EN
登录

利用表观基因组分析预测拟南芥的蛋白质协同效应

Predicting protein synergistic effect in Arabidopsis using epigenome profiling

Nature 等信源发布 2024-10-24 15:58

可切换为仅中文


AbstractHistone modifications can regulate transcription epigenetically by marking specific genomic loci, which can be mapped using chromatin immunoprecipitation sequencing (ChIP-seq). Here we present QHistone, a predictive database of 1534 ChIP-seqs from 27 histone modifications in Arabidopsis, offering three key functionalities.

摘要组蛋白修饰可以通过标记特定的基因组位点来表观遗传调节转录,可以使用染色质免疫沉淀测序(ChIP-seq)对其进行定位。在这里,我们介绍了QHistone,一个来自拟南芥27个组蛋白修饰的1534个ChIP-seq的预测数据库,提供了三个关键功能。

Firstly, QHistone employs machine learning to predict the epigenomic profile of a query protein, characterized by its most associated histone modifications, and uses these modifications to infer the protein’s role in transcriptional regulation. Secondly, it predicts synergistic regulatory activities between two proteins by comparing their profiles.

首先,QHistone使用机器学习来预测查询蛋白的表观基因组谱,其特征在于其最相关的组蛋白修饰,并使用这些修饰来推断蛋白质在转录调控中的作用。其次,它通过比较两种蛋白质的概况来预测两种蛋白质之间的协同调节活性。

Lastly, it detects previously unexplored co-regulating protein pairs by screening all known proteins. QHistone accurately identifies histone modifications associated with specific known proteins, and allows users to computationally validate their results using gene expression data from various plant tissues.

。QHistone准确识别与特定已知蛋白质相关的组蛋白修饰,并允许用户使用来自各种植物组织的基因表达数据计算验证其结果。

These functions demonstrate an useful approach to utilizing epigenome data for gene regulation analysis, making QHistone a valuable resource for the scientific community (https://qhistone.paoyang.ipmb.sinica.edu.tw)..

这些功能证明了利用表观基因组数据进行基因调控分析的有用方法,使QHistone成为科学界的宝贵资源(https://qhistone.paoyang.ipmb.sinica.edu.tw)。。

IntroductionHistone modifications such as methylation, acetylation, phosphorylation, and ubiquitylation are known to affect transcription commonly through altering chromatin status1. For example, acetylated histones are often associated with activating transcription by reducing the positive charges on histones, thus allowing proteins to gain access to the DNA2,3,4,5.

引言已知组蛋白修饰如甲基化,乙酰化,磷酸化和泛素化通常通过改变染色质状态来影响转录1。例如,乙酰化组蛋白通常通过减少组蛋白上的正电荷来激活转录,从而使蛋白质获得DNA2,3,4,5。

Conversely, methylation can change the overall charge of the histone proteins, affecting their interaction with the negatively charged DNA, hence influencing the interaction dynamics between histones and DNA, that ultimately impacts the chromatin compaction2,3,4,5. For example, histone 3 lysine 9 dimethylation (H3K9me2) and histone 3 lysine 27 monomethylation (H3K27me1) are known to be enriched in constitutive silenced heterochromatin, and repressively regulate transcription due to the dense structure of heterochromatin4,5,6,7,8,9,10 (See Supplementary Table 1 for a list of histone modifications that are often active or repressive).

相反,甲基化可以改变组蛋白的总电荷,影响它们与带负电荷的DNA的相互作用,从而影响组蛋白和DNA之间的相互作用动力学,最终影响染色质的紧密性2,3,4,5。例如,已知组蛋白3赖氨酸9二甲基化(H3K9me2)和组蛋白3赖氨酸27单甲基化(H3K27me1)富含组成型沉默的异染色质,并且由于异染色质4,5,6,7,8,9,10的致密结构而抑制性调节转录(参见补充表1以获得通常具有活性或抑制性的组蛋白修饰列表)。

In plants, histone modifications may affect the strength of histone binding to DNA, and such influence is dependent on the plant conditions including stresses, developmental stages, tissues and genotypes11,12. Overall, the types of histone modifications and their specific preferences for marking locations on the genome can provide valuable insights into transcriptional regulation, and these preferences are sensitive to plant conditions.Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq) are commonly used high-throughput methods for profiling the genome-wide binding between genomic DNA and proteins of interests13,14.

