商务合作
动脉网APP
可切换为仅中文
AbstractBisphosphonates (BP) are considered a treatment option for osteoarthritis (OA) due to reduction of OA-induced microtrauma in the bone marrow, stabilization of subchondral bone (SB) layer and pain reduction. The effects of high-dose alendronate (ALN) treatment on SB and articular cartilage after destabilization of the medial meniscus (DMM) or Sham surgery of male C57Bl/6J mice were analyzed.
摘要双膦酸盐(BP)被认为是骨关节炎(OA)的一种治疗选择,因为它可以减少OA引起的骨髓微创伤,稳定软骨下骨(SB)层和减轻疼痛。分析了大剂量阿仑膦酸钠(ALN)治疗对雄性C57Bl/6J小鼠内侧半月板(DMM)不稳定或假手术后SB和关节软骨的影响。
We performed serum analysis; histology and immunohistochemistry to assess the severity of OA and a possible pain symptomatology. Subsequently, the ratio of bone volume to total volume (BV/TV), epiphyseal trabecular morphology and the bone mineral density (BMD) was analyzed by nanoCT. Serum analysis revealed a reduction of ADAMTS5 level.
我们进行了血清分析;组织学和免疫组织化学评估OA的严重程度和可能的疼痛症状。随后,通过nanoCT分析骨量与总体积的比率(BV/TV),骨小梁形态和骨矿物质密度(BMD)。血清分析显示ADAMTS5水平降低。
The histological evaluation displayed no protective effect of ALN-treatment on cartilage erosion. NanoCT-analysis of the medial epiphysis revealed an increase of BV/TV in ALN-treated mice. Only the DMM group had significantly higher SB volume accompanied by decreased subchondral bone surface. Furthermore Nano-CT analysis revealed an increase in trabecular density and number, a decreased BMD and reduced osteophyte formation in the ALN mice.
组织学评估显示ALN处理对软骨侵蚀没有保护作用。内侧骨骺的NanoCT分析显示ALN处理的小鼠中BV/TV的增加。只有DMM组的SB体积显着增加,同时软骨下骨表面减少。此外,纳米CT分析显示ALN小鼠的小梁密度和数量增加,BMD降低,骨赘形成减少。
ALN treatment affected bone micro-architecture by reducing osteophytosis with simultaneous increasing subchondral bone plate thickness, trabecular thickness and BMD. Accordingly, ALN cannot be considered as a potential treatment strategy in general, however in a subgroup of patients with high bone turnover in an early-stage of OA, ALN might be an option when applied during a restricted time frame..
ALN治疗通过减少骨赘病,同时增加软骨下骨板厚度,小梁厚度和BMD来影响骨微结构。因此,ALN通常不能被视为潜在的治疗策略,但是在OA早期骨转换率高的亚组患者中,ALN可能是在有限的时间范围内应用的一种选择。。
IntroductionOsteoarthritis (OA) is a highly prevalent, debilitating disease with a multi-factorial etiology. The main symptom that encourages patients to seek professional help is pain. Despite its high incidence, the underlying molecular mechanisms of OA are still poorly understood. To date, apart from conservative, symptom-oriented treatment methods using physiotherapy, intra-articular drug injections and pain therapy, there is no conclusive causal treatment strategy.
引言骨关节炎(OA)是一种高度流行的衰弱性疾病,具有多因素病因。鼓励患者寻求专业帮助的主要症状是疼痛。尽管发病率很高,但OA的潜在分子机制仍然知之甚少。迄今为止,除了使用物理疗法,关节内药物注射和疼痛疗法的保守,以症状为导向的治疗方法外,还没有确定的因果治疗策略。
Pathophysiological changes in the cartilage, the synovial membrane, the meniscus, the local ligaments, the surrounding muscles, and the subchondral bone (SB) are observed at the joint tissue level during OA pathogenesis. SB has gained major attention in OA research as it is the supportive layer beneath the articular cartilage, therefore providing an important shock absorbing function.
在OA发病过程中,在关节组织水平上观察到软骨,滑膜,半月板,局部韧带,周围肌肉和软骨下骨(SB)的病理生理变化。SB在OA研究中备受关注,因为它是关节软骨下方的支撑层,因此具有重要的减震功能。
Furthermore, SB has hierarchical micropores that provide nutrient supply for the deeper cartilage layers1,2. Distinctive alterations have been described for osteoarthritic SB, including sclerosis, changes in the trabecular network, osteophyte formation, development of bone cysts and bone marrow edema, shape changes of the subchondral bone plate (SBP), changes in SBP porosity3, and changes in bone mineral density.
