EN
登录

小鼠胎盘形成的时空转录组图谱

A spatiotemporal transcriptomic atlas of mouse placentation

Nature 等信源发布 2024-10-22 17:28

可切换为仅中文


AbstractThe placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases.

摘要胎盘是妊娠支持的临时但必不可少的器官,在整个妊娠过程中经历了复杂的形态和功能转变。然而,胎盘基因表达的时空模式仍然知之甚少。利用Stereo-seq,我们构建了一个从胚胎期(E)7.5到E14.5的小鼠胎盘时空转录组图谱(MPSTA),其中包括以前的单细胞图谱中未捕获的大型滋养层细胞的转录组。

We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand–receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis.

我们定义了外胚层锥体的四个不同层,这是一种早期的异质滋养外胚层结构,并阐明了E9.5之前植入后早期滋养层分化的空间轨迹。我们的时空配体-受体相互作用分析侧重于迷宫区域(小鼠胎盘中营养交换的界面),揭示了滋养层发育和胎盘血管生成所必需的关键调节剂。

We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance.

我们还发现,父系表达的基因仅在胎盘而不是蜕膜区域富集,包括一组富含内皮细胞的基因,这些基因可能在胎盘血管生成中起作用。在入侵前沿,我们确定了与妊娠维持有关的界面特异性转录因子调节子,例如Atf3,Jun,Junb,Stat6,Mxd1,Maff,Fos和Irf7。

Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology..

此外,我们发现母体高脂肪饮食暴露优先影响该界面,加剧炎症反应并破坏血管生成稳态。总的来说,我们的发现提供了一个全面的,空间分辨的图谱,为未来胎盘形态发生和病理学的探索提供了有价值的见解和基准。。

IntroductionThe placenta acts as the major organ of nutrient exchange between the mother and the embryo. It also serves as a vital fetal endocrine organ during pregnancy1. Placentation is a complex and dynamic process that is crucial for regulating communication and coadaptation between the mother and fetus2.

引言胎盘是母亲和胚胎之间营养交换的主要器官。它在怀孕期间也是胎儿重要的内分泌器官1。胎盘是一个复杂而动态的过程,对于调节母亲和胎儿之间的沟通和共适应至关重要2。

Significant placental disruptions are always associated with various pregnancy complications and adverse fetal outcomes3. However, a profound understanding of key processes related to placentation, such as trophoblast development, fetal circulation establishment, and synchronized dialog between fetal-derived cells and the maternal endometrium4, remains a challenge.

严重的胎盘破裂总是与各种妊娠并发症和不良胎儿结局有关3。然而,深入了解与胎盘相关的关键过程,如滋养层发育,胎儿循环建立以及胎儿来源细胞与母体子宫内膜之间的同步对话4,仍然是一个挑战。

The gene expression pattern of the placenta has not been systematically characterized from a spatiotemporal perspective.Previous single-cell and single-nucleus atlases have significantly enhanced our understanding of the cellular composition and cell-specific functions of the placenta, in both humans5,6,7 and rodents8,9.

胎盘的基因表达模式尚未从时空角度进行系统表征。先前的单细胞和单核地图集显着增强了我们对人类5,6,7和啮齿动物8,9中胎盘的细胞组成和细胞特异性功能的理解。

However, single-cell RNA sequencing (scRNA-seq) cannot capture multinucleated syncytiotrophoblasts (SynTs) and trophoblast giant cells (TGCs) in their mature state due to their large size9,10, nor could it provide spatial localization of diverse types of cells and gene expression patterns. Single-nucleus RNA sequencing (snRNA-seq), while capable of capturing multinucleated cells, cannot provide the complete transcriptome of the entire cell.

然而,单细胞RNA测序(scRNA-seq)不能捕获成熟状态下的多核合体滋养细胞(SynTs)和滋养层巨细胞(TGCs),因为它们的大小较大9,10,也不能提供不同类型细胞的空间定位和基因表达模式。单核RNA测序(snRNA-seq)虽然能够捕获多核细胞,但不能提供整个细胞的完整转录组。

Recently, several studies have used spatial transcriptome techniques to elucidate the locations of newly identified cell types11 and changes in gene expression in different functional regions12 of the human placenta. Nevertheless, most human placenta samples can be obtained from miscarriage samples in early pregnancy at only 6–14 gestational weeks or .

最近,一些研究使用空间转录组技术来阐明新鉴定的细胞类型11的位置以及人胎盘不同功能区域12中基因表达的变化。。

For cell type mapping analysis of trophoblasts and decidua cells, we separately downloaded scRNA-seq data from the recently published GSE156125 dataset8 and obtained data from He et al.33. After obtaining the gene expression matrix after cell segmentation, we split the spatially resolved cell bins into trophoblast and decidua groups according to their localization.

对于滋养层细胞和蜕膜细胞的细胞类型作图分析,我们分别从最近发布的GSE156125数据集8下载了scRNA-seq数据,并从He等人33获得了数据。在细胞分割后获得基因表达矩阵后,我们根据其定位将空间分辨的细胞仓分成滋养层和蜕膜组。

The trophoblast cell bins were aligned to the reference cell types of the corresponding stage in GSE156125 using the principled Bayesian model in cell2location111. Decidual cell bins were similarly mapped to the cell types from the study by He et al.33. After mapping, the trophoblast cell bins and decidua bins were then merged to obtain a complete map of placental sections with a cell type-level resolution.Calculation of the proportions of different cell types at the placenta and cluster/interfaceCombining the deconvolution results from both the trophoblast and decidua cell bins, the proportions of different cell types across the whole placenta were calculated as the number of cells of each type in a cell bin (e.g., NKp cell) divided by the total number of cells in the placenta.