在植物中,组蛋白修饰可能会影响组蛋白与DNA结合的强度,这种影响取决于植物条件,包括胁迫,发育阶段,组织和基因型11,12。总体而言,组蛋白修饰的类型及其在基因组上标记位置的特定偏好可以为转录调控提供有价值的见解,并且这些偏好对植物条件敏感。染色质免疫沉淀然后测序(ChIP-seq)和DNA亲和纯化测序(DAP-seq)是常用的高通量方法,用于分析基因组DNA和感兴趣蛋白质之间的全基因组结合13,14。

A couple of databases have been built to collect ChIP-seqs in Arabidopsis (Supplementary table 2). Pla.

已经建立了几个数据库来收集拟南芥中的ChIP-seq(补充表2)。解放军。

(1)

(1)

Where P(x) is the probabilistic outputs of the first query, and Q(x) is the second query59.In addition, Mutual information (MI) is another score for estimating the amount of information shared between the two epigenome profiles. The formula of MI is as below,$$I(X{;}Y)={\sum}_{x\in Y}{\sum}_{x\in X}{P}_{\left(X,Y\right)}(x,y)\log \frac{{P}_{\left(X,Y\right)}(x,y)}{{P}_{\left(X\right)}(x){P}_{\left(Y\right)}(y)}$$.

其中P(x)是第一个查询的概率输出,Q(x)是第二个查询59。此外,互信息(MI)是估计两个表观基因组图谱之间共享信息量的另一个得分。MI的公式如下,$$I(X{;}Y)={\ sum}{X \ in Y}{\ sum}{X \ in X}{P}_{\左(X,Y \右)}(X,Y)\log\frac{{P}_{\左(X,Y \右)}(X,Y)}{{P}_{P}_{\左(Y \右)}(Y)}$$。

(2)

(2)

Where X is ranking order of first query, Y is ranking order of second query, and P(X,Y) is the joint probability mass function60. We evaluated these scores from known partners or functionally associated pairs of functional consistency and functionally opposite (Supplementary Table 7).

其中X是第一个查询的排名顺序,Y是第二个查询的排名顺序,P(X,Y)是联合概率质量函数60。我们从已知的合作伙伴或功能相关的功能一致性对和功能相反的对中评估了这些分数(补充表7)。

The functionally consistent pairs would display a low KLD score and a high MI value. In contrast, the opposite pairs would exhibit a high KLD score and a low MI value.Gene expression analysisAs part of validating the use of an epigenome profile to predict the regulatory activity of a query protein, a gene expression analysis is implemented.

功能一致的对将显示低KLD分数和高MI值。相反,相反的对将表现出高KLD分数和低MI值。基因表达分析作为验证使用表观基因组谱预测查询蛋白调控活性的一部分,实施了基因表达分析。

By comparing the overall expression levels of promoters (the genomic regions between the TSS and 2 kilobases upstream) overlapping with peaks from ChIP-seq of the query protein with those that do not overlap, the result can be used to assess whether the query protein is likely to function as an activator or repressor.

通过比较与查询蛋白的ChIP-seq峰重叠的启动子(TSS和上游2千碱基之间的基因组区域)与不重叠的启动子的总体表达水平,结果可用于评估查询蛋白是否可能起激活剂或阻遏物的作用。

This analysis is performed across 42 plant tissues, with results detailed in Supplementary Table 11 along with the RNA-seq data sources. These results can be used as a validation for predictions based on epigenome profiling (See Fig. 4E SDG2 and S2Lb for examples of activating transcription, and Supplementary Fig. 5E CLF and SWN for examples of repressive transcription).

该分析在42个植物组织中进行,结果详见补充表11以及RNA-seq数据源。这些结果可以用作基于表观基因组分析的预测的验证(参见图4E SDG2和S2Lb以获得激活转录的例子,以及补充图5E CLF和SWN以获得抑制转录的例子)。

Moreover, there might be cases when a regulatory protein may change its regulatory functions by tissues (Supplementary Fig. 6C IBM1) and may function differently between a protein pair (Supplementary Fig. 6C IBM1 and LDL1).GO enrichment analysisThe protein binding regions were functionally classified via Gene Ontology enrichment analysis (GOEA) using GOATOOLS61 with FDR < 0.05 as the threshold.