此外,SB具有分层微孔,为更深的软骨层提供营养供应1,2。已经描述了骨关节炎SB的独特改变,包括硬化,小梁网络的变化,骨赘形成,骨囊肿的发展和骨髓水肿,软骨下骨板(SBP)的形状变化,SBP孔隙率的变化3和骨矿物质密度的变化。
All together, these changes contribute to altered mechanical properties2.One of the earliest alterations in SB associated with OA are bone marrow lesions (BML) that are thought to develop due to excessive repair responses of micro-damaged regions caused by aberrant mechanical loading4. Interestingly, BMLs show a robust correlation with OA-related pain5.
总之,这些变化有助于改变机械性能2。与OA相关的SB的最早改变之一是骨髓病变(BML),其被认为是由于异常机械负荷引起的微损伤区域的过度修复反应而发展的4。有趣的是,BML与OA相关的疼痛表现出强烈的相关性5。
A possible contributing factor for this phenomenon are highly active osteoclasts that are present in BMLs which can induce sensory innervation of the BMLs and the O.
这种现象的一个可能的促成因素是存在于BML中的高活性破骨细胞,其可以诱导BML和O的感觉神经支配。
Data availability
数据可用性
Data is provided within the manuscript or supplementary information files.
数据在手稿或补充信息文件中提供。
AbbreviationsADAMTS-5:
缩写ADAMTS-5:
Disintegrin- and metalloproteinase with thrombospondin motifs
具有血小板反应蛋白基序的解整合素和金属蛋白酶
ALN:
ALN公司:
Alendronate
阿仑膦酸盐
BMD:
骨密度:
Bone mineral density
骨矿物质密度
BP:
BP公司:
Bisphosphonate
双膦酸盐
BS:
英国标准:
Bone surface
骨骼表面
BV:
BV公司:
Bone volume
骨量
CC:
抄送:
Calcified cartilage
钙化软骨
CGRP:
降钙素基因相关肽:
Calcitonin-gene-related-peptide
降钙素基因相关肽
COMP:
公司名称:
Cartilage oligomeric matrix protein
软骨寡聚基质蛋白
CTX-I:
CTX-I:
Cross-Linked C-Telopeptide-I
交联C-端肽-I
Dkk-1:
Dkk-1:
Dickkopf-1
迪克海德-1
DMM:
DMM:
Destabilized medial meniscus
内侧半月板不稳定
IL (-1β, -6, -10):
IL(-1β,-6,-10):
Interleukins
白细胞间介素
LFC:
LFC:
Lateral femur condyles
股骨外侧髁
LTP:
长期计划:
Lateral tibia plateau
胫骨外侧平台
MMP:
基质金属蛋白酶:
Matrix metalloproteinase
基质金属蛋白酶
MFC:
MFC:
Medial femur condyles
股骨内侧髁
MTP:
MTP:
Medial tibia plateau
胫骨内侧平台
NK1-R:
NK1-R:
Neurokinin 1-receptor
神经激肽1受体
OA:
办公自动化:
Osteoarthritis
骨关节炎
OPG:
OPG公司:
Osteoprotegerin
骨保护素
PT:
PT公司:
Post-traumatic
创伤后
px:
像素:
Pixel
像素
RANKL:
朗克尔:
Receptor activator of NF-κB-Ligand
NF-κB配体受体激活剂
ROI:
投资回报率:
Region of interest
感兴趣的区域
TNFα:
TNFα:
Tumor necrosis factor alpha
TRAcP5b:
TRAcP5b:
Tartrate-resistant acid phosphatase 5b
抗酒石酸酸性磷酸酶5b
TV:
电视:
Total volume
总体积
VOI:
或者:
Volume of interest
感兴趣的数量
ReferencesMalinin, T. & Ouellette, E. A. Articular cartilage nutrition is mediated by subchondral bone: A long-term autograft study in baboons. Osteoarthr. Cartil.8(6), 483–491 (2000).Article
参考文献Malinin,T。&Ouellette,E.A。关节软骨营养由软骨下骨介导:狒狒的长期自体移植研究。骨关节。《宪章》8(6),483-491(2000)。文章
CAS
中科院
Google Scholar
谷歌学者
Taheri, S. et al. Investigating the Microchannel architectures inside the subchondral bone in relation to estimated hip reaction forces on the human femoral head. Calcif Tissue Int.109(5), 510–524 (2021).Article
Taheri,S.等人研究软骨下骨内的微通道结构与人类股骨头上估计的髋关节反作用力的关系。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taheri, S. et al. Changes of the subchondral bone microchannel network in early osteoarthritis. Osteoarthr. Cartil.31(1), 49–59 (2023).Article
Taheri,S.等人。早期骨关节炎软骨下骨微通道网络的变化。骨关节。《宪章》31(1),49-59(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Klement, M. R. & Sharkey, P. F. The significance of Osteoarthritis-associated bone marrow lesions in the knee. JAAOS J. Am. Acad. Orthop. Surg.27(20), 752–759 (2019).Article