使用cell2location111中的原则贝叶斯模型,将滋养层细胞仓与GSE156125中相应阶段的参考细胞类型进行比对。蜕膜细胞仓类似地映射到He等人研究的细胞类型33。作图后,将滋养层细胞仓和蜕膜仓合并,以获得具有细胞类型水平分辨率的胎盘切片的完整图谱。计算胎盘和簇/界面上不同细胞类型的比例结合滋养层和蜕膜细胞仓的解卷积结果,将整个胎盘中不同细胞类型的比例计算为细胞仓(例如NKp细胞)中每种类型的细胞数量除以胎盘中的细胞总数。

To calculate the proportion of each cell type at the interface or in a specific cluster, the bin50 cluster/interface annotation was first transferred to the cell bin according to coordinate mapping using the st.dd.set_domains function in Spateo, and then the proportions of cell types in specific clusters or at the interface were calculated as the number of cells of each type in a cell bin of the cluster/interface (e.g., biopotential progenitor in inner EPC1) divided by the total number of cells in the clusters/interfaces (e.g., inner EPC1).Spatial cell distribution analysisThe dyn.tl.neighbors functionality of Spateo was utilized to c.

为了计算界面或特定簇中每种细胞类型的比例,首先使用Spateo中的st.dd.set\u domains函数根据坐标映射将bin50簇/界面注释转移到细胞库中,然后将特定簇或界面中细胞类型的比例计算为簇/界面(例如内部EPC1中的生物势祖细胞)的细胞库中每种类型的细胞数量除以簇/界面(例如内部EPC1)中的细胞总数。空间细胞分布分析利用Spateo的dyn.tl.neighbors功能进行c。

Data availability

数据可用性

All raw data generated in this study have been deposited to CNGB Nucleotide Sequence Archive under the accession number CNP0004966 (https://db.cngb.org/search/project/CNP0004966/). Our Stereo-seq dataset can be visualized by our interactive data portal (https://db.cngb.org/stomics/mpsta/). Additional data, including raw and filtered feature-spot matrices and nucleic acid dye staining images of each section, can be accessed from https://db.cngb.org/stomics/project/STT0000055..

本研究中产生的所有原始数据均已以登录号CNP0004966保存到CNGB核苷酸序列档案库(https://db.cngb.org/search/project/CNP0004966/)。我们的Stereo-seq数据集可以通过我们的交互式数据门户可视化(https://db.cngb.org/stomics/mpsta/)。其他数据,包括原始和过滤后的特征点矩阵以及每个部分的核酸染料染色图像,可以从https://db.cngb.org/stomics/project/STT0000055..

ReferencesBurton, G. J. & Jauniaux, E. What is the placenta? Am. J. Obstet. Gynecol. 213, S6.e1, S6–S8 (2015).Article

参考文献Burton,G.J。和Jauniaux,E。什么是胎盘?美国J.Obstet。。213,S6.e1,S6-S8(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hemberger, M., Hanna, C. W. & Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21, 27–43 (2020).Article

Hemberger,M.,Hanna,C.W。和Dean,W。小鼠和人类早期胎盘发育的机制。Genet自然Rev。21,27-43(2020)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Haram, K. et al. Early development of the human placenta and pregnancy complications. J. Matern. Fetal Neonatal Med. 33, 3538–3545 (2020).Article

Haram,K.等人,《人类胎盘的早期发育和妊娠并发症》。J、 马特。胎儿新生儿医学333538-3545(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Adamson, S. L. et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev. Biol. 250, 358–373 (2002).Article

Adamson,S.L.等人。滋养层细胞与小鼠胎盘中母体和胎儿循环之间的相互作用。开发生物。250358-373(2002)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).Article

Vento Tormo,R。等人。人类早期母胎界面的单细胞重建。自然563347-353(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Liu, Y. et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 28, 819–832 (2018).Article

Liu,Y。等人。单细胞RNA-seq揭示了人类胎盘滋养层亚型和分化模式的多样性。Cell Res.28819–832(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Li, H. et al. Human placental endothelial cell and trophoblast heterogeneity and differentiation revealed by single-cell RNA sequencing. Cells 12, 87 (2022).Article

Li,H。等人。通过单细胞RNA测序揭示人胎盘内皮细胞和滋养层细胞的异质性和分化。细胞12,87(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, X. et al. A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov. 9, 30 (2023).Article

Jiang,X。等人。单细胞分辨率下小鼠胎盘的分化路线图。细胞Discov。9,30(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Marsh, B. & Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth development. Elife 9, e60266 (2020).Article

Marsh,B。&Blelloch,R。小鼠胎盘迷宫发育的单核RNA-seq。Elife 9,e60266(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Hannibal, R. L. & Baker, J. C. Selective amplification of the genome surrounding key placental genes in trophoblast giant cells. Curr. Biol. 26, 230–236 (2016).Article

Hannibal,R.L。&Baker,J.C。选择性扩增滋养层巨细胞中关键胎盘基因周围的基因组。货币。生物学26230-236(2016)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Arutyunyan, A. et al. Spatial multiomics map of trophoblast development in early pregnancy. Nature 616, 143–151 (2023).Article

Arutyunyan,A。等。妊娠早期滋养层发育的空间多组学图。自然616143-151(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Greenbaum, S. et al. A spatially resolved timeline of the human maternal-fetal interface. Nature 619, 595–605 (2023).Article

Greenbaum,S.等人。人类母胎界面的空间分辨时间表。自然619595-605(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Barrozo, E. R. et al. Term placenta transcriptomic atlas identifies cells with discrete transcription programs implicated in gestational diabetes subtypes. Am. J. Obstet. Gynecol. 228, S71–S72 (2023).Article

。美国J.Obstet。。228,S71–S72(2023)。文章

Google Scholar

谷歌学者

Maltepe, E. & Fisher, S. J. Placenta: the forgotten organ. Annu. Rev. Cell Dev. Biol. 31, 523–552 (2015).Article

Maltepe,E。&Fisher,S.J。胎盘:被遗忘的器官。年。Rev.Cell Dev.Biol。31523-552(2015)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Yang, M. et al. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 186, 4271–4288.e24 (2023).Article

Yang,M.等人。免疫特征基质细胞对早孕的时空洞察。细胞1864271-4288.e24(2023)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Simmons, D.G. in The Guide to Investigation of Mouse Pregnancy (eds. Croy, B.A., Yamada, A.T., DeMayo, F.J. & Adamson, S.L.) Ch. 12 (Academic Press, 2014).Bevilacqua, E., Lorenzon, A.R., Bandeira, C.L. & Hoshida, M.S. in The Guide to Investigation of Mouse Pregnancy (eds. Croy, B.A., Yamada, A.T., DeMayo, F.J.

