商务合作
动脉网APP
可切换为仅中文
AbstractClinical evidence supports the notion that T cell exhaustion and terminal differentiation pose challenges to the persistence and effectiveness of chimeric antigen receptor-T (CAR-T) cells. MEK1/2 inhibitors (MEKIs), widely used in cancer treatment due to their ability to inhibit aberrant MAPK signaling, have shown potential synergistic effects when combined with immunotherapy.
。MEK1/2抑制剂(MEKIs)由于其抑制异常MAPK信号传导的能力而广泛用于癌症治疗,当与免疫疗法结合使用时,已显示出潜在的协同作用。
However, the impact and mechanisms of MEKIs on CAR-T cells remain uncertain and controversial. To address this, we conducted a comprehensive investigation to determine whether MEKIs enhance or impair the efficacy of CAR-T cells. Our findings revealed that MEKIs attenuated CAR-T cell exhaustion and terminal differentiation induced by tonic signaling and antigen stimulation, thereby improving CAR-T cell efficacy against hematological and solid tumors.
然而,MEKIs对CAR-T细胞的影响和机制仍然不确定和有争议。为了解决这个问题,我们进行了全面的调查,以确定MEKIs是否增强或削弱CAR-T细胞的功效。我们的研究结果表明,MEKIs减弱了由强直信号传导和抗原刺激诱导的CAR-T细胞耗竭和终末分化,从而提高了CAR-T细胞对血液学和实体瘤的疗效。
Remarkably, these effects were independent of the specific scFvs and costimulatory domains utilized in CARs. Mechanistically, analysis of bulk and single-cell transcriptional profiles demonstrates that the effect of MEK inhibition was related to diminish anabolic metabolism and downregulation of c-Fos and JunB.
值得注意的是,这些作用与CAR中使用的特定scFv和共刺激结构域无关。从机理上讲,对大量和单细胞转录谱的分析表明,MEK抑制的作用与减少合成代谢和下调c-Fos和JunB有关。
Additionally, the overexpression of c-Fos or JunB in CAR-T cells counteracted the effects of MEK inhibition. Furthermore, our Cut-and-Tag assay revealed that MEK inhibition downregulated the JunB-driven gene profiles associated with exhaustion, differentiation, anergy, glycolysis, and apoptosis. In summary, our research unveil the critical role of the MAPK-c-Fos-JunB axis in driving CAR-T cell exhaustion and terminal differentiation.
此外,CAR-T细胞中c-Fos或JunB的过表达抵消了MEK抑制的作用。此外,我们的切割和标签测定显示MEK抑制下调了与衰竭,分化,无能,糖酵解和细胞凋亡相关的JunB驱动的基因谱。总之,我们的研究揭示了MAPK-c-Fos-JunB轴在驱动CAR-T细胞衰竭和终末分化中的关键作用。
These mechanistic insights significantly broaden the potential application of MEKIs to enhance the effectiveness of CAR-T therapy..
这些机制的见解大大拓宽了MEKIs的潜在应用范围,以提高CAR-T治疗的有效性。。
IntroductionOncogenic mutation targeted therapy has shown responses in tumors harboring mutated oncogenes such as mutant BRAF.1 However, targeted therapy is generally not curative because secondary mutations and transcriptional alterations often confer resistance to the primary therapy.2 Chimeric antigen receptors (CARs) are synthetic receptors targeting tumor antigens.3 CAR-T therapy has shown potent efficacy in relapsed or refractory B-cell malignancies,3 even those resistant to targeted therapy.4 Nevertheless, the limited persistence of CAR-T cells due to T cell exhaustion and terminal differentiation has restricted post-CAR-T survival of patients in both B-cell malignancies and solid tumors.3,5Chronic CAR signaling is one of the intrinsic causes of CAR-T cell exhaustion and terminal differentiation.6,7 According to whether the initiation of CAR signaling needs antigen binding, CAR signaling can be categorized into low-level basal tonic signaling (independent of antigen stimulation),6,8,9 and antigen-dependent high-level signaling.7,9 Tonic signaling results from the self-aggregation of CAR molecules independent of antigen stimulation.6,10 Thus, its downstream signaling cascade molecules are the same as those activated by CAR clustering due to antigen binding.