Klement,M.R。&Sharkey,P.F。膝关节骨关节炎相关骨髓病变的意义。JAAOS J.Am.Acad。骨科。外科杂志27(20),752-759(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis.70(1), 60–67 (2011).Article
Yusuf,E.,Kortekaas,M.C.,Watt,I.,Huizinga,T.W。&Kloppenburg,M。MRI上观察到的膝关节异常是否可以解释膝关节骨性关节炎的膝关节疼痛?系统评价。安。瑞姆。第70(1)节,第60-67(2011)节。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, P. & Jin, H. Increased osteoclast-related indicators of bone marrow lesions are associated with knee osteoarthritis pain. Osteoarthr. Cartil.28, 135 (2020).Article
Zhang,P。&Jin,H。骨髓损伤的破骨细胞相关指标增加与膝关节骨关节炎疼痛有关。骨关节。Cartil.28135(2020)。文章
Google Scholar
谷歌学者
Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest.129(3), 1076–1093 (2019).Article
朱,S。等。软骨下破骨细胞诱导感觉神经支配和骨关节炎疼痛。J、 临床。投资129(3),1076-1093(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, G. et al. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res. Therapy. 15(6), 223 (2013).Article
。关节炎治疗。15(6),223(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Bellido, M. et al. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res. Ther.12(4), R152 (2010).Article
Bellido,M。等人。通过增加重塑引起的软骨下骨微结构损伤加重了骨质疏松症之前的实验性骨关节炎。Arthritis Res.Ther。12(4),R152(2010)。文章
MathSciNet
MathSciNet
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klose-Jensen, R. et al. Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint. Osteoarthr. Cartil.23(12), 2167–2173 (2015).Article
Klose-Jensen,R。等人。在人类髋关节的早期骨关节炎病变中,软骨下骨转换而非骨量增加。骨关节。《宪章》23(12),2167–2173(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Sniekers, Y. H. et al. A role for subchondral bone changes in the process of osteoarthritis; A micro-CT study of two canine models. BMC Musculoskelet. Disord.9(1), 20 (2008).Article
Sniekers,Y.H。等人。软骨下骨变化在骨关节炎过程中的作用;两种犬模型的显微CT研究。BMC肌肉骨骼。第9(1)条,第20(2008)条。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Holzer, L. A. et al. Microstructural analysis of subchondral bone in knee osteoarthritis. Osteoporos. Int.31(10), 2037–2045 (2020).Article
Holzer,L.A.等人。膝骨关节炎软骨下骨的显微结构分析。骨质疏松症。Int.31(10),2037–2045(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van der Kraan, P. M. & van den Berg, W. B. Osteophytes: Relevance and biology. Osteoarthr. Cartil.15(3), 237–244 (2007).Article
van der Kraan,P.M。和van den Berg,W.B。骨赘:相关性和生物学。骨关节。《宪章》15(3),237-244(2007)。文章
Google Scholar
谷歌学者
Bertuglia, A. et al. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthr. Cartil.24(3), 555–566 (2016).Article
Bertuglia,A。等人。在自然发生的创伤后马腕骨关节炎中,破骨细胞被募集到软骨下骨中,并可能导致软骨退化。骨关节。《宪章》24(3),555–566(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Pelletier, J-P. et al. The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone. 34(3), 527–538 (2004).Article
Pelletier,J-P.等人。licofelone对实验性狗骨关节炎早期软骨下骨吸收的抑制作用与MMP-13和组织蛋白酶K.骨合成的减少有关。34(3),527-538(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Botter, S. M. et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: An in vivo microfocal computed tomography study. Arthr. Rhuem.63(9), 2690–2699 (2011).Article
Botter,S.M.等人。骨关节炎诱导导致小鼠胫骨平台早期和颞部软骨下板孔隙率:一项体内微焦点计算机断层扫描研究。关节。Rhuem.63(9),2690–2699(2011)。文章
Google Scholar
谷歌学者
Yu, H., Huang, T., Lu, W. W., Tong, L. & Chen, D. Osteoarthritis pain. Int. J. Mol. Sci.23(9). (2022).Stöckl, S. et al. Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and Healthy Chondrocytes. Front. Immunol.12, 722884 (2021).Article .