Simmons,D.G.《小鼠妊娠调查指南》(编辑:Croy,B.A.,Yamada,A.T.,DeMayo,F.J.&Adamson,S.L.)第12章(学术出版社,2014年)。Bevilacqua,E.,Lorenzon,A.R.,Bandeira,C.L。和Hoshida,M.S.《小鼠妊娠调查指南》(编辑:Croy,B.A.,Yamada,A.T.,DeMayo,F.J。

& Adamson, S.L.) Ch. 10 (Academic Press, 2014).Simmons, D. G., Fortier, A. L. & Cross, J. C. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev. Biol. 304, 567–578 (2007).Article .

&亚当森,S.L.)第10章(学术出版社,2014年)。Simmons,D.G.,Fortier,A.L。和Cross,J.C。小鼠胎盘滋养层巨细胞的不同亚型和发育起源。开发生物。。文章。

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front. Endocrinol. 9, 570 (2018).Article

Woods,L.,Perez-Garcia,V。&Hemberger,M。胎盘发育的调节及其对胎儿生长的影响来自小鼠模型的新见解。正面。内分泌。9570(2018)。文章

Google Scholar

谷歌学者

Ueno, M. et al. c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface. Dev. Cell 27, 373–386 (2013).Article

Ueno,M。等人。c-Met依赖性多能迷宫滋养层祖细胞建立胎盘交换界面。Dev.Cell 27373-386(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Huang, Z., Huang, S., Song, T., Yin, Y. & Tan, C. Placental angiogenesis in mammals: a review of the regulatory effects of signaling pathways and functional nutrients. Adv. Nutr. 12, 2415–2434 (2021).Article

Huang,Z.,Huang,S.,Song,T.,Yin,Y.&Tan,C.哺乳动物胎盘血管生成:信号通路和功能营养素调节作用的综述。高级营养师。122415-2434(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).Article

Chen,A。等人。使用DNA纳米球图案阵列的小鼠器官发生的时空转录组图谱。细胞1851777-1792.e21(2022)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Elmore, S. A. et al. Histology atlas of the developing mouse placenta. Toxicol. Pathol. 50, 60–117 (2022).Article

Elmore,S.A.等人,《发育中的小鼠胎盘组织学图谱》。毒理学。病理学。50,60-117(2022)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Ander, S. E., Diamond, M. S. & Coyne, C. B. Immune responses at the maternal-fetal interface. Sci. Immunol. 4, eaat6114 (2019).Article

Ander,S.E.,Diamond,M.S。&Coyne,C.B。母胎界面的免疫反应。科学。免疫。4,eaat6114(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Khaire, A., Wadhwani, N., Madiwale, S. & Joshi, S. Maternal fats and pregnancy complications: Implications for long-term health. Prostaglandins Leukot. Ess. Fat. Acids 157, 102098 (2020).Article

Khaire,A.,Wadhwani,N.,Madiwale,S。&Joshi,S。母体脂肪和妊娠并发症:对长期健康的影响。前列腺素白斑。Ess。脂肪。酸157102098(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Marinić, M., Mika, K., Chigurupati, S. & Lynch, V. J. Evolutionary transcriptomics implicates HAND2 in the origins of implantation and regulation of gestation length. Elife 10, e61257 (2021).Article

Marinić,M.,Mika,K.,Chigurupati,S。&Lynch,V.J。进化转录组学暗示HAND2参与植入的起源和妊娠长度的调节。Elife 10,e61257(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tunster, S. J., Tycko, B. & John, R. M. The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol. Cell. Biol. 30, 295–306 (2010).Article

Tunster,S.J.,Tycko,B。&John,R.M。印迹Phlda2基因调节胚外能量储存。摩尔电池。生物学30295-306(2010)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Serpas, L. et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc. Natl. Acad. Sci. USA 116, 641–649 (2019).Article

Serpas,L。等人,Dnase1l3缺失导致血浆DNA的长度和末端基序频率异常。程序。纳特尔。阿卡德。科学。美国116641-649(2019)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Kubota, K., Kent, L. N., Rumi, M. A., Roby, K. F. & Soares, M. J. Dynamic regulation of AP-1 transcriptional complexes directs trophoblast differentiation. Mol. Cell. Biol. 35, 3163–3177 (2015).Article

Kubota,K.,Kent,L.N.,Rumi,M.A.,Roby,K.F。&Soares,M.J。AP-1转录复合物的动态调节指导滋养层分化。摩尔电池。生物学353163-3177(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Atari, E., Perry, M. C., Jose, P. A. & Kumarasamy, S. Regulated endocrine-specific protein-18, an emerging endocrine protein in physiology: a literature review. Endocrinology 160, 2093–2100 (2019).Article

Atari,E.,Perry,M.C.,Jose,P.A。&Kumarasamy,S。调节内分泌特异性蛋白-18,一种新兴的生理内分泌蛋白:文献综述。内分泌学1602093-2100(2019)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Sheftel, A. D. et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl Acad. Sci. USA 107, 11775–11780 (2010).Article

Sheftel,A.D。等人,人类拥有两种线粒体铁氧还蛋白Fdx1和Fdx2,在类固醇生成,血红素和Fe/S簇生物合成中具有不同的作用。程序。国家科学院。科学。美国10711775–11780(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Hu, D. & Cross, J. C. Development and function of trophoblast giant cells in the rodent placenta. Int. J. Dev. Biol. 54, 341–354 (2010).Article

Hu,D。&Cross,J.C。啮齿动物胎盘中滋养层巨细胞的发育和功能。Int.J.Dev.Biol。54341-354(2010)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

He, J. P., Tian, Q., Zhu, Q. Y. & Liu, J. L. Single-cell analysis of mouse uterus at the invasion phase of embryo implantation. Cell Biosci. 12, 13 (2022).Article

He,J.P.,Tian,Q.,Zhu,Q.Y.&Liu,J.L。胚胎植入侵袭期小鼠子宫的单细胞分析。细胞生物科学。12、13(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Bogutz, A. B. et al. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet. 14, e1007587 (2018).Article

转录因子ASCL2是糖原滋养层细胞谱系发育所必需的。PLoS Genet。14,e1007587(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varberg, K. M. et al. ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development. Proc. Natl. Acad. Sci. USA 118, e2016517118 (2021).Article

