EN
登录

阻断翻译的mRNA ADP核糖基转移酶的抗病毒防御

Anti-viral defence by an mRNA ADP-ribosyltransferase that blocks translation

Nature 等信源发布 2024-10-23 22:39

可切换为仅中文


AbstractHost–pathogen conflicts are crucibles of molecular innovation1,2. Selection for immunity to pathogens has driven the evolution of sophisticated immunity mechanisms throughout biology, including in bacterial defence against bacteriophages3. Here we characterize the widely distributed anti-phage defence system CmdTAC, which provides robust defence against infection by the T-even family of phages4.

摘要宿主-病原体冲突是分子创新的熔炉1,2。对病原体免疫的选择推动了整个生物学中复杂免疫机制的进化,包括细菌防御噬菌体3。在这里,我们描述了广泛分布的抗噬菌体防御系统CmdTAC,它提供了针对T-even噬菌体家族感染的强大防御4。

Our results support a model in which CmdC detects infection by sensing viral capsid proteins, ultimately leading to the activation of a toxic ADP-ribosyltransferase effector protein, CmdT. We show that newly synthesized capsid protein triggers dissociation of the chaperone CmdC from the CmdTAC complex, leading to destabilization and degradation of the antitoxin CmdA, with consequent liberation of the CmdT ADP-ribosyltransferase.

我们的研究结果支持CmdC通过检测病毒衣壳蛋白来检测感染的模型,最终导致毒性ADP-核糖基转移酶效应蛋白CmdT的激活。我们显示,新合成的衣壳蛋白触发伴侣CmdC与CmdTAC复合物的解离,导致抗毒素CmdA的不稳定和降解,从而释放CmdT ADP核糖基转移酶。

Notably, CmdT does not target a protein, DNA or structured RNA, the known targets of other ADP-ribosyltransferases. Instead, CmdT modifies the N6 position of adenine in GA dinucleotides within single-stranded RNAs, leading to arrest of mRNA translation and inhibition of viral replication. Our work reveals a novel mechanism of anti-viral defence and a previously unknown but broadly distributed class of ADP-ribosyltransferases that target mRNA..

值得注意的是,CmdT不靶向蛋白质,DNA或结构化RNA,这是其他ADP-核糖基转移酶的已知靶标。相反,CmdT修饰单链RNA中GA二核苷酸中腺嘌呤的N6位置,导致mRNA翻译停滞和病毒复制抑制。我们的工作揭示了一种新的抗病毒防御机制,以及一类以前未知但分布广泛的靶向mRNA的ADP核糖基转移酶。。

MainADP-ribosyltransferases are important enzymes found throughout biology that transfer the ADP ribose moiety of NAD+ onto other biomolecules, usually modifying an amino acid on a target protein5,6,7. ADP-ribosylation is one of the most common post-translational modifications in biology, and is used to regulate a wide variety of proteins involved in cellular signalling, chromatin and transcription, DNA repair, and other functions.

MainADP-核糖基转移酶是整个生物学中发现的重要酶,可将NAD+的ADP-核糖部分转移到其他生物分子上,通常修饰靶蛋白上的氨基酸5,6,7。ADP-核糖基化是生物学中最常见的翻译后修饰之一,用于调节涉及细胞信号传导,染色质和转录,DNA修复和其他功能的多种蛋白质。

At least six of the human ADP-ribosyltransferases (previously called poly-ADP-ribosyl polymerases8 (PARPs)) are induced by interferon and are thus hypothesized to function in anti-viral defence9,10, but their precise roles and targets remain poorly defined. Although they have been studied for decades as protein modifiers, recent work has identified ADP-ribosyltransferases that target nucleic acids.