Yu,H.,Huang,T.,Lu,W.W.,Tong,L。和Chen,D。骨关节炎疼痛。《国际分子科学杂志》23(9)。(2022年)。Stöckl,S。等人。P物质和α-降钙素基因相关肽对人骨关节炎和健康软骨细胞有不同的影响。。Immunol.12722884(2021)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grimsholm, O., Rantapaa-Dahlqvist, S., Dalen, T. & Forsgren, S. Observations favouring the occurrence of local production and marked effects of bombesin/gastrin-releasing peptide in the synovial tissue of the human knee joint–comparisons with substance P and the NK-1 receptor. Neuropeptides.
Grimsholm,O.,Rantapaa Dahlqvist,S.,Dalen,T。&Forsgren,S。观察结果有利于局部产生和蛙皮素/胃泌素释放肽在人膝关节滑膜组织中的显着作用-与P物质和NK-1受体的比较。神经肽。
42(2), 133–145 (2008).Article .
42(2),133-145(2008)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Grässel, S. & Muschter, D. Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology. Int. J. Mol. Sci.18(5). (2017).Westling, J. et al. ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain.
Grässel,S。&Muschter,D。骨关节炎病理学中的周围神经纤维及其神经递质。《国际分子科学杂志》18(5)。(2017年)。Westling,J。等人,ADAMTS4在聚集蛋白聚糖球间结构域的聚集蛋白聚糖酶位点(Glu373-Ala374)切割,其次在基质金属蛋白酶位点(Asn341-Phe342)切割。
J. Biol. Chem.277(18), 16059–16066 (2002).Article .
J.生物学。化学277(18),16059-16066(2002)。第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mehana, E. E., Khafaga, A. F. & El-Blehi, S. S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci.234, 116786 (2019).Article
Mehana,E.E.,Khafaga,A.F。&El Blehi,S.S。基质金属蛋白酶在骨关节炎发病机制中的作用:最新综述。生命科学234116786(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Grassel, S. & Muschter, D. Recent advances in the treatment of osteoarthritis. F1000Res9. (2020).Deveza, L. A. et al. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: Protocol for an OA Trial Bank systematic review and individual patient data meta-analysis.
Grassel,S。&Muschter,D。骨关节炎治疗的最新进展。F1000Res9(2020年)。。
BMJ Open.8(12), e023889 (2018).Article .