Varberg,K.M。等人ASCL2在血绒毛膜胎盘发育过程中相互控制关键的滋养层谱系决定。程序。纳特尔。阿卡德。科学。美国118,e2016517118(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Yi, Y., Zhu, H., Klausen, C. & Leung, P. C. K. Transcription factor SOX4 facilitates BMP2-regulated gene expression during invasive trophoblast differentiation. FASEB J. 35, e22028 (2021).Article

Yi,Y.,Zhu,H.,Klausen,C。&Leung,P.C.K。转录因子SOX4在侵袭性滋养层分化过程中促进BMP2调节的基因表达。FASEB J.35,e22028(2021)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Zhuang, B. M. et al. Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells. BMC Genomics 24, 618 (2023).Article

Zhuang,B.M.等人。自我更新的原代滋养层类器官的单细胞表征,作为EVT分化和与蜕膜自然杀伤细胞相互作用的模型。BMC基因组学24618(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Mould, A., Morgan, M. A., Li, L., Bikoff, E. K. & Robertson, E. J. Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes Dev. 26, 2063–2074 (2012).Article

Mold,A.,Morgan,M.A.,Li,L.,Bikoff,E.K。&Robertson,E.J。Blimp1/Prdm1控制血管内滋养层巨细胞的终末分化,并定义发育中胎盘中的多能祖细胞。Genes Dev.262063–2074(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Freyer, L. et al. Loss of apela peptide in mice causes low penetrance embryonic lethality and defects in early mesodermal derivatives. Cell Rep. 20, 2116–2130 (2017).Article

Freyer,L。等人。小鼠中apela肽的丢失会导致低渗透性胚胎致死率和早期中胚层衍生物的缺陷。Cell Rep.202116–2130(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Filippou, P. S., Karagiannis, G. S. & Constantinidou, A. Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 39, 2040–2054 (2020).Article

Filippou,P.S.,Karagiannis,G.S。和Constantinidou,A。Midkine(MDK)生长因子:癌症进展的关键参与者和有希望的治疗靶点。癌基因392040-2054(2020)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Rosario, G. X., Konno, T. & Soares, M. J. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev. Biol. 314, 362–375 (2008).Article

Rosario,G.X.,Konno,T。&Soares,M.J。母体缺氧激活血管内滋养层细胞侵袭。开发生物。314362-375(2008)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Mayer, W. et al. Expression of the imprinted genes MEST/Mest in human and murine placenta suggests a role in angiogenesis. Dev. Dyn. 217, 1–10 (2000).Article

Mayer,W。等人。印迹基因MEST/MEST在人和鼠胎盘中的表达表明其在血管生成中的作用。开发动态。217,1-10(2000)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Starks, R.R. et al. Transcription factor PLAGL1 is associated with angiogenic gene expression in the placenta. Int. J. Mol. Sci. 21, 8317 (2020).Sandovici, I. et al. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev. Cell 57, 63–79.e8 (2022).Article .

Starks,R.R.等人。转录因子PLAGL1与胎盘中的血管生成基因表达有关。Int.J.Mol.Sci。218317(2020)。Sandovici,I。等人。印迹的Igf2-Igf2r轴对于使胎盘微血管扩张与胎儿生长相匹配至关重要。开发单元57,63–79.e8(2022)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Gigante, S. et al. Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Res. 47, e46 (2019).Article

Gigante,S.等人使用长读测序检测印迹DNA甲基化。核酸研究47,e46(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Sekita, Y. et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40, 243–248 (2008).Article

Sekita,Y.等人。逆转录转座子衍生的印迹基因Rtl1在小鼠胎盘胎儿-母体界面中的作用。纳特·吉内特。40243-248(2008)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Liu, F. et al. Placental trophoblasts shifted Th1/Th2 balance toward Th2 and inhibited Th17 immunity at fetomaternal interface. APMIS 119, 597–604 (2011).Article

Liu,F。等人。胎盘滋养层细胞将Th1/Th2平衡向Th2转移,并抑制胎儿-母体界面的Th17免疫。APMIS 119597–604(2011)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Wooding, P. & Burton, G. Comparative Placentation: Structures, Functions and Evolution (Springer Science & Business Media, 2008).Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113.e6 (2017).Article

Wooding,P。&Burton,G。比较胎盘:结构,功能和进化(Springer Science&Business Media,2008)。Fu,B.等人。自然杀伤细胞通过分泌促生长因子促进胎儿发育。免疫力471100–1113.e6(2017)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Tagliani, E. & Erlebacher, A. Dendritic cell function at the maternal-fetal interface. Expert Rev. Clin. Immunol. 7, 593–602 (2011).Article

Tagliani,E。&Erlebacher,A。树突状细胞在母胎界面的功能。专家Rev.Clin。免疫。7593-602(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Pan, D., Liu, Q., Du, L., Yang, Y. & Jiang, G. Polarization disorder of decidual NK cells in unexplained recurrent spontaneous abortion revealed by single-cell transcriptome analysis. Reprod. Biol. Endocrinol. 20, 108 (2022).Article

Pan,D.,Liu,Q.,Du,L.,Yang,Y。&Jiang,G。通过单细胞转录组分析揭示了原因不明的复发性自然流产中蜕膜NK细胞的极化紊乱。重新编程。生物内分泌。20108(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Wang, F. et al. Single-cell immune landscape of human recurrent miscarriage. Genomics Proteomics Bioinformatics 19, 208–222 (2021).Article

Wang,F。等人。人类复发性流产的单细胞免疫景观。基因组学蛋白质组学生物信息学19208-222(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Zhu, Y. et al. Cell cycle and histone modification genes were decreased in placenta tissue from unexplained early miscarriage. Gene 636, 17–22 (2017).Article

Zhu,Y。等人。由于无法解释的早期流产,胎盘组织中的细胞周期和组蛋白修饰基因减少。基因636,17-22(2017)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Murphy, S. P., Fast, L. D., Hanna, N. N. & Sharma, S. Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J. Immunol. 175, 4084–4090 (2005).Article