,6,8,9和抗原依赖性高水平信号传导[7,9]。强直信号传导是由CAR分子的自聚集产生的,而不依赖于抗原刺激[6,10]。因此,其下游信号级联分子与由于抗原结合而被CAR聚类激活的分子相同。
The primary differences between tonic signaling and antigen-dependent signaling are the trigger (with or without antigen stimulation) and the signaling intensity (low versus high). Considering that many targets of targeted agents are also crucial signaling molecules in CAR-T cells, combining CAR-T and targeted therapy may be a promising way to prolong the persistence of CAR-T cells and overcome the shortcomings of respective monotherapy.
紧张信号和抗原依赖性信号之间的主要区别是触发(有或没有抗原刺激)和信号强度(低与高)。。
Unfortunately, the inhibition of these signaling molecules might also impa.
不幸的是,这些信号分子的抑制也可能会影响。
Data availability
数据可用性
Raw genomics data from human samples have been deposited at China National Gene Bank, and accession number is CNP0002478. Data will be released on Nov.5th, 2024. Any additional information required to reanalyze the data reported in this paper is available from the corresponding author upon request.
来自人类样本的原始基因组学数据已保存在中国国家基因库,登录号为CNP0002478。数据将于2024年11月5日发布。重新分析本文报告的数据所需的任何其他信息均可应要求从通讯作者处获得。
ReferencesCheng, Y. & Tian, H. Current development status of MEK inhibitors. Molecules 22, 1551 (2017).Article
参考文献Cheng,Y。&Tian,H。MEK抑制剂的发展现状。分子221551(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ullah, R., Yin, Q., Snell, A. H. & Wan, L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85, 123–154 (2022).Article
Ullah,R.,Yin,Q.,Snell,A.H。&Wan,L。RAF-MEK-ERK途径在癌症进化和治疗中的作用。。85123-154(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).Article
Majzner,R.G.&Mackall,C.L。从CAR T细胞旅程的第一段中获得的临床经验教训。《自然医学》251341-1355(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, Y. M. et al. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia: two case reports. Medicine 95, e5676 (2016).Article
Zhu,Y.M.等。成人费城染色体阳性急性淋巴细胞白血病的抗CD19嵌合抗原受体T细胞治疗:两例病例报告。医学95,e5676(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).Article
Feucht,J。等人。CAR激活潜能的校准指导替代T细胞命运和治疗效力。《自然医学》25,82-88(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).Article
。《自然医学》21581-590(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T cell dysfunction. Cancer Discov. 10, 552–567 (2020). CD-19-0813.Article
Singh,N。等人。白血病中死亡受体信号传导受损通过诱导CAR T细胞功能障碍引起抗原非依赖性抗性。癌症发现。10552-567(2020)。CD-19-0813.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H., Song, X., Shen, L., Wang, X. & Xu, C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 8, 123–134 (2022).Article
Wang,H.,Song,X.,Shen,L.,Wang,X。&Xu,C。利用T细胞信号传导来优化工程化T细胞疗法。趋势癌症8123-134(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kouro, T., Himuro, H. & Sasada, T. Exhaustion of CAR T cells: potential causes and solutions. J. Transl. Med. 20, 239 (2022).Article
Kouro,T.,Himuro,H。&Sasada,T。CAR T细胞耗竭:潜在原因和解决方案。J、 翻译。医学杂志20239(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, J. et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 33, 341–354 (2023).Article
Chen,J。等人。调节嵌合抗原受体的电荷密度可优化强直信号传导和CAR-T细胞适应性。Cell Res.33341–354(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).Article
Weber,E.W.等人。使用达沙替尼对CAR-T细胞功能的药理学控制。血液杂志3711-717(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuske, M. et al. Immunomodulatory effects of BRAF and MEK inhibitors: implications for Melanoma therapy. Pharm. Res. 136, 151–159 (2018).Article
Kuske,M.等。BRAF和MEK抑制剂的免疫调节作用:对黑色素瘤治疗的影响。Pharm.Res.136151–159(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Verma, V. et al. MEK inhibition reprograms CD8(+) T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021).Article