BMJ公开赛,8(12),e023889(2018)。第条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kang, S. et al. Extracorporeal shock wave treatment can normalize painful bone marrow edema in knee osteoarthritis: A comparative historical cohort study. Med. (Baltim).97(5), e9796 (2018).Article
Kang,S.等人。体外冲击波治疗可以使膝骨关节炎疼痛的骨髓水肿正常化:一项比较历史队列研究。。文章
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Nishii, T., Tamura, S., Shiomi, T., Yoshikawa, H. & Sugano, N. Alendronate treatment for hip osteoarthritis: Prospective randomized 2-year trial. Clin. Rheumatol.32(12), 1759–1766 (2013).Article
Nishii,T.,Tamura,S.,Shiomi,T.,Yoshikawa,H。&Sugano,N。阿仑膦酸盐治疗髋关节骨性关节炎:前瞻性随机2年试验。临床。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Adebayo, O. O. et al. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthr. Cartil.25(12), 2108–2118 (2017).Article
Adebayo,O.O.等人。软骨下骨特性的作用和负荷诱导的小鼠骨关节炎发展的变化。骨关节。《宪章》25(12),2108-2118(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Khorasani, M. S. et al. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res. Ther.17(1), 30 (2015).Article
Khorasani,M.S.等人。阿仑膦酸钠对小鼠前交叉韧带断裂引起的创伤后骨关节炎的影响。Arthritis Res.Ther.17(1),30(2015)。文章
MathSciNet
MathSciNet
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siebelt, M. et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 66, 163–170 (2014).Article
Siebelt,M.等人通过阿仑膦酸盐治疗抑制大鼠破骨细胞骨吸收可减少严重的骨关节炎进展。骨头。66163-170(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shirai, T. et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J. Orthop. Res.29(10), 1572–1577 (2011).Article
Shirai,T。等人。阿仑膦酸盐在兔骨关节炎模型中的软骨保护作用。J、 骨科。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil.15(9), 1061–1069 (2007).Article
Glasson,S.S.,Blanchet,T.J。&Morris,E.A。129/SvEv小鼠骨关节炎内侧半月板(DMM)模型的手术不稳定。骨关节。《宪章》15(9),1061-1069(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Muschter, D. et al. Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model. Bone. 133, 115181 (2020).Article
Muschter,D。等人。在小鼠不稳定诱导的骨关节炎模型中,感觉神经肽是骨骼和软骨稳态所必需的。骨头。133115181(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fan, M. & Lee, T. C. M. Variants of seeded region growing. IET Image Processing [Internet]. 9(6), 478–85. (2015). https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2014.0490Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse.
Fan,M。&Lee,T.C.M。种子区域生长的变体。IET图像处理[互联网]。9(6),478-85。(2015年)。https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2014.0490Glasson,S.S.,Chambers,M.G.,Van Den Berg,W.B。和Little,C.B。OARSI组织病理学倡议对小鼠骨关节炎组织学评估的建议。
Osteoarthr. Cartil.18(Suppl 3), S17–23 (2010).Article .
骨关节。《宪章》第18卷(增刊3),第17-23页(2010年)。文章。
Google Scholar
谷歌学者
Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum.60(12), 3723–3733 (2009).Article
Little,C.B.等人,基质金属蛋白酶13缺陷小鼠对骨关节炎软骨侵蚀具有抗性,但对软骨细胞肥大或骨赘发育没有抗性。大黄关节炎。60(12),3723-3733(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fosang, A. J. et al. Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan. Methods Mol. Biol.622, 312–347 (2010).PubMed
Fosang,A.J.等人。针对MMP切割和聚集蛋白聚糖酶切割的聚集蛋白聚糖的新表位抗体。方法Mol.Biol.622312-347(2010)。PubMed出版社
Google Scholar
谷歌学者
Andres Sastre, E. et al. Spatiotemporal distribution of thrombospondin-4 and – 5 in cartilage during endochondral bone formation and repair. Bone. 150, 115999 (2021).Article
Andres Sastre,E。等人。软骨内骨形成和修复过程中血小板反应蛋白-4和-5在软骨中的时空分布。骨头。150115999(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Van Spil, W. E., Kubassova, O., Boesen, M., Bay-Jensen, A-C. & Mobasheri, A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharmacol.165, 41–48 (2019).Article
。生物化学。Pharmacol.165,41-48(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Laslett, L. L. et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: A randomised controlled trial. Ann. Rheum. Dis.71(8), 1322 (2012).Article
Laslett,L。L。等人唑来膦酸在1年内减轻膝关节疼痛和骨髓损伤:一项随机对照试验。安。瑞姆。第71(8)节,第1322(2012)节。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vaysbrot, E. E., Osani, M. C., Musetti, M. C., McAlindon, T. E. & Bannuru, R. R. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthr. Cartil.26(2), 154–164 (2018).Article
Vaysbrot,E.E.,Osani,M.C.,Musetti,M.C.,McAlindon,T.E。&Bannuru,R.R。双膦酸盐对膝关节骨关节炎有效吗?随机对照试验的荟萃分析。骨关节。《宪章》26(2),154-164(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Mohan, G. et al. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: Effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthr. Cartil.21(10), 1595–1604 (2013).Article .