此外,可能存在调节蛋白可能通过组织改变其调节功能的情况(补充图6C IBM1),并且在蛋白质对之间可能具有不同的功能(补充图6C IBM1和LDL1)。GO富集分析使用GOATOOLS61以FDR<0.05为阈值,通过基因本体富集分析(GOEA)对蛋白质结合区进行功能分类。

In “Epigenome Profiling “, it is performed on the genes overlap.

在“表观基因组分析”中,它是在基因重叠上进行的。

(3)

(3)

where A is the length of overlapping between the specific structure and the protein binding regions, B is the total length of protein binding regions, C is the total length of the genomic regions containing the genomic structure, and D is the genome size. The enrichment score measures the level of enrichment of a specific histone modification in a genomic structure, normalized by the overall distribution of this structure throughout the genome.

其中A是特定结构和蛋白质结合区域之间的重叠长度,B是蛋白质结合区域的总长度,C是包含基因组结构的基因组区域的总长度,D是基因组大小。富集评分测量基因组结构中特定组蛋白修饰的富集水平,通过该结构在整个基因组中的总体分布进行归一化。

The score is log2 scaled, where a score above zero suggests a higher presence of the histone mark at this structure compared to random, and a score below zero suggests a lower presence.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..

分数是log2标度的,其中高于零的分数表明与随机相比,该结构中组蛋白标记的存在更高,低于零的分数表明存在更低。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。

Data availability

数据可用性

The data that support the findings of this study are openly available at Zenodo: https://doi.org/10.5281/zenodo.11228366.

支持本研究结果的数据可在Zenodo公开获得:https://doi.org/10.5281/zenodo.11228366.

Code availability

代码可用性

Source codes are publicly available at:Zenodo: https://doi.org/10.5281/zenodo.10649327. Docker images of peak-calling pipeline is available at: https://hub.docker.com/r/dppss90008/qhistone-pipeline.

https://doi.org/10.5281/zenodo.10649327.peak calling pipeline的Docker图像位于:https://hub.docker.com/r/dppss90008/qhistone-pipeline.

ReferencesBannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).Article

参考文献Bannister,A.J。&Kouzarides,T。通过组蛋白修饰调节染色质。Cell Res.21381–395(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lusser, A., Kolle, D. & Loidl, P. Histone acetylation: lessons from the plant kingdom. Trends Plant Sci. 6, 59–65 (2001).Article

Lusser,A.,Kolle,D。和Loidl,P。组蛋白乙酰化:来自植物界的教训。趋势植物科学。6,59-65(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, M., Lv, S. & Meng, Y. Epigenetic performers in plants. Dev. Growth Differ. 52, 555–566 (2010).Article

Chen,M.,Lv,S。&Meng,Y。植物中的表观遗传表现者。开发增长不同。52555-566(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ueda, M. & Seki, M. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol. 182, 15–26 (2020).Article

Ueda,M。&Seki,M。组蛋白修饰形成表观遗传调控网络以调节非生物应激反应。。182,15-26(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y. et al. H3K4me2 functions as a repressive epigenetic mark in plants. Epigenet. Chromatin 12, 40 (2019).Article

Liu,Y。等人。H3K4me2在植物中起抑制性表观遗传标记的作用。表观遗传学。染色质12,40(2019)。文章

Google Scholar

谷歌学者

Liu, C., Lu, F., Cui, X. & Cao, X. Histone methylation in higher plants. Annu Rev. Plant Biol. 61, 395–420 (2010).Article

Liu,C.,Lu,F.,Cui,X。&Cao,X。高等植物中的组蛋白甲基化。年度植物生物学。61395-420(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yin X. C. et al. H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots. Nat. Commun. 12, 315 (2021).Xu, L. & Jiang, H. Writing and reading histone H3 lysine 9 methylation in Arabidopsis. Front Plant Sci. 11, 452 (2020).Article .