Verma,V。等人,MEK抑制将CD8(+)T淋巴细胞重编程为具有有效抗肿瘤作用的记忆干细胞。自然免疫。22,53-66(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tian, J. et al. Combined PD-1, BRAF and MEK inhibition in BRAF(V600E) colorectal cancer: a phase 2 trial. Nat. Med. 29, 458–466 (2023).Article
Tian,J.等人在BRAF(V600E)结直肠癌中联合PD-1,BRAF和MEK抑制:2期试验。《自然医学》29458-466(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stock, S., Kluever, A.-K., Endres, S. & Kobold, S. Enhanced chimeric antigen receptor T cell therapy through co-application of synergistic combination partners. Biomedicines 10, 307 (2022).Article
Stock,S.,Kluever,A.-K.,Endres,S。&Kobold,S。通过协同组合伴侣的共同应用增强了嵌合抗原受体T细胞疗法。生物医学10307(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gargett, T., Fraser, C. K., Dotti, G., Yvon, E. S. & Brown, M. P. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro. J. Immunother. 38, 12–23 (2015).Article
Gargett,T.,Fraser,C.K.,Dotti,G.,Yvon,E.S.&Brown,M.P.BRAF和MEK抑制在体外可变地影响GD2特异性嵌合抗原受体(CAR)T细胞功能。J、 免疫疗法。38,12-23(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dorrie, J. et al. BRAF and MEK inhibitors influence the function of reprogrammed T cells: consequences for adoptive T-cell therapy. Int. J. Mol. Sci. 19, 289 (2018).Article
Dorrie,J。等人。BRAF和MEK抑制剂影响重编程T细胞的功能:过继性T细胞治疗的后果。Int.J.Mol.Sci。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tomida, A. et al. Inhibition of MEK pathway enhances the antitumor efficacy of chimeric antigen receptor T cells against neuroblastoma. Cancer Sci. 112, 4026–4036 (2021).Article
Tomida,A。等人。MEK途径的抑制增强了嵌合抗原受体T细胞对神经母细胞瘤的抗肿瘤功效。癌症科学。1124026-4036(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal 11, eaat6753 (2018).Article
Salter,A.I.等人。嵌合抗原受体信号传导的磷酸化蛋白质组学分析揭示了影响细胞功能的动力学和定量差异。科学。信号11,eaat6753(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tran, B. & Cohen, M. S. The discovery and development of binimetinib for the treatment of melanoma. Expert Opin. Drug Discov. 15, 745–754 (2020).Article
Tran,B。&Cohen,M.S。用于治疗黑色素瘤的binimetinib的发现和开发。专家意见。药物发现。15745-754(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989–1000 (2011).Article
Gilmartin,A.G.等人GSK1120212(JTP-74057)是MEK活性和活化的抑制剂,具有良好的药代动力学特性,可持续抑制体内途径。临床。癌症研究17989-1000(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).Article
Lynn,R.C。等人,CAR T细胞中C-Jun的过表达诱导了疲劳抵抗。自然576293-300(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Y., Zander, R., Khatun, A., Schauder, D. M. & Cui, W. Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. Front. Immunol. 9, 2826 (2018).Article
Chen,Y.,Zander,R.,Khatun,A.,Schauder,D.M。&Cui,W。效应子和记忆CD8 T细胞分化的转录和表观遗传调控。正面。免疫。92826(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heckler, M. et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov. 11, 2564–2581 (2021).Article
Heckler,M。等人。抑制CDK4/6促进CD8 T细胞记忆形成。癌症发现。112564-2581(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Collins, S. et al. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur. J. Immunol. 38, 528–536 (2008).Article
Collins,S.等人。反对Egr-1/NAB2和Egr-2/Egr-3对T细胞功能的调节。欧洲免疫学杂志。38528-536(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seo, W., Jerin, C. & Nishikawa, H. Transcriptional regulatory network for the establishment of CD8(+) T cell exhaustion. Exp. Mol. Med. 53, 202–209 (2021).Article
。实验分子医学53202-209(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).Article
Safford,M。等人。Egr-2和Egr-3是T细胞活化的负调节剂。自然免疫。6472-480(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lake, D., Correa, S. A. & Muller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol. Life Sci. 73, 4397–4413 (2016).Article