Mohan,G.等人。膝关节骨关节炎大鼠模型中的先发制人,早期和延迟阿仑膦酸盐治疗:对软骨下小梁骨微结构和胫骨软骨降解,骨/软骨转换和关节不适的影响。骨关节。《宪章》21(10),1595-1604(2013)。文章。
CAS
中科院
Google Scholar
谷歌学者
Jones, M. D. et al. In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. Arthritis Rheum.62(9), 2726–2735 (2010).Article
Jones,M.D.等人。体内微焦点计算机断层扫描和微磁共振成像评估抗吸收和抗炎药物作为大鼠骨关节炎的预防性治疗。大黄关节炎62(9),2726-2735(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Panahifar, A., Maksymowych, W. P. & Doschak, M. R. Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthr. Cartil.20(7), 694–702 (2012).Article .
Panahifar,A.,Maksymowych,W.P。&Doschak,M.R。阿仑膦酸盐抑制创伤后骨关节炎大鼠模型中骨赘形成的潜在机制:评估元素锶作为骨形成的分子示踪剂。骨关节。《宪章》20(7),694-702(2012)。文章。
CAS
中科院
Google Scholar
谷歌学者
Buduneli, E. et al. Systemic low-dose doxycycline and alendronate administration and serum interleukin-1beta, osteocalcin, and C-reactive protein levels in rats. J. Periodontol.76(11), 1927–1933 (2005).Article
Buduneli,E.等人。全身低剂量强力霉素和阿仑膦酸盐给药以及大鼠血清白细胞介素-1β,骨钙素和C反应蛋白水平。J、 。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamaguchi, K., Motegi, K., Iwakura, Y. & Endo, Y. Involvement of interleukin-1 in the inflammatory actions of aminobisphosphonates in mice. Br. J. Pharmacol.130(7), 1646–1654 (2000).Article
Yamaguchi,K.,Motegi,K.,Iwakura,Y。&Endo,Y。白细胞介素-1参与小鼠氨基双膦酸盐的炎症作用。《英国药理学杂志》130(7),1646-1654(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, X. et al. Histidine decarboxylase-stimulating and inflammatory effects of alendronate in mice: involvement of mevalonate pathway, TNFalpha, macrophages, and T-cells. Int. Immunopharmacol.7(2), 152–161 (2007).Article
Deng,X。等人。阿仑膦酸盐对小鼠组氨酸脱羧酶的刺激和炎症作用:甲羟戊酸途径,TNFα,巨噬细胞和T细胞的参与。《国际免疫药理学》7(2),152-161(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jiang, L. et al. ADAMTS5 in osteoarthritis: Biological functions, regulatory network, and potential targeting therapies. Front. Mol. Biosci.8, 703110 (2021).Article
Jiang,L。等人。骨关节炎中的ADAMTS5:生物学功能,调节网络和潜在的靶向治疗。。分子生物学杂志8703110(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lotz, M. et al. Value of biomarkers in osteoarthritis: Current status and perspectives. Ann. Rheum. Dis.72(11), 1756–1763 (2013).Article
Lotz,M。等人。生物标志物在骨关节炎中的价值:现状和前景。安。瑞姆。Dis.72(11),1756–1763(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum.50(4), 1193–1206 (2004).Article
Hayami,T。等人。软骨下骨重塑在骨关节炎中的作用:在大鼠前交叉韧带横断模型中,阿仑膦酸盐减少软骨变性和预防骨赘形成。大黄关节炎。50(4),1193-1206(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khosla, S. & Hofbauer, L. C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol.5(11), 898–907 (2017).Article
Khosla,S。&Hoffauer,L.C。骨质疏松症治疗:最近的发展和持续的挑战。柳叶刀糖尿病内分泌杂志5(11),898-907(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Merlotti, D. et al. Comparison of intravenous and intramuscular neridronate regimens for the treatment of Paget disease of bone. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.26(3), 512–518 (2011).Article
Merlotti,D。等人。静脉注射和肌内注射neridronate方案治疗佩吉特骨病的比较。J、 骨矿工。Res.Off.J.Am.Soc.Bone Miner。第26(3)号决议,第512-518(2011)号决议。文章
CAS
中科院
Google Scholar
谷歌学者
Adjuvant bisphosphonate treatment. In early breast cancer: Meta-analyses of individual patient data from randomised trials. Lancet (Lond. Engl.). 386(10001), 1353–1361 (2015).Article
辅助双膦酸盐治疗。早期乳腺癌:来自随机试验的个体患者数据的荟萃分析。柳叶刀(Lond。Engl。)。386(10001),1353–1361(2015)。文章
Google Scholar
谷歌学者