至少有六种人类ADP-核糖基转移酶(以前称为聚ADP-核糖基聚合酶8(PARPs))是由干扰素诱导的,因此被假设在抗病毒防御中起作用9,10,但它们的确切作用和靶标仍然不明确。尽管它们作为蛋白质修饰剂已经研究了数十年,但最近的工作已经确定了靶向核酸的ADP-核糖基转移酶。

DarT toxins of DarTG toxin–antitoxin systems can modify single-stranded DNA11. The Pseudomonas aeruginosa type VI secretion effector RhsP2 targets the 2′ hydroxyl of some double-stranded RNAs12, and in Photorhabdus laumondii, a type VI secretion effector modifies 23S ribosomal RNA13 (rRNA).Here, we identify CmdT, an ADP-ribosyltransferase that functions in bacterial anti-phage defence by specifically modifying mRNAs to block phage translation and the production of mature virions.

DarTG毒素-抗毒素系统的DarT毒素可以修饰单链DNA11。铜绿假单胞菌VI型分泌效应子RhsP2靶向一些双链RNAs12的2'羟基,而在月桂光杆菌中,VI型分泌效应子修饰23S核糖体RNA13(rRNA)。在这里,我们确定了CmdT,一种ADP-核糖基转移酶,通过特异性修饰mRNA来阻断噬菌体翻译和成熟病毒粒子的产生,从而在细菌抗噬菌体防御中发挥作用。

CmdT is part of a tripartite toxin–antitoxin–chaperone (TAC) system. Toxin–antitoxin systems have a major role in anti-phage defence14. These systems feature a protein toxin that is restrained from killing a cell or blocking cell growth by a cognate antitoxin15. For anti-phage toxin–antitoxin systems, phage infection must somehow liberate the toxin, but the mechanisms responsible remain incompletely understood16.

CmdT是三方毒素-抗毒素-伴侣(TAC)系统的一部分。毒素-抗毒素系统在抗噬菌体防御中起主要作用14。这些系统的特征是蛋白质毒素被同源抗毒素抑制杀死细胞或阻断细胞生长15。。

TAC systems are common variants that feature a chaperone rel.

TAC系统是具有伴侣rel的常见变体。

Data availability

数据可用性

Summary spectra and raw data for IP–MS/MS of CmdC and CmdT pulldowns were deposited at MassIVE and can be accessed under accession MSV000093692; a summary table of high confidence hits is provided as Supplementary Table 1. Raw data for nucleotide MS and ESI-MS/MS were deposited at MassIVE and can be accessed under accession MSV000093878.

CmdC和CmdT下拉列表的IP-MS/MS的摘要光谱和原始数据已大量保存,可以在登录号MSV000093692下访问;补充表1提供了高可信度命中的汇总表。核苷酸MS和ESI-MS/MS的原始数据大量保存,可以在登录号MSV000093878下访问。

RNA-seq and RIP–seq data are available at GEO under accession number GSE253514. All other data are available in the manuscript or the supplementary materials. Source data are provided with this paper..

RNA-seq和RIP-seq数据可在GEO获得,登录号为GSE253514。所有其他数据均可在手稿或补充材料中找到。本文提供了源数据。。

Code availability

代码可用性

Code used for RNA-seq and in vivo RIP–seq analysis is available at https://doi.org/10.5281/zenodo.10522487 (ref. 58).

用于RNA-seq和体内RIP-seq分析的代码可在https://doi.org/10.5281/zenodo.10522487(参考文献58)。

ReferencesDaugherty, M. D. & Malik, H. S. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).Article

参考文献Daugherty,M.D。和Malik,H.S。参与规则:来自宿主病毒军备竞赛的分子见解。年。Genet牧师。46677-700(2012)。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLaughlin, R. N. & Malik, H. S. Genetic conflicts: the usual suspects and beyond. J. Exp. Biol. 220, 6–17 (2017).Article

McLaughlin,R.N.&Malik,H.S。遗传冲突:常见的怀疑和超越。J、 实验生物。220,6-17(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).Article

Georgon,H。&Bernheim,A。细菌的高度多样化的抗噬菌体防御系统。Nat。Rev。Microbiol。21686-700(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).Article