拟南芥中的Yin X.C.等人H2AK121ub与转录调控热点处不易接近的染色质状态相关。国家公社。12315(2021年)。Xu,L。和Jiang,H。书写和阅读拟南芥中的组蛋白H3赖氨酸9甲基化。前沿植物科学。11452(2020)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jacob, Y. et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat. Struct. Mol. Biol. 16, 763–768 (2009).Article

Jacob,Y。等人,ATXR5和ATXR6是染色质结构和基因沉默所需的H3K27单甲基转移酶。自然结构。分子生物学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trejo-Arellano, M. S. et al. H3K23me1 is an evolutionarily conserved histone modification associated with CG DNA methylation in Arabidopsis. Plant J. 90, 293–303 (2017).Article

Trejo-Arellano,M.S.等人H3K23me1是一种进化上保守的组蛋白修饰,与拟南芥中的CG DNA甲基化有关。植物J.90293–303(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, N. et al. Systematic analysis of differential H3K27me3 and H3K4me3 deposition in callus and seedling reveals the epigenetic regulatory mechanisms involved in callus formation in rice. Front Genet. 11, 766 (2020).Article

Zhao,N。等人。对愈伤组织和幼苗中差异H3K27me3和H3K4me3沉积的系统分析揭示了水稻愈伤组织形成的表观遗传调控机制。前Genet。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, J. M., Sasaki, T., Ueda, M., Sako, K. & Seki, M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci. 6, 114 (2015).Article

。前沿植物科学。6114(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).Article

Bartlett,A。等人。使用DAP-seq绘制全基因组转录因子结合位点。自然协议。121659-1672(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakato, R. & Sakata, T. Methods for ChIP-seq analysis: a practical workflow and advanced applications. Methods 187, 44–53 (2021).Article

Nakato,R。&Sakata,T。ChIP-seq分析方法:实用工作流程和高级应用。方法187,44-53(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chow, C. N. et al. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 47, D1155–D1163 (2019).Article

Chow,C.N.等人,《PlantPAN3.0:一种新的更新资源,用于从植物中的ChIP-seq实验重建转录调控网络。核酸研究47,D1155–D1163(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, Mouse, drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2022).Article

Hammal,F.,de Langen,P.,Bergon,A.,Lopez,F。&Ballester,B。ReMap 2022:来自DNA结合测序实验综合分析的人,小鼠,果蝇和拟南芥调控区数据库。核酸研究50,D316–D325(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yin, Q., Wu, M., Liu, Q., Lv, H. & Jiang, R. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genom. 20, 193 (2019).Article

Yin,Q.,Wu,M.,Liu,Q.,Lv,H。&Jiang,R。DeepHistone:预测组蛋白修饰的深度学习方法。BMC基因组。20193(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Kang, H., Fan, T., Wu, J., Zhu, Y. & Shen, W. H. Histone modification and chromatin remodeling in plant response to pathogens. Front Plant Sci. 13, 986940 (2022).Article

Kang,H.,Fan,T.,Wu,J.,Zhu,Y。&Shen,W.H。组蛋白修饰和染色质重塑在植物对病原体的反应中。前沿植物科学。13986940(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nunez-Vazquez, R., Desvoyes, B. & Gutierrez, C. Histone variants and modifications during abiotic stress response. Front Plant Sci. 13, 984702 (2022).Article

Nunez-Vazquez,R.,Desvoyes,B。&Gutierrez,C。非生物胁迫反应期间的组蛋白变体和修饰。前沿植物科学。13984702(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harris, C. J. & Jacobsen, S. E. ADCP1: a novel plant H3K9me2 reader. Cell Res. 29, 6–7 (2019).Article

Harris,C.J。&Jacobsen,S.E。ADCP1:一种新型植物H3K9me2读取器。Cell Res.29,6-7(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, S. et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res. 29, 54–66 (2019).Article

Zhao,S。等人。植物HP1蛋白ADCP1将多价H3K9甲基化读数与异染色质形成联系起来。Cell Res.29,54-66(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, C. et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat. Commun. 9, 4547 (2018).Article

Zhang,C。等人。拟南芥AGDP1将H3K9me2与异染色质中的DNA甲基化联系起来。国家公社。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Veluchamy, A. et al. LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome. PLoS One 11, e0158936 (2016).Article

Veluchamy,A。等人,LHP1调节H3K27me3的扩散并塑造拟南芥基因组的三维构象。PLoS One 11,e0158936(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mylne, J. S. et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. P Natl Acad. Sci. USA 103, 5012–5017 (2006).Article