。细胞分子生命科学。734397-4413(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099 e1086 (2017).Article
Coelho,M.A.等人,《致癌RAS信号通过稳定PD-L1 mRNA促进肿瘤免疫抵抗》。Immunity 471083–1099 e1086(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).Article
Ebert,P。J。R。等人。MAP激酶抑制与PD-L1检查点阻断相结合促进T细胞和抗肿瘤活性。豁免44609-621(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uche, U. U. et al. PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. J. Exp. Med. 215, 3165–3179 (2018).Article
Uche,U。U。等人。PIK3IP1/TrIP通过抑制PI3K/Akt来限制T细胞的活化。J、 实验医学2153165-3179(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).Article
Zheng,W。等人。PI3K协调嵌合抗原受体修饰的T细胞的体内持久性。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Luca, A., Maiello, M. R., D’Alessio, A., Pergameno, M. & Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16, S17–S27 (2012).Article
De Luca,A.,Maiello,M.R.,D'Alessio,A.,Pergameno,M。&Normanno,N。RAS/RAF/MEK/ERK和PI3K/AKT信号通路:在癌症发病机制中的作用和对治疗方法的影响。专家意见。他们。目标16,S17–S27(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).Article
Wolf,F.A.等人(PAGA):图形抽象通过单个单元的拓扑保持图将聚类与轨迹推断相协调。基因组生物学。20,59(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).Article
Kishton,R.J.,Sukumar,M。&Restifo,N.P。T细胞寿命和肿瘤免疫治疗功能的代谢调节。细胞代谢。26,94-109(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Froehlich, J. et al. FAM65B controls the proliferation of transformed and primary T cells. Oncotarget 7, 63215–63225 (2016).Article
Froehlich,J。等人FAM65B控制转化和原代T细胞的增殖。Oncotarget 763215–63225(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Atsaves, V., Leventaki, V., Rassidakis, G. Z. & Claret, F. X. AP-1 transcription factors as regulators of immune responses in cancer. Cancers 11, 1037 (2019).Article
Atsaves,V.,Leventaki,V.,Rassidakis,G.Z。和Claret,F.X。AP-1转录因子作为癌症免疫反应的调节剂。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao, G., Deng, A., Liu, H., Ge, G. & Liu, X. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc. Natl. Acad. Sci. USA 109, 15419–15424 (2012).Article
Xiao,G.,Deng,A.,Liu,H.,Ge,G。&Liu,X。激活蛋白1通过诱导程序性死亡抑制抗肿瘤T细胞功能1。程序。纳特尔。阿卡德。科学。美国10915419-15424(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, D. et al. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 3, e99048 (2018).Article
Wang,D。等人。靶向胶质母细胞瘤的CD4+CAR T细胞介导优异的抗肿瘤活性。JCI Insight 3,e99048(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Y. et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci. Transl. Med. 9, eaag1209 (2017).Article
Yang,Y。等人。TCR参与对CD8产生负面影响,但不影响CD4 CAR T细胞扩增和白血病清除率。科学。翻译。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 602, 503–509 (2022).Article
Melenhorst,J.J.等人。持续存在CD4(+)CAR T细胞的十年白血病缓解。自然602503-509(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).Article
Gattinoni,L。等人。体外获得完整的效应子功能矛盾地损害了过继转移的CD8+T细胞的体内抗肿瘤功效。J、 临床。投资。1151616-1626(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).Article
Chen,J。等人。NR4A转录因子限制实体瘤中的CAR T细胞功能。自然567530-534(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).Article
Liu,X。等人。全基因组分析确定NR4A1是T细胞功能障碍的关键介质。自然567525-529(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).Article
Seo,H。等人,TOX和TOX2转录因子与NR4A转录因子协同作用,使CD8(+)T细胞耗竭。程序。国家科学院。科学。美国11612410-12415(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).Article
TOX增强了慢性病毒感染中耗尽的T细胞的表型和寿命。自然571265-269(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature 571, 211–218 (2019).Article
Khan,O.等人,TOX转录和表观遗传学编程CD8(+)T细胞耗竭。自然571211-218(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Man, K. et al. Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141 e1125 (2017).Article