Vassallo,C.N.,Doering,C.R.,Littlehale,M.L.,Teodoro,G.I.C。和Laub,M.T。功能选择揭示了以前未检测到的大肠杆菌pangenome中的抗噬菌体防御系统。。71568-1579(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cohen, M. S. & Chang, P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 14, 236–243 (2018).Article

Cohen,M.S。&Chang,P。对ADP-核糖基化的生物发生,功能和调节的见解。自然化学。生物学14236-243(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Suskiewicz, M. J., Prokhorova, E., Rack, J. G. M. & Ahel, I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 186, 4475–4495 (2023).Article

Suskiewicz,M.J.,Prokhorova,E.,Rack,J.G.M。&Ahel,I。ADP-核糖基化从分子机制到治疗意义。细胞1864475-4495(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, D.-S., Challa, S., Jones, A. & Kraus, W. L. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 34, 302–320 (2020).Article

Kim,D.-S.,Challa,S.,Jones,A。&Kraus,W.L。RNA生物学中的PARPs和ADP-核糖基化:从RNA表达和加工到蛋白质翻译和蛋白质稳态。基因发展34302-320(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lüscher, B. et al. ADP-ribosyltransferases, an update on function and nomenclature. FEBS J. 289, 7399–7410 (2022).Article

Lüscher,B。等。ADP核糖基转移酶,功能和命名的最新进展。FEBS J.2897399–7410(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lüscher, B., Verheirstraeten, M., Krieg, S. & Korn, P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell. Mol. Life Sci. 79, 288 (2022).Article

Lüscher,B.,Verheirstraeten,M.,Krieg,S。&Korn,P。宿主病毒间期的细胞内单ADP-核糖基转移酶。细胞。分子生命科学。79288(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Suskiewicz, M. J. et al. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res. 51, 8217–8236 (2023).Article

Suskiewicz,M.J.等人更新了PARP蛋白家族的蛋白质结构域注释,为生物学功能提供了新的思路。核酸研究518217-8236(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jankevicius, G., Ariza, A., Ahel, M. & Ahel, I. The toxin–antitoxin system DarTG catalyzes Reversible ADP-ribosylation of DNA. Mol. Cell 64, 1109–1116 (2016).Article

Jankevicius,G.,Ariza,A.,Ahel,M。&Ahel,I。毒素-抗毒素系统DarTG催化DNA的可逆ADP-核糖基化。分子细胞641109-1116(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bullen, N. P. et al. An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol. Cell 82, 3484–3498.e11 (2022).Article

。分子细胞823484–3498.e11(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jurėnas, D. et al. Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA. Nucleic Acids Res. 49, 8384–8395 (2021).Article

Jurėnas,D。等人。光杆菌抗菌Rhs多态性毒素通过23S核糖体RNA的ADP-核糖基化抑制翻译。核酸研究498384-8395(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

LeRoux, M. & Laub, M. T. Toxin–antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 76, 21–43 (2022).Article

LeRoux,M。和Laub,M。T。毒素-抗毒素系统作为噬菌体防御元件。年。微生物修订版。76,21-43(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin–antitoxin biology. Mol. Cell 70, 768–784 (2018).Article

Harms,A.,Brodersen,D.E.,Mitarai,N。&Gerdes,K。毒素,靶标和触发因素:毒素-抗毒素生物学概述。分子细胞70768-784(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laub, M. T. & Typas, A. Principles of bacterial innate immunity against viruses. Curr. Opin. Immunol. 89, 102445 (2024).Article

Laub,M.T。&Typas,A。细菌对病毒的先天免疫原理。货币。奥平。免疫。89102445(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Texier, P. et al. ClpXP-mediated degradation of the TAC antitoxin is neutralized by the SecB-like chaperone in Mycobacterium tuberculosis. J. Mol. Biol. 433, 166815 (2021).Article