Mylne,J.S.等人LHP1是异染色质蛋白1的拟南芥同源物,是FLC表观遗传沉默所必需的。P Natl Acad。科学。美国1035012–5017(2006)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Hung, F. Y. et al. The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Res. 46, 10669–10681 (2018).CAS

Hung,F.Y。等人。拟南芥LDL1/2-HDA6组蛋白修饰复合物在调节生物钟基因方面与CCA1/LHY功能相关。核酸研究4610669-10681(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hung, F. Y. et al. The LDL1/2-HDA6 histone modification complex interacts with TOC1 and regulates the core circadian clock components in Arabidopsis. Front Plant Sci. 10, 233 (2019).Article

Hung,F.Y。等人。LDL1/2-HDA6组蛋白修饰复合物与TOC1相互作用并调节拟南芥中的核心生物钟成分。前沿植物科学。10233(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fiorucci, A. S. et al. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome. Biol. 20, 100 (2019).Article

Fiorucci,A.S.等人拟南芥S2Lb独立于组蛋白H2B单泛素化,将H3K4me3中的类似COMPASS和SDG2的活性联系起来。基因组。生物学20100(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng, W. et al. Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genom. 14, 593 (2013).Article

Deng,W。等人。拟南芥polycomb抑制复合物2结合位点在基因编码区内含有推定的GAGA因子结合基序。BMC基因组。14593(2013)。文章

CAS

中科院

Google Scholar

谷歌学者

Shu, J. et al. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. Plant Direct 3, e00100 (2019).Article

Shu,J.等人。拟南芥幼苗中组蛋白H3K27甲基转移酶卷曲叶和SWINGER的全基因组占有率。Plant Direct 3,e00100(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, D., Wang, Y., Wang, Y. & He, Y. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3, e3404 (2008).Article

Jiang,D.,Wang,Y.,Wang,Y。&He,Y。拟南芥多梳抑制复合物2组分对开花基因座C和开花基因座T的抑制。PLoS One 3,e3404(2008)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Inagaki, S. et al. Gene-body chromatin modification dynamics mediate epigenome differentiation in Arabidopsis. EMBO J. 36, 970–980 (2017).Article

Inagaki,S。等人。基因体染色质修饰动力学介导拟南芥的表观基因组分化。EMBO J.36970–980(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kralemann, L. E. M. et al. Removal of H2Aub1 by ubiquitin-specific proteases 12 and 13 is required for stable Polycomb-mediated gene repression in Arabidopsis. Genome. Biol. 21, 144 (2020).Article

Kralemann,L.E.M.等人。泛素特异性蛋白酶12和13去除H2Aub1是拟南芥中稳定的Polycomb介导的基因抑制所必需的。基因组。生物学21144(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, Y. & Wilkins, D. Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinforma. 7, S12 (2006).Article

Ding,Y。&Wilkins,D。改进SVM-RFE在微阵列数据中选择基因的性能。BMC生物信息学。7,S12(2006)。文章

Google Scholar

谷歌学者

Yang, Z. et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 50, 1247–1253 (2018).Article

EBS是一种二价组蛋白读取器,可调节拟南芥的花相变。纳特·吉内特。501247-1253(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martignago, D. et al. The four FAD-dependent histone demethylases of Arabidopsis are differently involved in the control of flowering time. Front Plant Sci. 10, 669 (2019).Article

Martignago,D。等人。拟南芥的四种FAD依赖性组蛋白脱甲基酶不同地参与了开花时间的控制。前沿植物科学。10669(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spedaletti, V. et al. Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana. Biochemistry 47, 4936–4947 (2008).Article

Spedaletti,V。等人。拟南芥赖氨酸特异性组蛋白脱甲基酶的表征。生物化学474936-4947(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Engelhorn J. et al. Dynamics of H3K4me3 chromatin marks prevails over H3K27me3 for gene regulation during flower morphogenesis in Arabidopsis thaliana. Epigenomes 1, 8 (2017).Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development.