转录因子IRF4在慢性感染期间促进CD8(+)T细胞耗竭并限制记忆样T细胞的发育。免疫力471129–1141 e1125(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McGuire, K. L. & Iacobelli, M. Involvement of Rel, Fos, and Jun proteins in binding activity to the IL-2 promoter CD28 response element/AP-1 sequence in human T cells. J. Immunol. 159, 1319–1327 (1997).Article
McGuire,K.L。&Iacobelli,M。Rel,Fos和Jun蛋白参与人T细胞中IL-2启动子CD28应答元件/AP-1序列的结合活性。J、 免疫。1591319-1327(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wei, X. et al. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis. J. Biol. Chem. 295, 3000–3016 (2020).Article
Wei,X。等人。进化上保守的MAPK/Erk信号通过c-Myc介导的糖酵解促进鱼的祖先T细胞免疫。J、 生物。化学。2953000–3016(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vasilevsky, N. A., Ruby, C. E., Hurlin, P. J. & Weinberg, A. D. OX40 engagement stabilizes Mxd4 and Mnt protein levels in antigen-stimulated T cells leading to an increase in cell survival. Eur. J. Immunol. 41, 1024–1034 (2011).Article
Vasilevsky,N.A.,Ruby,C.E.,Hurlin,P.J。&Weinberg,A.D。OX40参与稳定抗原刺激的T细胞中的Mxd4和Mnt蛋白水平,导致细胞存活率增加。欧洲免疫学杂志。411024-1034(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J. Hematol. Oncol. 14, 113 (2021).Article
Zhang,H。等人。达沙替尼通过抑制细胞分化和衰竭来增强嵌合抗原受体T细胞的抗白血病功效。J、 血液学。Oncol公司。14113(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shao, M. et al. Inhibition of calcium signaling prevents exhaustion and enhances anti-leukemia efficacy of CAR-T cells via SOCE-Calcineurin-NFAT and glycolysis pathways. Advanced Science 9, 2103508 (2022).Huang, Y. et al. Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism.
Shao,M。等人。抑制钙信号通过SOCE钙调神经磷酸酶-NFAT和糖酵解途径防止衰竭并增强CAR-T细胞的抗白血病功效。高等科学92103508(2022)。Huang,Y。等人。抑制CD38酶活性通过抑制糖酵解代谢增强CAR-T细胞免疫治疗功效。
Cell Rep. Med. 5, 101400 (2024).Article .
Cell Rep.Med.5101400(2024)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Si, X. et al. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab. 36, 176–192 e110 (2024).Article
。细胞代谢。36176-192 e110(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).Article
Weber,E.W。等人。瞬时休息通过表观遗传重塑恢复耗尽的CAR-T细胞的功能。科学372,eaba1786(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).Article
Nair,A.B。&Jacob,S。动物和人类之间剂量转换的简单实践指南。J、 基础临床。Pharm.7,27-31(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Young, L., Sung, J., Stacey, G. & Masters, J. R. Detection of mycoplasma in cell cultures. Nat. Protoc. 5, 929–934 (2010).Article
。自然协议。5929-934(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nicholson, I. C. et al. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol. Immunol. 34, 1157–1165 (1997).Article
Nicholson,I.C.等人。用于B系白血病和淋巴瘤免疫治疗的功能性CD19特异性单链Fv片段的构建和表征。分子免疫。341157-1165(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-2120(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).Article
Kim,D.,Langmead,B。&Salzberg,S.L。HISAT:一种具有低内存需求的快速拼接对准器。自然方法12357-360(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).Article
Anders,S.,Pyl,P.T。&Huber,W.HTSeq–一个用于处理高通量测序数据的Python框架。生物信息学31166-169(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article
Robinson,M.D.,McCarthy,D.J。&Smyth,G.K.edgeR:用于数字基因表达数据差异表达分析的生物导体软件包。生物信息学26139-140(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lê, S., Josse, J. & Husson, F. FactoMineR: AnRPackage for multivariate analysis. J. Statis. Software 25, 1–18 (2008).Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).Article
Lê,S.,Josse,J。&Husson,F。FactoMineR:多变量分析的包装。J、 统计。软件25,1-18(2008)。Yu,G.,Wang,L.G.,Han,Y。&He,Q.Y。clusterProfiler:用于比较基因簇之间生物学主题的R包。组学16284-287(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).Article