Wang, C. J. et al. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J. Bone Joint Surg. Am. Volume. 85(11), 2121–2126 (2003).Article
Wang,C.J.等人。阿仑膦酸钠对全膝关节置换术后股骨远端和胫骨近端骨密度的影响。J、 骨关节外科手术量。85(11),2121–2126(2003)。文章
Google Scholar
谷歌学者
Iwamoto, J., Uzawa, M., Sato, Y., Takeda, T. & Matsumoto, H. Effect of alendronate on bone mineral density and bone turnover markers in post-gastrectomy osteoporotic patients. J. Bone Miner. Metab.28(2), 202–208 (2010).Article
Iwamoto,J.,Uzawa,M.,Sato,Y.,Takeda,T。&Matsumoto,H。阿仑膦酸盐对胃切除术后骨质疏松患者骨密度和骨转换标志物的影响。J、 骨矿工。代谢28(2),202-208(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kendler, D. et al. Bone mineral density after transitioning from denosumab to alendronate. J. Clin. Endocrinol. Metab.105(3), e255–e264 (2020).Article
Kendler,D。等人。从denosumab转变为阿仑膦酸盐后的骨矿物质密度。J、 临床。内分泌。代谢产物105(3),e255–e264(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iwata, K., Li, J., Follet, H., Phipps, R. J. & Burr, D. B. Bisphosphonates suppress periosteal osteoblast activity independently of resorption in rat femur and tibia. Bone. 39(5), 1053–1058 (2006).Article
Iwata,K.,Li,J.,Follet,H.,Phipps,R.J。&Burr,D.B。双膦酸盐抑制骨膜成骨细胞活性,而不依赖于大鼠股骨和胫骨的再吸收。39(5),1053-1058(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gronowicz, G. et al. Differences in otosclerotic and normal human stapedial osteoblast properties are normalized by alendronate in vitro. Otolaryngol.–Head Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg.151(4), 657–666 (2014).Article
Gronowicz,G。等人。阿仑膦酸钠在体外使耳硬化和正常人镫骨成骨细胞特性的差异正常化。耳鼻喉科–头颈外科杂志。耳鼻喉科-头颈外科151(4),657-666(2014)。文章
Google Scholar
谷歌学者
Bakr, M. M. et al. Intermittent parathyroid hormone accelerates stress fracture Healing more effectively following Cessation of Bisphosphonate Treatment. JBMR Plus. 4(9), e10387 (2020).Article
Bakr,M.M.等人。停止双膦酸盐治疗后,间歇性甲状旁腺激素更有效地加速应力性骨折愈合。JBMR Plus。4(9),e10387(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shirakawa, Y. et al. Therapeutic effect of targeting substance P on the progression of osteoarthritis. Mod. Rheumatol.32(6), 1175–1185 (2022).Article
。国防部。风湿病32(6),1175-1185(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Opolka, A., Straub, R. H., Pasoldt, A., Grifka, J. & Grassel, S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum.64(3), 729–739 (2012).Article
Opolka,A.,Straub,R.H.,Pasoldt,A.,Grifka,J。&Grassel,S。P物质和去甲肾上腺素调节小鼠软骨细胞增殖和凋亡。大黄关节炎64(3),729-739(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Maren Hofmann and Anja Pasoldt for their excellent technical assistance in histology and histomorphometry and Dominique Muschter for the preparatory work on this topic and carrying out the surgical procedures in the mice.FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsClinic of Orthopedic Surgery, Exp.
下载参考文献致谢我们感谢Maren Hofmann和Anja Pasoldt在组织学和组织形态计量学方面提供的出色技术援助,感谢Dominique Muschter在此主题上的准备工作以及在小鼠中进行的外科手术。资金开放获取资金由Projekt交易启用和组织。作者信息作者和附属骨科外科,Exp。
Orthopedics, University of Regensburg, ZMB im Biopark 1, Am Biopark 9, Regensburg, GermanyMarianne Ehrnsperger, Patrick Pann & Susanne GrässelDepartment of Trauma Surgery, Orthopedics and Plastic Surgery, University Medicine Göttingen, Göttingen, GermanyShahed Taheri & Arndt F. SchillingAuthorsMarianne EhrnspergerView author publicationsYou can also search for this author in.