Murphy,S.P.,Fast,L.D.,Hanna,N.N。&Sharma,S。子宫NK细胞介导IL-10无效小鼠中炎症诱导的胎儿死亡。J、 免疫。1754084-4090(2005)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Zhang, C. et al. Association between serum TNF-α levels and recurrent spontaneous miscarriage: a meta-analysis. Am. J. Reprod. Immunol. 75, 86–93 (2016).Article

Zhang,C.等。血清TNF-α水平与复发性自发性流产的关系:荟萃分析。美国J.Reprod。免疫。75,86-93(2016)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Hellmann, J. et al. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation. Prostaglandins Other Lipid Mediat. 116-117, 49–56 (2015).Article

Hellmann,J。等人。Atf3在急性炎症期间负调节Ptgs2/Cox2的表达。前列腺素其他脂质介质。116-117,49-56(2015)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Hu, C., Meng, X., Huang, C., Shen, C. & Li, J. Frontline science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages. J. Leukoc. Biol. 101, 633–642 (2017).Article

Hu,C.,Meng,X.,Huang,C.,Shen,C。&Li,J。前线科学:ATF3负责抑制TNF-α的释放和急性乙醇暴露的单核细胞和巨噬细胞的迁移受损。J、 白血病。生物学101633-642(2017)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Liu, S. et al. The dual roles of activating transcription factor 3 (ATF3) in inflammation, apoptosis, ferroptosis, and pathogen infection responses. Int. J. Mol. Sci. 25, 824 (2024).Article

Liu,S。等人。激活转录因子3(ATF3)在炎症,细胞凋亡,铁浓化和病原体感染反应中的双重作用。Int.J.Mol.Sci。25824(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Li, Y. et al. RNA sequencing of decidua reveals differentially expressed genes in recurrent pregnancy loss. Reprod. Sci. 28, 2261–2269 (2021).Article

Li,Y。等人。蜕膜的RNA测序揭示了复发性流产中差异表达的基因。重新编程。科学。282261-2269(2021)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Ceasrine, A. M. et al. Maternal diet disrupts the placenta-brain axis in a sex-specific manner. Nat. Metab. 4, 1732–1745 (2022).Article

Ceasrine,A.M.等人,母体饮食以性别特异性方式破坏胎盘-脑轴。自然代谢。41732-1745(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Parigi, S. M. et al. The spatial transcriptomic landscape of the healing mouse intestine following damage. Nat. Commun. 13, 828 (2022).Article

。国家公社。13828(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Casazza, R. L., Lazear, H. M. & Miner, J. J. Protective and pathogenic effects of interferon signaling during pregnancy. Viral Immunol. 33, 3–11 (2020).Article

Casazza,R.L.,Lazear,H.M。和Miner,J.J。怀孕期间干扰素信号传导的保护和致病作用。病毒免疫。33,3-11(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Murphy, S. P. et al. Interferon gamma in successful pregnancies. Biol. Reprod. 80, 848–59 (2009).Article

Murphy,S.P.等人,《成功怀孕中的干扰素γ》。生物修复。80848-59(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).Article

Zhou,J.Z.,Way,S.S。和Chen,K。子宫和阴道粘膜的免疫学。趋势免疫。39302-314(2018)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Joyce, M. M. et al. Interferon stimulated gene 15 conjugates to endometrial cytosolic proteins and is expressed at the uterine-placental interface throughout pregnancy in sheep. Endocrinology 146, 675–684 (2005).Article

Joyce,M.M.等人,干扰素刺激的基因15与子宫内膜胞质蛋白结合,并在绵羊整个怀孕期间在子宫-胎盘界面表达。内分泌学146675-684(2005)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Schanz, A. et al. Interferon stimulated gene 15 expression at the human embryo-maternal interface. Arch. Gynecol. Obstet. 290, 783–789 (2014).Article

Schanz,A。等人。干扰素刺激人胚胎-母体界面的基因15表达。拱门。。障碍。290783-789(2014)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Mahany, E. B. et al. Obesity and high-fat diet induce distinct changes in placental gene expression and pregnancy outcome. Endocrinology 159, 1718–1733 (2018).Article

Mahany,E.B。等人。肥胖和高脂饮食诱导胎盘基因表达和妊娠结局的明显变化。内分泌学1591718-1733(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Hemberger, M. & Dean, W. The placenta: epigenetic insights into trophoblast developmental models of a generation-bridging organ with long-lasting impact on lifelong health. Physiol. Rev. 103, 2523–2560 (2023).Article

。生理学。版本1032523-2560(2023)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Szot, J. O. et al. A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ. Genom. Precis. Med. 11, e001978 (2018).Article

Szot,J.O.等人。一种筛选方法,用于在外显子组数据中鉴定导致先天性心脏病的临床可行变异。。。精确。医学杂志11,e001978(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mohun, T. et al. Deciphering the mechanisms of developmental disorders (DMDD): a new programme for phenotyping embryonic lethal mice. Dis. Model Mech. 6, 562–566 (2013).PubMed

Mohun,T.等人,《破译发育障碍(DMDD)的机制:胚胎致死小鼠表型分型的新程序》。Dis。模型机械。6562-566(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perez-Garcia, V. et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555, 463–468 (2018).Article

Perez-Garcia,V。等人。胎盘缺陷在胚胎致死性小鼠突变体中非常普遍。自然555463-468(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Radford, B. N. et al. Defects in placental syncytiotrophoblast cells are a common cause of developmental heart disease. Nat. Commun. 14, 1174 (2023).Article

胎盘合体滋养层细胞缺陷是发育性心脏病的常见原因。国家公社。141174(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Salton, S. R. Nucleotide sequence and regulatory studies of VGF, a nervous system-specific mRNA that is rapidly and relatively selectively induced by nerve growth factor. J. Neurochem. 57, 991–996 (1991).Article

Salton,S.R。VGF的核苷酸序列和调控研究,VGF是一种由神经生长因子快速且相对选择性诱导的神经系统特异性mRNA。J、 。57991-996(1991)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Snyder, S. E., Pintar, J. E. & Salton, S. R. Developmental expression of VGF mRNA in the prenatal and postnatal rat. J. Comp. Neurol. 394, 64–90 (1998).Article

Snyder,S.E.,Pintar,J.E。和Salton,S.R。VGF mRNA在产前和产后大鼠中的发育表达。J、 公司。神经病学。394,64-90(1998)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Bakalar, D. et al. Lack of placental neurosteroid alters cortical development and female somatosensory function. Front. Endocrinol. 13, 972033 (2022).Article