Huang,D.W.,Sherman,B.T。&Lempicki,R.A。生物信息学富集工具:大型基因列表综合功能分析的途径。核酸研究37,1-13(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article
Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。美国10215545–15550(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).Article
Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902 e1821(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korsunsky, I., Millard, N. & Fan, J. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).Article
Korsunsky,I.,Millard,N。&Fan,J。单细胞数据与和谐的快速,灵敏和准确集成。自然方法161289-1296(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
H, W. ggplot2: elegant graphics for data analysis. Springer-Verlag New York (2016).Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).Article
H、 W.ggplot2:用于数据分析的优雅图形。Springer Verlag New York(2016)。郭,X。等。通过单细胞测序对非小细胞肺癌中T细胞的整体表征。《自然医学》24978-985(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article
Wolf,F.A.,Angerer,P。&Theis,F.J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).Article
Krueger,F。&Andrews,S.R。Bismark:用于亚硫酸氢盐-Seq应用的灵活对准器和甲基化调用者。生物信息学271571-1572(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).Article
Zhang,Y.等人。ChIP-Seq(MACS)的基于模型的分析。基因组生物学。9,R137(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-Seq peak data. R package version 100, 4.3 (2011).Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).Article .
Stark,R。&Brown,G。DiffBind:ChIP-Seq峰数据的差异结合分析。R包版本1004.3(2011)。Yu,G.,Wang,L.G。&He,Q.Y。ChIPseeker:用于芯片峰注释,比较和可视化的R/生物导体封装。。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article
Ramirez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the National Key Research and Development Program of China (2022YFA1103500 to P.Q.), the National Key Nature Science Foundation of China (82130003 to H.H.), the Key Project of Science and Technology Department of Zhejiang Province (2019C03016 and 2020C03G2013586 to H.H., Z24H080001 to P.Q.), the National Natural Science Foundation of China (82200248 and 82000194 to H.H., 82222003 and 82161138028 to P.Q.), the Key R&D Program of Zhejiang (2024SSYS0023 to H.H., 2024SSYS0024 to P.Q., 2024SSYS0025 to Y.H.), and the Fundamental Research Funds for the Central Universities (226-2024-00007 to P.Q.).
下载参考文献致谢这项工作得到了国家重点研究发展计划(2022YFA1103500至P.Q.),国家重点自然科学基金(82130003至H.H.),浙江省科学技术厅重点项目(2019C03016和2020C03G2013586至H.H.,Z24H080001至P.Q.),国家自然科学基金(82200248和82000194至H.H.,82222003和82161138028至P.Q。),浙江省重点研发计划(2024SSYS0023至H.H.,2024SSYS0023至H.24至P.Q.,2024SSYS0025至Y.H.),以及中央大学基础研究基金(226-2024-00007至P.Q.)。
The author P.Q. gratefully acknowledges the support of K.C. Wong Education Fundation. We thank the staff members Lingli Yang, Feiyan Zheng, Qi Lou, Qiaojuan Shi, Ting Xu, and Liangliang Zhu of the Animal Facility at Zhejiang Academy of Medical Sciences for providing support in mouse housing and care, the staff members Yingying Huang, Jiajia Wang, Chun Guo and Xinghui Song of Core Facilities, Zhejiang University School of Medicine for technical supports, and the donors for donation of blood.Author informationAuthor notesThese authors contributed equally: Xiujian Wang, Xiao Tao, Pengjie Chen, Penglei Jiang, Wenxiao LiAuthors and AffiliationsBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, ChinaXiujian Wang, Xiao Tao, Pengjie Chen, Wenxiao Li, Hefeng Chang, Cong Wei, Xinyi Lai, Yihan Pan, Lijuan Ding, Zuyu Liang, Jiazhen Cui, Mi Shao, Xinyi Teng, Tianning Gu, Jieping Wei, Delin Kong, Xiaohui Si, Yingli Han, Huarui Fu, Yu Lin, Jian Yu, Xia Li, Dongrui Wang, Yongxian Hu & He HuangLiangzhu Laboratory, Zhejiang University Medical Center, .