Texier,P。等人。ClpXP介导的TAC抗毒素降解被结核分枝杆菌中的SecB样伴侣中和。J、 分子生物学。43316815(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bordes, P. et al. SecB-like chaperone controls a toxin–antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 108, 8438–8443 (2011).Article

Bordes,P。等人。SecB样伴侣控制结核分枝杆菌中的毒素-抗毒素应激反应系统。程序。国家科学院。科学。美国1088438–8443(2011)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sala, A., Calderon, V., Bordes, P. & Genevaux, P. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin–antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 18, 129–135 (2013).Article

来自结核分枝杆菌的Sala,A.,Calderon,V.,Bordes,P。&Genevaux,P。TAC:由SecB样伴侣控制的应激反应毒素-抗毒素系统的范例。细胞应激伴侣18129-135(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bordes, P. et al. Chaperone addiction of toxin–antitoxin systems. Nat. Commun. 7, 13339 (2016).Article

Bordes,P。等人。毒素-抗毒素系统的伴侣成瘾。国家公社。71339(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).Article

Maffei,E.等人。系统探索大肠杆菌噬菌体-宿主与巴塞尔噬菌体库的相互作用。《公共科学图书馆·生物学》。19,e3001424(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aframian, N. & Eldar, A. Abortive infection antiphage defense systems: separating mechanism and phenotype. Trends Microbiol. 31, 1003–1012 (2023).Article

Aframian,N。&Eldar,A。流产感染-抗噬菌体防御系统:分离机制和表型。趋势微生物。311003-1012(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jørgensen, R. et al. Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 436, 979–984 (2005).Article

Jørgensen,R。等人。外毒素A–eEF2复合物结构表明通过核糖体模拟进行ADP-核糖基化。自然436979-984(2005)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Mikolčević, P., Hloušek-Kasun, A., Ahel, I. & Mikoč, A. ADP-ribosylation systems in bacteria and viruses. Comput. Struct. Biotechnol. J. 19, 2366–2383 (2021).Article

Mikolčević,P.,Hloušek Kasun,A.,Ahel,I。&Mikoč,A。细菌和病毒中的ADP-核糖基化系统。计算机。结构。生物技术。J、 192366-2383(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).Article

Flynn,J.M.,Neher,S.B.,Kim,Y.I.,Sauer,R.T。和Baker,T.A。ClpXP蛋白酶细胞底物的蛋白质组学发现揭示了五类ClpX识别信号。摩尔细胞11671-683(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rao, V. B. & Black, L. W. Structure and assembly of bacteriophage T4 head. Virol. J. 7, 356 (2010).Article

Rao,V.B。和Black,L.W。噬菌体T4头的结构和组装。维罗尔。J、 7356(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Revel, H. R., Stitt, B. L., Lielausis, I. & Wood, W. B. Role of the host cell in bacteriophage T4 development. I. Characterization of host mutants that block T4 head assembly. J. Virol. 33, 366–376 (1980).Article

Revel,H.R.,Stitt,B.L.,Lielausis,I。和Wood,W.B。宿主细胞在噬菌体T4发育中的作用。一、 阻断T4头部组装的宿主突变体的表征。J、 维罗尔。33366-376(1980)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bakkes, P. J., Faber, B. W., van Heerikhuizen, H. & van der Vies, S. M. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc. Natl Acad. Sci. USA 102, 8144–8149 (2005).Article

Bakkes,P.J.,Faber,B.W.,van Heerikhuizen,H。和van der Vies,S.M。T4编码的辅结合蛋白gp31具有独特的特性,可以解释其对T4主要衣壳蛋白折叠的要求。程序。国家科学院。科学。美国1028144–8149(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

LeRoux, M. et al. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat. Microbiol. 7, 1028–1040 (2022).Article

LeRoux,M。等人。DarTG毒素-抗毒素系统通过ADP-核糖基化病毒DNA提供噬菌体防御。。71028-1040(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).Article