缺乏胎盘神经甾体会改变皮质发育和女性体感功能。正面。内分泌。。文章

Google Scholar

谷歌学者

Vacher, C. M. et al. Placental endocrine function shapes cerebellar development and social behavior. Nat. Neurosci. 24, 1392–1401 (2021).Article

Vacher,C.M.等人。胎盘内分泌功能影响小脑发育和社交行为。自然神经科学。241392-1401(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Rosenfeld, C. S. The placenta-brain-axis. J. Neurosci. Res. 99, 271–283 (2021).Article

Rosenfeld,C.S。胎盘-大脑轴。J、 神经科学。第99271-283号决议(2021年)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Tesser, R. B., Scherholz, P. L., do Nascimento, L. & Katz, S. G. Trophoblast glycogen cells differentiate early in the mouse ectoplacental cone: putative role during placentation. Histochem. Cell Biol. 134, 83–92 (2010).Article

Tesser,R.B.,Scherholz,P.L.,do Nascimento,L。&Katz,S.G。滋养层糖原细胞在小鼠外胎盘锥早期分化:在胎盘形成过程中的推定作用。组织化学。细胞生物学。134,83-92(2010)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Carney, E. W., Prideaux, V., Lye, S. J. & Rossant, J. Progressive expression of trophoblast-specific genes during formation of mouse trophoblast giant cells in vitro. Mol. Reprod. Dev. 34, 357–368 (1993).Article

Carney,E.W.,Prideaux,V.,Lye,S.J。&Rossant,J。在体外小鼠滋养层巨细胞形成过程中滋养层特异性基因的进行性表达。分子复制。。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Chhabra, A. et al. Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev. Cell 22, 651–659 (2012).Article

Chhabra,A。等人。滋养层细胞通过PDGF-B信号传导调节胎盘造血生态位。Dev.Cell 22651-659(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Azevedo Portilho, N., Tavares Guedes, P., Croy, B. A. & Pelajo-Machado, M. Localization of transient immature hematopoietic cells to two distinct, potential niches in the developing mouse placenta. Placenta 47, 1–11 (2016).Article

Azevedo Portilho,N.,Tavares Guedes,P.,Croy,B.A。和Pelajo Machado,M。将瞬时未成熟造血细胞定位于发育中的小鼠胎盘中的两个不同的潜在生态位。胎盘47,1-11(2016)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Weckbach, L. T. et al. Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 303, H429–H438 (2012).Article

Weckbach,L.T.等人,Midkine在缺氧诱导的血管生成中起促血管生成细胞因子的作用。Am.J.Physiol。心脏循环。生理学。303,H429–H438(2012)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Fan, Q. W., Muramatsu, T. & Kadomatsu, K. Distinct expression of midkine and pleiotrophin in the spinal cord and placental tissues during early mouse development. Dev. Growth Differ. 42, 113–119 (2000).Article

。开发增长不同。42113-119(2000)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Scott, R. L. et al. Conservation at the uterine-placental interface. Proc. Natl. Acad. Sci. USA 119, e2210633119 (2022).Article

Scott,R.L.等人,《子宫-胎盘界面的保护》。程序。纳特尔。阿卡德。科学。美国119,e2210633119(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Vu, H. T. H., Scott, R. L., Iqbal, K., Soares, M. J. & Tuteja, G. Core conserved transcriptional regulatory networks define the invasive trophoblast cell lineage. Development 150, dev201826 (2023).Article

Vu,H.T.H.,Scott,R.L.,Iqbal,K.,Soares,M.J。&Tuteja,G。核心保守的转录调控网络定义了侵袭性滋养层细胞谱系。开发150,dev201826(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Wang, Z. et al. ATF3 deficiency impairs the proliferative-secretory phase transition and decidualization in RIF patients. Cell Death Dis. 12, 387 (2021).Article

Wang,Z。等人。ATF3缺乏会损害RIF患者的增殖性分泌相变和蜕膜化。细胞死亡Dis。12387(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Baltayeva, J. et al. Obesogenic diet exposure alters uterine natural killer cell biology and impairs vasculature remodeling in mice†. Biol. Reprod. 102, 63–75 (2020).PubMed

。生物修复。102,63-75(2020)。PubMed出版社

Google Scholar

谷歌学者

Frias, A. E. et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 152, 2456–2464 (2011).Article

Frias,A.E.等人,在营养过剩的非人灵长类动物模型中,母体高脂肪饮食会干扰子宫胎盘血流动力学并增加死胎的频率。内分泌学1522456-2464(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Farlik, M. et al. Contribution of a TANK-binding kinase 1-interferon (IFN) regulatory factor 7 pathway to IFN-γ-induced gene expression. Mol. Cell. Biol. 32, 1032–1043 (2012).Article

Farlik,M.等人。TANK结合激酶1-干扰素(IFN)调节因子7途径对IFN-γ诱导的基因表达的贡献。摩尔电池。生物学321032-1043(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).Article

IRF-7是I型干扰素依赖性免疫反应的主要调节剂。自然434772-777(2005)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Amjadi, F. et al. The uterine immunological changes may be responsible for repeated implantation failure. J. Reprod. Immunol. 138, 103080 (2020).Article

Amjadi,F。等人。子宫免疫学改变可能是反复植入失败的原因。J、 重新编程。免疫。138103080(2020)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Hu, M. et al. TLR4-associated IRF-7 and NFκB signaling act as a molecular link between androgen and metformin activities and cytokine synthesis in the PCOS endometrium. J. Clin. Endocrinol. Metab. 106, 1022–1040 (2021).Article

Hu,M。等人。TLR4相关的IRF-7和NFκB信号传导在PCOS子宫内膜中充当雄激素和二甲双胍活性与细胞因子合成之间的分子联系。J、 临床。内分泌。代谢。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, J. et al. Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clin. Exp. Pharmacol. Physiol. 41, 482–488 (2014).Article

Liu,J。等人。Toll样受体-4信号在高脂肪和高果糖饮食诱导的小鼠非酒精性脂肪肝疾病进展中的作用。临床。药理学实验。生理学。41482-488(2014)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Wang, X. A. et al. Interferon regulatory factor 7 deficiency prevents diet-induced obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 305, E485–E495 (2013).Article