作者P.Q.非常感谢K.C.Wong教育基金会的支持。我们感谢浙江省医学科学院动物设施的工作人员杨凌丽,郑飞燕,齐楼,石巧娟,徐婷和朱良良在小鼠饲养和护理方面提供的支持,浙江大学医学院核心设施的工作人员黄英英,王佳佳,郭春春和宋兴辉的技术支持,以及献血者的献血。作者信息作者注意到,这些作者做出了同样的贡献:王秀健,肖涛,陈鹏杰,蒋鹏磊,温晓作者和附属机构浙江大学医学院第一附属医院骨髓移植中心,杭州,310003,中国王秀健,王晓涛,陈鹏杰,李文孝,常鹤峰,丛伟,赖信义,潘一汉,丁丽娟,梁祖玉,崔佳珍,米绍,滕信义,顾天宁,魏杰平,孔德林,斯晓辉,韩英利,傅华瑞,于林,于宇,夏丽,王东瑞,胡永贤和何浙江大学医学中心黄良珠实验室。
PubMed Google ScholarXiao TaoView author publicationsYou can also search for this author in
PubMed Google ScholarXiao TaoView作者出版物您也可以在
PubMed Google ScholarPengjie ChenView author publicationsYou can also search for this author in
PubMed Google ScholarPengjie ChenView作者出版物您也可以在
PubMed Google ScholarPenglei JiangView author publicationsYou can also search for this author in
PubMed Google ScholarPenglei JiangView作者出版物您也可以在
PubMed Google ScholarWenxiao LiView author publicationsYou can also search for this author in
PubMed Google ScholarWenxiao LiView作者出版物您也可以在
PubMed Google ScholarHefeng ChangView author publicationsYou can also search for this author in
PubMed谷歌学者Hefeng ChangView作者出版物您也可以在
PubMed Google ScholarCong WeiView author publicationsYou can also search for this author in
PubMed谷歌学术评论作者出版物您也可以在
PubMed Google ScholarXinyi LaiView author publicationsYou can also search for this author in
PubMed Google ScholarXinyi LaiView作者出版物您也可以在
PubMed Google ScholarHao ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张浩查看作者出版物您也可以在
PubMed Google ScholarYihan PanView author publicationsYou can also search for this author in
PubMed Google ScholarYihan PanView作者出版物您也可以在
PubMed Google ScholarLijuan DingView author publicationsYou can also search for this author in
PubMed Google ScholarLijuan DingView作者出版物您也可以在
PubMed Google ScholarZuyu LiangView author publicationsYou can also search for this author in
PubMed谷歌学者Zuyu LiangView作者出版物您也可以在
PubMed Google ScholarJiazhen CuiView author publicationsYou can also search for this author in
PubMed Google ScholarJiazhen CuiView作者出版物您也可以在
PubMed Google ScholarMi ShaoView author publicationsYou can also search for this author in
PubMed Google Scholarmami ShaoView作者出版物您也可以在
PubMed Google ScholarXinyi TengView author publicationsYou can also search for this author in
PubMed Google ScholarXinyi TengView作者出版物您也可以在
PubMed Google ScholarTianning GuView author publicationsYou can also search for this author in
PubMed Google ScholarTianning GuView作者出版物您也可以在
PubMed Google ScholarJieping WeiView author publicationsYou can also search for this author in
PubMed谷歌学者Jieping WeiView作者出版物您也可以在
PubMed Google ScholarDelin KongView author publicationsYou can also search for this author in
PubMed Google ScholarDelin KongView作者出版物您也可以在
PubMed Google ScholarXiaohui SiView author publicationsYou can also search for this author in
PubMed Google ScholarXiaohui SiView作者出版物您也可以在
PubMed Google ScholarYingli HanView author publicationsYou can also search for this author in
PubMed Google ScholarYingli HanView作者出版物您也可以在
PubMed Google ScholarHuarui FuView author publicationsYou can also search for this author in
PubMed Google ScholarHuarui FuView作者出版物您也可以在
PubMed Google ScholarYu LinView author publicationsYou can also search for this author in