Miller,E.S。等人。噬菌体T4基因组。微生物。分子生物学。第67版,第86-156页(2003年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Basanta-Sanchez, M., Temple, S., Ansari, S. A., D’Amico, A. & Agris, P. F. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Res. 44, e26 (2016).Article

Basanta Sanchez,M.,Temple,S.,Ansari,S.A.,D'Amico,A。&Agris,P.F。Attomole定量和RNA修饰的全球概况:人类神经干细胞的表转录组。核酸研究44,e26(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wolfram-Schauerte, M. et al. A viral ADP-ribosyltransferase attaches RNA chains to host proteins. Nature 620, 1054–1062 (2023).Article

Wolfram Schauerte,M。等人。病毒ADP核糖基转移酶将RNA链连接到宿主蛋白上。自然6201054-1062(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Honjo, T., Nishizuka, Y., Hayaishi, O. & Kato, I. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555 (1968).Article

Honjo,T.,Nishizuka,Y.,Hayaishi,O。&Kato,I。白喉毒素依赖性腺苷二磷酸核糖基化氨基酰基转移酶II和抑制蛋白质合成。J、 生物。化学。2433553-3555(1968)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jørgensen, R. et al. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J. Biol. Chem. 283, 10671–10678 (2008).Article

Jørgensen,R。等人。Cholix毒素,一种来自霍乱弧菌的新型ADP-核糖基化因子。J、 生物。化学。28310671-10678(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mets, T. et al. Mechanism of phage sensing and restriction by toxin–antitoxin–chaperone systems. Cell Host Microbe 32, 1059–1073.e8 (2024).Article

Mets,T。等人。毒素-抗毒素-伴侣系统对噬菌体的感知和限制机制。细胞宿主微生物321059–1073.e8(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Munnur, D. et al. Reversible ADP-ribosylation of RNA. Nucleic Acids Res. 47, 5658–5669 (2019).Article

Munnur,D.等人,《RNA的可逆ADP-核糖基化》,《核酸研究》475658–5669(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Daugherty, M. D., Young, J. M., Kerns, J. A. & Malik, H. S. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet. 10, e1004403 (2014).Article

Daugherty,M.D.,Young,J.M.,Kerns,J.A。&Malik,H.S。PARP基因的快速进化表明ADP-核糖基化在宿主-病毒冲突中具有广泛的作用。PLoS Genet。10,e1004403(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 15, e2004086 (2017).Article

Shaw,A.E.等人。通过I型干扰素反应的多物种比较揭示了哺乳动物先天免疫系统的基本特性。《公共科学图书馆·生物学》。15,e2004086(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Parthasarathy, S. & Fehr, A. R. PARP14: A key ADP-ribosylating protein in host–virus interactions? PLoS Pathog. 18, e1010535 (2022).Article

Parthasarathy,S。&Fehr,A.R。PARP14:宿主-病毒相互作用中的关键ADP-核糖基化蛋白?PLoS Pathog。18,e1010535(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alhammad, Y. M. et al. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc. Natl Acad. Sci. USA 120, e2302083120 (2023).Article

Alhammad,Y.M.等人。SARS-CoV-2 Mac1是细胞培养和小鼠中IFN拮抗和有效病毒复制所必需的。程序。国家科学院。科学。美国120,e2302083120(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grunewald, M. E. et al. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog. 15, e1007756 (2019).Article

Grunewald,M.E。等人。需要冠状病毒大结构域来防止PARP介导的病毒复制抑制和IFN表达增强。PLoS Pathog。15,e1007756(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, T. et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).Article

Zhang,T.等人。病毒衣壳蛋白直接激活细菌先天免疫系统。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).Article

。科学377,eabm4096(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guegler, C. K. & Laub, M. T. Shutoff of host transcription triggers a toxin–antitoxin system to cleave phage RNA and abort infection. Mol. Cell 81, 2361–2373.e9 (2021).Article