Wang,X.A.等人。干扰素调节因子7缺乏可预防饮食诱导的肥胖和胰岛素抵抗。Am.J.Physiol。内分泌。代谢。305,E485–E495(2013)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Patten, M. M. et al. The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity 113, 119–128 (2014).Article

Patten,M.M.等人,《基因组印记的进化:理论,预测和实证检验》。遗传113119-128(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Patten, M. M., Cowley, M., Oakey, R. J. & Feil, R. Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc. Biol. Sci. 283, 20152760 (2016).PubMed

。程序。生物科学。28320152760(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kappil, M. A. et al. Placental expression profile of imprinted genes impacts birth weight. Epigenetics 10, 842–849 (2015).Article

Kappil,M.A。等人。印迹基因的胎盘表达谱影响出生体重。表观遗传学10842-849(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. 19, 26–42 (2022).Article

Morton,S.U.,Quiat,D.,Seidman,J.G。&Seidman,C.E。先天性心脏病的基因组前沿。国家心脏病修订版。19,26-42(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jin, M., Xu, S., Li, J., Li, L. & Tang, C. Role of ARID1A in the regulation of human trophoblast migration and invasion. Reprod. Sci. 29, 2363–2373 (2022).Article

Jin,M.,Xu,S.,Li,J.,Li,L。&Tang,C。ARID1A在调节人类滋养层细胞迁移和侵袭中的作用。重新编程。科学。292363-2373(2022)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Yeung, K. R. et al. DNA methylation profiles in preeclampsia and healthy control placentas. Am. J. Physiol. Heart Circ. Physiol. 310, H1295–HI303 (2016).Article

Yeung,K.R.等人。子痫前期和健康对照胎盘中的DNA甲基化谱。Am.J.Physiol。心脏循环。生理学。310,H1295–HI303(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Q. et al. Association of lncRNA SH3PXD2A-AS1 with preeclampsia and its function in invasion and migration of placental trophoblast cells. Cell Death Dis. 11, 583 (2020).Article

Chen,Q。等人。lncRNA SH3PXD2A-AS1与先兆子痫的关联及其在胎盘滋养层细胞侵袭和迁移中的功能。细胞死亡Dis。11583(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Qiu, X. et al. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. bioRxiv 2022.12.07.519417 (2022).Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article

邱,X。等。Spateo:单细胞空间转录组学的多维时空建模。bioRxiv 2022.12.07.519417(2022)。Wolf,F.A.,Angerer,P。&Theis,F.J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).Article

Hie,B.,Bryson,B。&Berger,B。使用Scanorama有效整合异质单细胞转录组。美国国家生物技术公司。37685-691(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).Article

Bergen,V.,Lange,M.,Peidli,S.,Wolf,F.A。&Theis,F.J。通过动力学建模将RNA速度推广到瞬时细胞状态。美国国家生物技术公司。381408-1414(2020)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).Article

Biancalani,T。等人。空间分辨单细胞转录组与七巧板的深度学习和比对。自然方法181352-1362(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).Article

Aibar,S.等人,《风景:单细胞调控网络推断和聚类》。Nat。方法141083-1086(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).Article

Gu,Z.,Eils,R。&Schlesner,M。复杂热图揭示了多维基因组数据中的模式和相关性。生物信息学322847–2849(2016)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article

Jin,S.等人。使用CellChat推断和分析细胞间通信。国家公社。121088(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

CAS

中科院

Google Scholar

谷歌学者

Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).Article

Kleshchevnikov,V。等人Cell2location绘制了空间转录组学中的细粒细胞类型。美国国家生物技术公司。40661-671(2022)。文章

PubMed

PubMed

CAS

中科院

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Linying Wang, Binbin Jiang, Yanan Zhang, and Zhongzhen Liu for their experimental assistance. We also thank Longqi Liu, Shiping Liu, Ying Gu, Yuxiang Li, Yinqi Bai, Lei Han, Lifang Wang, Sha Liao, Ao Chen, Kailong Ma, Shuxia Cao, Xiaoming Li, Lianjie Miao, and Ruiling Zhang for their valuable scientific advice and technical support.

下载参考文献致谢我们感谢王林英,江斌斌,张亚南和刘忠贞的实验帮助。我们还要感谢刘龙琦、刘世平、顾颖、李玉祥、白银琦、雷汉、王丽芳、沙廖、陈敖、马凯龙、曹淑霞、李晓明、苗连杰和张瑞玲提供了宝贵的科学建议和技术支持。

This work was supported by the China National GeneBank (CNGB). We would also like to express our gratitude to STOmic Cloud (https://cloud.stomics.tech) for providing us with an analysis platform. This work was supported by the National Key R&D Program of China (2021YFC2700700 and 2022YFC2703500), the National Natural Science Foundation of China (82088102 and 82171686), CAMS Innovation Fund for Medical Sciences (2019-I2M-5-064), Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01), Key Discipline Construction Project (2023-2025) of Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai (GWVI-11.1-35), Clinical research program of Shanghai Municipal Health Commission (202340222), the Natural Science Foundation of Shanghai (20ZR1463100), Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC2023CRD001 and SHDC2020CR1008A), Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012) and Shanghai Frontiers Science Research Center of Reproduction and Development.Author informationAuthor notesThese authors contributed equally: Yanting Wu, Kaizhen Su, Ying Zhang, Langchao Liang.Authors and AffiliationsObstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, ChinaYanting .