在拟南芥花形态发生过程中,H3K4me3染色质标记的动力学优于H3K27me3的基因调控。表观基因组1,8(2017)。Pajoro,A。等人。花发育中MADS结构域转录因子对染色质可及性和基因调控的动态。

Genome. Biol. 15, R41 (2014).Article .

基因组。生物学杂志15,R41(2014)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, C. et al. RNA polymerase II-independent recruitment of SPT6L at transcription start sites in Arabidopsis. Nucleic Acids Res. 47, 6714–6725 (2019).Article

Chen,C。等人。RNA聚合酶II在拟南芥转录起始位点独立募集SPT6L。核酸研究476714-6725(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784–791 (2018).Article

Lu,P。等人。基因组编码分析揭示了肉质果实成熟趋同进化的基础。《自然植物》4784-791(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inf. Decis. Mak. 19, 281 (2019).Article

Uddin,S.,Khan,A.,Hossain,M.E。&Moni,M.A。比较不同的监督机器学习算法用于疾病预测。BMC医学信息决策。马克。19281(2019)。文章

Google Scholar

谷歌学者

Platt J. C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In, Advances in Large Margin Classifiers. (ed. Alexander, J. S.) 412 (MIT Press,1999).Wu, T.-F., Lin, C.-J. & Weng, R. C. Probability estimates for multi-class classification by pairwise coupling.

Platt J.C.支持向量机的概率输出以及与正则化似然方法的比较。在中,大幅度分类器的进展。(编辑Alexander,J.S。)412(麻省理工学院出版社,1999)。Wu,T.-F.,Lin,C.-J.&Weng,R.C。通过成对耦合进行多类分类的概率估计。

J. Mach. Learn Res. 5, 975–1005 (2004).MathSciNet .

J、 马赫。了解第5975-1005号决议(2004年)。MathSciNet。

Google Scholar

谷歌学者

Deal, R. B. & Henikoff, S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 14, 116–122 (2011).Article

Deal,R.B。&Henikoff,S。植物基因调控中的组蛋白变体和修饰。货币。奥平。植物生物学。14116-122(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fuchs, J., Demidov, D., Houben, A. & Schubert, I. Chromosomal histone modification patterns–from conservation to diversity. Trends Plant Sci. 11, 199–208 (2006).Article

Fuchs,J.,Demidov,D.,Houben,A。&Schubert,I。染色体组蛋白修饰模式-从保守到多样性。趋势植物科学。11199-208(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–D995 (2013).Article

Barrett,T。等。NCBI GEO:功能基因组学数据集档案–更新。核酸研究41,D991–D995(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leinonen, R., Sugawara, H. & Shumway, M. International nucleotide sequence database C. The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2011).Article

。核酸研究39,D19-D21(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krueger F. Trim Galore. https://github.com/FelixKrueger/TrimGalore (2015).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article

Krueger F.Trim Galore。https://github.com/FelixKrueger/TrimGalore(2015年)。Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet J.17,10–12(2011)。文章

Google Scholar

谷歌学者

Andrews S. FastQC: a Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Berardini, T. Z. et al. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53, 474–485 (2015).Article .

Andrews S.FastQC:高通量序列数据的质量控制工具。http://www.bioinformatics.babraham.ac.uk/projects/fastqc(2010年)。Berardini,T.Z.等人,《拟南芥信息资源:制作和挖掘“金标准”注释的参考植物基因组》。《创世纪》53474-485(2015)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Langmead,B。&Salzberg,S.L。与bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article

Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).Article

Zhang,Y.等人。ChIP-Seq(MACS)的基于模型的分析。基因组生物学。9,R137(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, Q. et al. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinforma. 17, 404 (2016).Article

Qin,Q。et al。ChiLin:全面的ChIP-seq和DNase-seq质量控制和分析流程。BMC生物信息学。17404(2016)。文章

Google Scholar

谷歌学者

Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article

Ramirez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).Article

Landt,S.G.等人,《ENCODE和modENCODE财团的ChIP-seq指南和实践》。Genome Res.221813–1831(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keller C. A. et al. Effects of sheared chromatin length on ChIP-seq quality and sensitivity. G3 (Bethesda) 11, jkab101 (2021).Ji, S. et al. Kullback-leibler divergence metric learning. IEEE Trans. Cyber. 52, 2047–2058 (2022).Article