Guegler,C.K。&Laub,M.T。宿主转录的关闭触发毒素-抗毒素系统切割噬菌体RNA并中止感染。分子细胞812361-2373.e9(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolfram-Schauerte, M., Pozhydaieva, N., Viering, M., Glatter, T. & Höfer, K. Integrated omics reveal time-resolved insights into T4 Phage infection of E. coli on proteome and transcriptome levels. Viruses 14, 2502 (2022).Article

Wolfram Schauerte,M.,Pozhydaieva,N.,Viering,M.,Glatter,T。&Höfer,K。综合组学揭示了大肠杆菌T4噬菌体感染蛋白质组和转录组水平的时间分辨见解。病毒142502(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Culviner, P. H., Guegler, C. K. & Laub, M. T. A simple, cost-effective, and robust method for rRNA depletion in RNA-sequencing studies. mBio 11, e00010–e00020 (2020).Article

Culviner,P.H.,Guegler,C.K。&Laub,M.T。一种简单,经济有效且稳健的RNA测序研究中rRNA消耗方法。mBio 11,e00010–e00020(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeng, Y. et al. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol. 16, e2006092 (2018).Article

Zeng,Y.等人改进了RIP-seq协议,用于低输入材料的表转录组分析。《公共科学图书馆·生物学》。16,e2006092(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Culviner, P. H. & Laub, M. T. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rrna maturation and ribosome biogenesis. Mol. Cell 70, 868–880.e10 (2018).Article

Culviner,P.H。&Laub,M.T。对大肠杆菌毒素MazF的整体分析揭示了mRNA的广泛切割以及rrna成熟和核糖体生物发生的抑制。分子细胞70868-880.e10(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 11, e79549 (2022).Article

Srikant,S.,Guegler,C.K。&Laub,M.T。病毒中反防御机制的进化限制了其宿主范围。eLife 11,e79549(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).Article

Tesson,F.等人。原核生物抗病毒武库的系统和定量观点。国家公社。132561(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).Article

Zimmermann,L.等人。一个完全重新实现的MPI生物信息学工具包,其核心是一个新的HHpred服务器。J、 分子生物学。4302237-2243(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein–protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).Article

Bryant,P.,Pozzati,G。和Elofsson,A。改进了使用AlphaFold2预测蛋白质-蛋白质相互作用。国家公社。131265(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).Article

van Kempen,M.等人。使用Foldseek快速准确地搜索蛋白质结构。。42243-246(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet.journal 17,10-12(2011)。Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article

Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Culviner, P. H., Nocedal, I., Fortune, S. M. & Laub, M. T. Global analysis of the specificities and targets of endoribonucleases from Escherichia coli toxin–antitoxin systems. mBio 12, e02012–e02021 (2021).Article

Culviner,P.H.,Nocedal,I.,Fortune,S.M。和Laub,M.T。对来自大肠杆菌毒素-抗毒素系统的内切核糖核酸酶的特异性和靶标的全球分析。mBio 12,e02012–e02021(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doering, C. Anti-viral defense by an ADP-ribosyltransferase that targets mRNA to block translation. Zenodo https://doi.org/10.5281/zenodo.10522488 (2024).Download referencesAcknowledgementsThe authors thank D. Saxton, T. Zhang, S. Srikant and C. Beck for comments on the manuscript; B.

Doering,C。通过靶向mRNA以阻断翻译的ADP-核糖基转移酶进行抗病毒防御。泽诺多https://doi.org/10.5281/zenodo.10522488(2024年)。下载参考文献致谢作者感谢D.Saxton,T.Zhang,S.Srikant和C.Beck对手稿的评论;B。

Imperiali for help with interpreting the mass spectrometry data; C. Eickmann for help with AlphaFold2 predictions; the MIT BioMicroCenter and its staff for their support with sequencing; the MIT Biopolymers and Proteomics Core and its staff for assisting in HPLC and mass spectrometry experiments; and S.