雷根斯堡大学骨科,ZMB im Biopark 1,Am Biopark 9,雷根斯堡,GermanyMarianne Ehrnsperger,Patrick Pann&SusanneGrässelDepartment of Trauma Surgery,Orthopedics and Plastic Surgers,University Medicine Göttingen,Göttingen,GermanyShahed Taheri&Arndt F.Schillingathorsmarianne Ehrnspergiew author Publications你也可以在中搜索这位作者。
PubMed Google ScholarShahed TaheriView author publicationsYou can also search for this author in
PubMed Google ScholarShahed TaheriView作者出版物您也可以在
PubMed Google ScholarPatrick PannView author publicationsYou can also search for this author in
PubMed Google ScholarPatrick PannView作者出版物您也可以在
PubMed Google ScholarArndt F. SchillingView author publicationsYou can also search for this author in
PubMed Google ScholarArndt F.SchillingView作者出版物您也可以在
PubMed Google ScholarSusanne GrässelView author publicationsYou can also search for this author in
PubMed Google ScholarSusanne GrässelView作者出版物您也可以在
PubMed Google ScholarContributionsS.G., M.E: conceptualization; S.T., P.P., M.E: methodology, validation; S.T.: (nanoCT) formal analysis, M.E.: investigation, S.T. (nanoCT), resources; S.T., M.E.,P.P. and A.F.S.: data curation; M.E., S.G.; writing—original draft preparation; S.G., S.T.
PubMed谷歌学术贡献。G、 ,M.E:概念化;S、 T.,P.P.,M.E:方法学,验证;S、 T.:(nanoCT)正式分析,M.E.:调查,S.T。(nanoCT),资源;S、 T.,M.E.,P.P.和A.F.S.:数据管理;M、 。;撰写初稿准备;S、 G.,S.T。
P.P., M.E. and A.F.S.: writing—review and editing; S.T., M.E.: visualization; S.G.: supervision; S.G., M.E.:project administration; S.G., A.F.S.: funding acquisition.Corresponding authorCorrespondence to.
P、 P.,M.E.和A.F.S.:写作评论和编辑;S、 T.,M.E.:可视化;S、 G.:监督;S、 G.,M.E.:项目管理;S、 G.,A.F.S.:资金收购。对应作者对应。
Susanne Grässel.Ethics declarations
苏珊娜·格拉塞尔。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 141598_2024_75758_MOESM2_ESM.docxSupplementary Material 2 I have done some minor corrections in the supplementary material 2, however, I could not save it, so I have uploaded it again.Rights and permissions.
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料141598\U 2024\U 75758\U MOESM2\U ESM.docx补充材料2我在补充材料2中做了一些小的更正,但是,我无法保存它,因此我再次上传了它。权限和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleEhrnsperger, M., Taheri, S., Pann, P. et al. Differential effects of alendronate on chondrocytes, cartilage matrix and subchondral bone structure in surgically induced osteoarthritis in mice.
转载和许可本文引用本文Ernsperger,M.,Taheri,S.,Pann,P。等人。阿仑膦酸盐对手术诱导的小鼠骨关节炎中软骨细胞,软骨基质和软骨下骨结构的不同作用。
Sci Rep 14, 25026 (2024). https://doi.org/10.1038/s41598-024-75758-7Download citationReceived: 12 February 2024Accepted: 08 October 2024Published: 23 October 2024DOI: https://doi.org/10.1038/s41598-024-75758-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1425026(2024)。https://doi.org/10.1038/s41598-024-75758-7Download引文接收日期:2024年2月12日接受日期:2024年10月8日发布日期:2024年10月23日OI:https://doi.org/10.1038/s41598-024-75758-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsDMMOsteoarthritisBisphosphonateAlendronateVDIPENADAMTS-5Subchondral boneCartilageMicro/nano-CTOsteoclastsChondrocytesNK1-RMMP-13
关键词MMO骨关节炎双膦酸盐lendronate VDIPENADAMTS-5软骨下骨关节软骨细胞NK1-RMMP-13