Keller C.A.等人。剪切染色质长度对ChIP-seq质量和灵敏度的影响。G3(贝塞斯达)11,jkab101(2021)。Ji,S.等人。Kullback-leibler散度度量学习。IEEE Trans。网络。522047-2058(2022)。文章

Google Scholar

谷歌学者

Ross, B. C. Mutual information between discrete and continuous data sets. PLoS One 9, e87357 (2014).Article

Ross,B.C。离散和连续数据集之间的互信息。PLoS One 9,e87357(2014)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klopfenstein, D. V. et al. GOATOOLS: A python library for gene ontology analyses. Sci. Rep. 8, 10872 (2018).Article

Klopfenstein,D.V。等人。GOATOOLS:用于基因本体分析的python库。科学。代表810872(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).Article

。生物信息学281919-1920(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Chiao-Yu Lyra Sheu for the preliminary data analysis, Nien Yang for the art painting of Arabidopsis. We also thank Zheng-Zhong Huang and Jimmy Lin from the IPMB IT/Network service for the IT support. This work was supported by grants from Academia Sinica (NTU-AS Innovative Joint Program (AS-NTU-112-12)), and National Science and Technology Council, Taiwan 109-2313-B-001-009-MY3 and 111 −2927-I-001 −505 and 112-2311-B-001 −007 to P.-Y.C.Author informationAuthors and AffiliationsInstitute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, TaiwanChih-Hung Hsieh, Ya-Ting Sabrina Chang, Ming-Ren Yen, Jo-Wei Allison Hsieh & Pao-Yang ChenAuthorsChih-Hung HsiehView author publicationsYou can also search for this author in.

下载参考文献致谢我们感谢焦裕琴的初步数据分析,感谢杨年的拟南芥艺术绘画。我们还要感谢IPMB IT/网络服务的郑忠煌和吉米·林对IT的支持。

PubMed Google ScholarYa-Ting Sabrina ChangView author publicationsYou can also search for this author in

PubMed Google ScholarYa Ting Sabrina ChangView作者出版物您也可以在

PubMed Google ScholarMing-Ren YenView author publicationsYou can also search for this author in

PubMed Google Scholarmaming Ren YenView作者出版物您也可以在

PubMed Google ScholarJo-Wei Allison HsiehView author publicationsYou can also search for this author in

PubMed Google ScholarJo Wei Allison HsiehView作者出版物您也可以在

PubMed Google ScholarPao-Yang ChenView author publicationsYou can also search for this author in

PubMed Google ScholarPao Yang ChenView作者出版物您也可以在

PubMed Google ScholarContributionsP.-Y.C. conceived the project. C.-H.H. majorly carried out the data analysis and developed the website. Y.-T.S.C. and M.-R.Y. also contribute to the data analysis. C.-H.H., J.-W.A.H., and P.-Y.C. wrote and edited the paper with inputs from all authors.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献SP-Y、 C.构思了这个项目。C、 -H.H.主要进行了数据分析并开发了网站。Y、 。C、 -H.H.,J.-W.A.H。和P.-Y.C.在所有作者的投入下撰写和编辑了这篇论文。对应作者对应。

Pao-Yang Chen.Ethics declarations

陈宝阳。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Michihiro Araki, Marek Mutwil and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢荒木美弘、马雷克·穆特维尔和其他匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of additional supplementary filesSupplementary Data 1Supplementary Data 2Supplementary Data 3Reporting summaryRights and permissions.

。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3报告摘要权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleHsieh, CH., Chang, YT.S., Yen, MR. et al. Predicting protein synergistic effect in Arabidopsis using epigenome profiling.

转载和许可本文引用本文Hsieh,CH.,Chang,YT.S.,Yen,MR。等人使用表观基因组分析预测拟南芥中的蛋白质协同效应。

Nat Commun 15, 9160 (2024). https://doi.org/10.1038/s41467-024-53565-yDownload citationReceived: 05 September 2023Accepted: 15 October 2024Published: 24 October 2024DOI: https://doi.org/10.1038/s41467-024-53565-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159160(2024)。https://doi.org/10.1038/s41467-024-53565-yDownload引文接收日期:2023年9月5日接收日期:2024年10月15日发布日期:2024年10月24日OI:https://doi.org/10.1038/s41467-024-53565-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供