Imperiali帮助解释质谱数据;C、 艾克曼(Eickmann)帮助进行AlphaFold2预测;麻省理工学院生物微中心及其工作人员对测序的支持;麻省理工学院生物聚合物和蛋白质组学核心及其工作人员协助HPLC和质谱实验;和S。

Srikant for help with T4 reverse genetics. M.T.L. is an Investigator of the Howard Hughes Medical Institute. This work was also supported by a Howard Hughes Medical Institute Gilliam Fellowship awarded to C.R.D. and a National Institutes of Health NIGMS grant 5F32 GM139231-02 to C.N.V.Author informationAuthor notesThese authors contributed equally: Christopher N.

Srikant寻求T4反向遗传学的帮助。M、 T.L.是霍华德·休斯医学研究所的研究员。这项工作也得到了霍华德·休斯医学研究所吉利姆奖学金(授予C.R.D.)和美国国立卫生研究院(National Institutes of Health NIGMS)授予C.N.V的5F32 GM139231-02的支持。作者信息作者注意到,这些作者做出了同样的贡献:克里斯托弗·N。

Vassallo, Christopher R. DoeringAuthors and AffiliationsDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA, USAChristopher N. Vassallo, Christopher R. Doering & Michael T. LaubHoward Hughes Medical Institute, Cambridge, MA, USAMichael T. LaubAuthorsChristopher N. VassalloView author publicationsYou can also search for this author in.

Vassallo,Christopher R.Doering作者和附属机构美国马萨诸塞州剑桥市麻省理工学院生物学系Christopher N.Vassallo,Christopher R.Doering&Michael T.LaubHoward Hughes医学研究所,马萨诸塞州剑桥市,美国Michael T.LaubAuthorsChristopher N.VassalloView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarChristopher R. DoeringView author publicationsYou can also search for this author in

PubMed Google ScholarMichael T. LaubView author publicationsYou can also search for this author in

PubMed Google Scholarmamichael T.LaubView作者出版物您也可以在

PubMed Google ScholarContributionsC.R.D. and C.N.V. cultured bacteria and phages, created plasmids and strains, and conducted bacterial growth and phage plating assays. C.R.D. and C.N.V. performed RNA extractions and immuno-northern blots. RNA-seq, RIP–seq and all RNA-seq library preparation was performed by C.R.D.

。R、 D.和C.N.V.培养细菌和噬菌体,产生质粒和菌株,并进行细菌生长和噬菌体平板测定。C、 R.D.和C.N.V.进行了RNA提取和免疫northern印迹。RNA-seq,RIP-seq和所有RNA-seq文库制备均由C.R.D.进行。

In vitro ADPr RNA-seq was performed by C.N.V. IP–MS was performed by C.R.D. In vitro transcription and translation, protein immunoblotting, and T4 genome engineering and evolution were performed by C.N.V. Radiolabel incorporation assays were performed by C.R.D. Protein purification, in vitro ADPr assays, HPLC and ESI-MS were conducted by C.N.V.

体外ADPr RNA-seq由C.N.V.进行。IP-MS由C.R.D.进行。体外转录和翻译,蛋白质免疫印迹,T4基因组工程和进化由C.N.V.进行。放射性标记掺入测定由C.R.D.进行。蛋白质纯化,体外ADPr测定,HPLC和ESI-MS由C.N.V.进行。

Bioinformatic analyses were performed by C.R.D. and C.N.V. Structural predictions were performed by C.R.D. C.R.D., C.N.V. and M.T.L. designed experiments, analysed data, prepared figures and wrote the manuscript.Corresponding authorCorrespondence to.

生物信息学分析由C.R.D.和C.N.V.进行。结构预测由C.R.D.C.R.D.,C.N.V.和M.T.L.设计实验,分析数据,准备数字并撰写手稿。对应作者对应。

Michael T. Laub.Ethics declarations

迈克尔·T·劳布。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

《自然》杂志感谢匿名审稿人对这项工作的同行评审做出的贡献。同行评审报告可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Taxonomic distribution of cmdTAC and efficiency of plaquing for BASEL and T-even phages.(a) Presence or absence of CmdTAC homologs in bacterial genera with > 1000 sequenced genomes (see Methods).