PubMed Google ScholarYu LinView作者出版物您也可以在
PubMed Google ScholarJian YuView author publicationsYou can also search for this author in
PubMed Google ScholarJian YuView作者出版物您也可以在
PubMed Google ScholarXia LiView author publicationsYou can also search for this author in
PubMed Google ScholarXia LiView作者出版物您也可以在
PubMed Google ScholarDongrui WangView author publicationsYou can also search for this author in
PubMed Google ScholarDongrui WangView作者出版物您也可以在
PubMed Google ScholarYongxian HuView author publicationsYou can also search for this author in
PubMed Google ScholaryYongxian HuView作者出版物您也可以在
PubMed Google ScholarPengxu QianView author publicationsYou can also search for this author in
PubMed Google ScholarPengxu QianView作者出版物您也可以在
PubMed Google ScholarHe HuangView author publicationsYou can also search for this author in
PubMed Google ScholarHe HuangView作者出版物您也可以在
PubMed Google ScholarContributionsH.H. and P.Q. designed the study, analyzed and interpreted the data, and revised the manuscript. X.W. designed the study, performed the experiments, analyzed and interpreted the data, and wrote the manuscript. X.T., P.C., W.L., H.C., X.L., and Y.P.
PubMed谷歌学术贡献。H、 和P.Q.设计了这项研究,分析和解释了数据,并修改了手稿。十、 W.设计了这项研究,进行了实验,分析和解释了数据,并撰写了手稿。十、 T.,P.C.,W.L.,H.C.,X.L。和Y.P。
performed the experiments. H.Z., Y.X.H., J.Y., and D.W. contribute to the partial study design. P.J. and X.W. analyzed and interpreted the bulk and single-cell transcriptome and Cut & Tag data. X.W., XT., P.J., and C.W. drew the figure. C.W. performed the western blot and partial ex-vivo experiments.
进行了实验。H、 Z.,Y.X.H.,J.Y。和D.W.为部分研究设计做出了贡献。P、 J.和X.W.分析并解释了大量和单细胞转录组以及切割和标记数据。十、 西,下。,P、 J.和C.W.绘制了该图。C.W.进行了蛋白质印迹和部分离体实验。
H.Z., Z.L., L. D., J.C., M.S., X. T., T. G., D.K., J.W.,H. F., X.S., H.C., Y.P., X.L., Y.L.H., and Y.L. contribute to CAR-T cell culture. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.
H、 Z.,Z.L.,L.D.,J.C.,M.S.,X.T.,T.G.,D.K.,J.W.,H.F.,X.S.,H.C.,Y.P.,X.L.,Y.L.H。和Y.L.有助于CAR-T细胞培养。所有作者都阅读并批准了最终稿件。通讯作者通讯。
Pengxu Qian or He Huang.Ethics declarations
彭旭乾或何煌。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Supplementary informationSupplementary FiguresSupplementary Table 1Supplementary Table 2Supplementary table legendRights and permissions
补充信息补充数字补充表1补充表2补充表legendRights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, X., Tao, X., Chen, P. et al. MEK inhibition prevents CAR-T cell exhaustion and differentiation via downregulation of c-Fos and JunB.
转载和许可本文引用本文Wang,X.,Tao,X.,Chen,P。等人。MEK抑制通过下调c-Fos和JunB来防止CAR-T细胞耗竭和分化。
Sig Transduct Target Ther 9, 293 (2024). https://doi.org/10.1038/s41392-024-01986-yDownload citationReceived: 27 November 2023Revised: 26 August 2024Accepted: 18 September 2024Published: 22 October 2024DOI: https://doi.org/10.1038/s41392-024-01986-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sig Transduct Target Ther 9293(2024)。https://doi.org/10.1038/s41392-024-01986-yDownload引文接收日期:2023年11月27日修订日期:2024年8月26日接受日期:2024年9月18日发布日期:2024年10月22日OI:https://doi.org/10.1038/s41392-024-01986-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供