这项工作得到了中国国家基因库(CNGB)的支持。我们还要感谢STOmic Cloud(https://cloud.stomics.tech)为我们提供了一个分析平台。这项工作得到了国家重点研发计划(2021YFC270700和2022YFC2703500)、国家自然科学基金(82088102和82171686)、中国医学科学院医学科学创新基金(2019-I2M-5-064)、上海市卫生委员会协同创新计划(2020CXJQ01)、加强上海市公共卫生体系建设三年计划重点学科建设项目(2023-2025)(GWVI-11.1-35)、上海市卫生委员会临床研究计划(202340222)、上海市自然科学基金(20ZR1463100)、上海申康医院临床研究发展计划的支持中心(SHDC2023CRD001和SHDC2020CR1008A),上海妇科疾病临床研究中心(22MC1940200),上海泌尿生殖系统疾病研究中心(2022ZZ01012)和上海生殖与发育前沿科学研究中心。。作者和附属机构复旦大学生殖与发育研究所妇产科医院,中国上海盐亭。

PubMed Google ScholarKaizhen SuView author publicationsYou can also search for this author in

PubMed Google ScholarKaizhen SuView作者出版物您也可以在

PubMed Google ScholarYing ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarYing ZhangView作者出版物您也可以在

PubMed Google ScholarLangchao LiangView author publicationsYou can also search for this author in

PubMed Google ScholarLangchao LiangView作者出版物您也可以在

PubMed Google ScholarFei WangView author publicationsYou can also search for this author in

PubMed Google ScholarFei WangView作者出版物您也可以在

PubMed Google ScholarSiyue ChenView author publicationsYou can also search for this author in

PubMed Google ScholarSiyue ChenView作者出版物您也可以在

PubMed Google ScholarLing GaoView author publicationsYou can also search for this author in

PubMed谷歌学术GaoView作者出版物您也可以在

PubMed Google ScholarQiutong ZhengView author publicationsYou can also search for this author in

PubMed Google ScholarQiuton ZhengView作者出版物您也可以在

PubMed Google ScholarCheng LiView author publicationsYou can also search for this author in

PubMed Google ScholarCheng LiView作者出版物您也可以在

PubMed Google ScholarYunfei SuView author publicationsYou can also search for this author in

PubMed Google ScholarYunfei SuView作者出版物您也可以在

PubMed Google ScholarYiting MaoView author publicationsYou can also search for this author in

PubMed谷歌学术评论MaoView作者出版物您也可以在

PubMed Google ScholarSimeng ZhuView author publicationsYou can also search for this author in

PubMed Google ScholarSimeng ZhuView作者出版物您也可以在

PubMed Google ScholarChaochao ChaiView author publicationsYou can also search for this author in

PubMed Google Scholarchao ChaiView作者出版物您也可以在

PubMed Google ScholarQing LanView author publicationsYou can also search for this author in

PubMed Google ScholarQing LanView作者出版物您也可以在

PubMed Google ScholarMan ZhaiView author publicationsYou can also search for this author in

PubMed Google ScholarMan ZhaiView作者出版物您也可以在

PubMed Google ScholarXin JinView author publicationsYou can also search for this author in

PubMed Google ScholarXin JinView作者出版物您也可以在

PubMed Google ScholarJinglan ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张景兰查看作者出版物您也可以在

PubMed Google ScholarXun XuView author publicationsYou can also search for this author in

PubMed Google ScholarXun XuView作者出版物您也可以在

PubMed Google ScholarYu ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarYu ZhangView作者出版物您也可以在

PubMed Google ScholarYa GaoView author publicationsYou can also search for this author in

PubMed Google ScholarYa GaoView作者出版物您也可以在

PubMed Google ScholarHefeng HuangView author publicationsYou can also search for this author in

PubMed谷歌学者Hefeng HuangView作者出版物您也可以在

PubMed Google ScholarContributionsH.H. conceived the idea. H.H., Y.W., Y.G., Yu Z., K.S., and L.G. designed the study. Y.W., K.S., Y.G., Yu Z., L.G., C.L., X.J., J.Z., X.X., and H.H. supervised the work. K.S., L.L., Y.S., and Q.Z. collected the samples with help from C.L. and Y.G.

PubMed谷歌学术贡献。H、 构思了这个想法。H、 H.,Y.W.,Y.G.,Yu Z.,K.S。和L.G.设计了这项研究。Y、 W.,K.S.,Y.G.,Yu Z.,L.G.,C.L.,X.J.,J.Z.,X.X。和H.H.监督了这项工作。K.S.,L.L.,Y.S。和Q.Z.在C.L.和Y.G.的帮助下收集了样本。

Y.G., Ying Z., L.L., and F.W. designed the spatial transcriptome experiments. Ying Z., K.S., Y.W., L.L., C.C., Q.L., S.Z., and M.Z. performed the bioinformatics analysis, statistical analysis, and visualization of the results with help from Y.G., Yu Z., F.W. X.J., X.X., and H.H. K.S., S.C., and Y.M.

Y、 G.,Ying Z.,L.L。和F.W.设计了空间转录组实验。Ying Z.,K.S.,Y.W.,L.L.,C.C.,Q.L.,S.Z。和M.Z.在Y.G.,Yu Z.,F.W.X.J.,X.X。和H.H.K.S.,S.C。和Y.M.的帮助下进行了生物信息学分析,统计分析和结果可视化。

conducted the immunohistochemistry, qPCR and western blotting experiments. Y.W., K.S., Ying Z., and F.W. wrote the first draft of the manuscript. Yu Z., Y.G., L.G., Y.S., Q.Z., J.X., X.X., and H.H. revised and finalized the manuscript.Corresponding authorsCorrespondence to.

进行了免疫组织化学,qPCR和蛋白质印迹实验。Y、 W.,K.S.,Ying Z.和F.W.撰写了手稿的初稿。Yu Z.,Y.G.,L.G.,Y.S.,Q.Z.,J.X.,X.X。和H.H.修订并完成了手稿。通讯作者通讯。

Yanting Wu, Yu Zhang, Ya Gao or Hefeng Huang.Ethics declarations

吴艳婷、张宇、高雅雅或黄鹤峰。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationSupplementary TablesRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充表权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleWu, Y., Su, K., Zhang, Y. et al. A spatiotemporal transcriptomic atlas of mouse placentation.

转载和许可本文引用本文Wu,Y.,Su,K.,Zhang,Y。等人。小鼠胎盘的时空转录组图谱。

Cell Discov 10, 110 (2024). https://doi.org/10.1038/s41421-024-00740-6Download citationReceived: 29 January 2024Accepted: 10 September 2024Published: 22 October 2024DOI: https://doi.org/10.1038/s41421-024-00740-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Cell Discov 10110(2024)。https://doi.org/10.1038/s41421-024-00740-6Download引文接收日期:2024年1月29日接受日期:2024年9月10日发布日期:2024年10月22日OI:https://doi.org/10.1038/s41421-024-00740-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供