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1 cmdTAC的分类分布和巴塞尔和T-even噬菌体的噬菌体效率。(a) 具有>1000个测序基因组的细菌属中是否存在CmdTAC同源物(请参见方法)。

(b) Examples of CmdTAC homologs found in diverse bacterial species. Grey bars between genes capture percent identity, defined by the color bar below. (c) Plaquing of the phages indicated on E. coli K12 harboring cmdTAC under control of its native promoter or an empty vector control. Data used to generate EOP data in Fig.

(b) 在不同细菌物种中发现的CmdTAC同源物的例子。基因之间的灰色条捕获百分比同一性,由下面的颜色条定义。(c) 在其天然启动子或空载体对照的控制下,在含有cmdTAC的大肠杆菌K12上显示的噬菌体的噬菌体。图中用于生成EOP数据的数据。

1c. (d) Plaquing of T4 phage on EV, cmdTAC+, or cmdT*AC+. (e) Survival assay of empty vector, cmdTAC+ cells or cells expressing a direct defense system (PD-T4-1) from its native promoter on the same low-copy plasmid. Values represent the number of CFUs of each strain after 18 min of infection divided by the CFUs pre-infection.

1c。(d) 在EV,cmdTAC+或cmdT*AC+上放置T4噬菌体。(e) 空载体,cmdTAC+细胞或在同一低拷贝质粒上从其天然启动子表达直接防御系统(PD-T4-1)的细胞的存活测定。数值表示感染18分钟后每个菌株的CFU数量除以CFU感染前。

Boxplots represent the median and quartile ranges of n = 4 biological replicates, with whiskers indicating max/min values. p-values are indicated at the top and represent a two-sided independent t-test. (f) Efficiency of center of infection assays with cmdTAC+ cells which measures the number of infected cells that go on to produce > 0 progeny phage.

箱形图表示n=4个生物学重复的中位数和四分位数范围,胡须表示最大/最小值。p值显示在顶部,代表双侧独立t检验。(f) 用cmdTAC+细胞进行感染中心测定的效率,该细胞测量继续产生>0后代噬菌体的感染细胞的数量。

Value is measured relative to the empty vector control. Boxplots represent the median and quartile ranges of n = 4 biological replicates, with whiskers indicating max/min values.Source DataExtended Data Fig. 2 AlphaFold2-based prediction of CmdTAC structures.(a-c) AlphaFold2 predicted structures of CmdT (A), CmdA (B), and tetrameric CmdC (C).

相对于空向量控件测量值。箱形图表示n=4个生物学重复的中位数和四分位数范围,胡须表示最大/最小值。源数据扩展数据图2基于AlphaFold2的CmdTAC结构预测。(a-c)AlphaFold2预测CmdT(a),CmdA(B)和四聚体CmdC(c)的结构。

For the CmdC tetramer in panel (c) each subun.

对于面板(c)中的CmdC四聚体,每个子单元。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleVassallo, C.N., Doering, C.R. & Laub, M.T. Anti-viral defence by an mRNA ADP-ribosyltransferase that blocks translation.

转载和许可本文引用本文Vassallo,C.N.,Doering,C.R。&Laub,M.T。通过阻断翻译的mRNA ADP-核糖基转移酶进行抗病毒防御。

Nature (2024). https://doi.org/10.1038/s41586-024-08102-8Download citationReceived: 10 February 2024Accepted: 23 September 2024Published: 23 October 2024DOI: https://doi.org/10.1038/s41586-024-08102-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《自然》(2024)。https://doi.org/10.1038/s41586-024-08102-8Download引文接收日期:2024年2月10日接受日期:2024年9月23日发布日期:2024年10月23日OI:https://doi.org/10.1038/s41586-024-08102-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供