DNA的限制性片段并通过中性和碱性凝胶中的电泳测定分子量。J、 分子生物学。110119-146(1977)。PubMed出版社
Google Scholar
谷歌学者
Blanco, L., Lázaro, J. M., de Vega, M., Bonnin, A. & Salas, M. Terminal protein-primed DNA amplification. Proc. Natl Acad. Sci. 91, 12198–12202 (1994).ADS
Blanco,L.,Lázaro,J.M.,de Vega,M.,Bonnin,A。&Salas,M。末端蛋白引发的DNA扩增。程序。国家科学院。科学。9112198-12202(1994)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carthew, R. W., Chodosh, L. A. & Sharp, P. A. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43, 439–448 (1985).PubMed
。细胞43439-448(1985)。PubMed出版社
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe would like to thank Ilja Westerlaken for single clone preparation and Sanger sequencing analysis, Elisa Godino for assisting with the characterization of some DNA variants, Anna de Jong for the flow cytometry experiments, and Laura Sierra Heras for performing a replicate of Bulk-WT.
下载参考文献致谢我们要感谢Ilja Westerlaken进行单克隆制备和Sanger测序分析,感谢Elisa Godino协助表征某些DNA变体,感谢Anna de Jong进行流式细胞术实验,感谢Laura Sierra Heras进行Bulk-WT的复制。
The research was funded by the NWO Gravitation programs “BaSyC – Building a synthetic cell” (024.003.019) and “NanoFront – Frontiers of Nanoscience”. CD acknowledges funding from ANR (ANR-22-CPJ2-0091-01). ZA acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no.
这项研究由NWO引力项目“BaSyC-构建合成细胞”(024.003.019)和“纳米前沿-纳米科学前沿”资助。CD承认ANR(ANR-22-CPJ2-0091-01)的资助。ZA感谢欧盟地平线2020研究与创新计划根据MarieSkłodowska Curie grant agreement no.提供的资金。
707404. ARS acknowledges funding from a NanoFront-Casimir Research School PhD grant. MdV acknowledges funding by MCIN/AEI/10.13039/501100011033 (Grant PID2020-115978GB-I00). We specifically acknowledge the contributions of author Andreea R. Stan, who sadly passed away and did not see the final version of the paper.Author informationAuthor notesThese authors contributed equally: Zhanar Abil, Ana María Restrepo Sierra.Deceased: Andreea R.
ARS感谢NanoFront Casimir研究院博士学位授予的资金。MdV承认MCIN/AEI/10.13039/501100011033(Grant PID2020-115978GB-I00)的资助。我们特别感谢作者AndreeaR.Stan的贡献,他不幸去世,没有看到论文的最终版本。作者信息作者注意到这些作者做出了同样的贡献:Zhanar Abil,Ana María Restrepo Sierra。死者:Andreea R。
Stan.Authors and AffiliationsDepartment of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, NetherlandsZhanar Abil, Ana María Restrepo Sierra, Andreea R. Stan, Amélie Châne & Christophe DanelonDepartment of Biology, University of Florida, 882 Newell Dr, Gainesville, USAZhanar AbilCentro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera, 1, Madrid, SpainAlicia del Prado & Miguel de VegaLaboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, 10 rue Vauquelin, Paris, FranceYannick RondelezToulouse Biotechnology Institute (TBI.
斯坦。生物纳米科学的作者和附属机构,卡夫利纳米科学研究所,代尔夫特理工大学,代尔夫特,荷兰萨纳尔·阿比尔,安娜·玛丽亚·雷斯特雷波·塞拉,安德里亚·R。斯坦,阿梅莉·查内和克里斯托夫·达内隆德生物系,佛罗里达大学,882纽厄尔博士,盖恩斯维尔,乌萨扎纳尔·阿比尔分子生物学中心塞韦罗·奥乔亚(马德里自治大学高级科学研究委员会),尼古拉斯·卡布雷拉,1岁,马德里,Spainalicia del Prado&Miguel de Vegalabaratoire Gulliver,UMR7083 CNRS/ESPCI Paris-PSL Research University,10 Rue Vauquelin,Paris,Franceyannick RondelezToulouse Biotechnology Institute(TBI)。
PubMed Google ScholarAna María Restrepo SierraView author publicationsYou can also search for this author in
PubMed Google ScholarAna María Restrepo SierraView作者出版物您也可以在
PubMed Google ScholarAndreea R. StanView author publicationsYou can also search for this author in
PubMed Google ScholarAndreea R.StanView作者出版物您也可以在
PubMed Google ScholarAmélie ChâneView author publicationsYou can also search for this author in
PubMed Google ScholarAmélie CháneView作者出版物您也可以在
PubMed Google ScholarAlicia del PradoView author publicationsYou can also search for this author in
PubMed Google ScholarAlicia del PradoView作者出版物您也可以在
PubMed Google ScholarMiguel de VegaView author publicationsYou can also search for this author in
PubMed Google Scholarmamiguel de VegaView作者出版物您也可以在
PubMed Google ScholarYannick RondelezView author publicationsYou can also search for this author in
PubMed Google ScholarYannick Rondlezview作者出版物您也可以在
PubMed Google ScholarChristophe DanelonView author publicationsYou can also search for this author in
PubMed谷歌学术评论DanelonView作者出版物您也可以在
PubMed Google ScholarContributionsCD conceived and supervised the project; ZA, AMRS, ARS, AC, and AdP designed, performed experiments, and performed data analysis; MdV designed experiments and performed data analysis; YR performed data analysis; ZA, AMRS and CD wrote the paper with input from all co-authors.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献SCD构思并监督了该项目;ZA,AMRS,ARS,AC和AdP设计,进行实验并进行数据分析;MdV设计实验并进行数据分析;YR进行了数据分析;ZA,AMRS和CD在所有合著者的意见下撰写了这篇论文。对应作者对应。
Christophe Danelon.Ethics declarations
克里斯托夫·达内隆。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Norikazu Ichihashi, Ryo Mizuuchi, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Norikazu Ichihashi,Ryo Mizuuchi和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1Reporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions.
。补充信息补充信息其他补充文件的描述补充数据1报告摘要透明同行评审文件源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleAbil, Z., Restrepo Sierra, A.M., Stan, A.R. et al. Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell.
转载和许可本文引用本文Abil,Z.,Restrepo Sierra,A.M.,Stan,A.R。等人。达尔文进化论在合成原细胞中自我复制DNA的进化。
Nat Commun 15, 9091 (2024). https://doi.org/10.1038/s41467-024-53226-0Download citationReceived: 30 April 2024Accepted: 03 October 2024Published: 22 October 2024DOI: https://doi.org/10.1038/s41467-024-53226-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》159091(2024)。https://doi.org/10.1038/s41467-024-53226-0Downloadhttps://doi.org/10.1038/s41467-024-53226-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供