商务合作
动脉网APP
可切换为仅中文
AbstractExtrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed.
摘要染色体外环状DNA(eccDNA)在癌基因扩增,基因转录调控和肿瘤内异质性中至关重要。虽然已经开发了各种用于eccDNA鉴定的分析管道和实验方法,但它们的检测效率尚未得到系统评估。
To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets.
为了解决这个问题,我们使用七个模拟数据集评估了7个分析管道在准确性,身份,重复率和计算资源消耗方面的性能。我们还通过21个真实测序数据集比较了7种实验方法的eccDNA检测效率。
Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X.
在这里,我们显示Circle Map和Circle\u finder(bwa mem samblaster)优于其他短读取管道。然而,Circle\u finder(bwa mem samblaster)在其结果中表现出明显的冗余。CReSIL是在深度超过10倍的长读取测序数据中检测eccDNA的最有效管道。
Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research..
此外,基于长读测序的Circle-Seq在检测长度超过10kb的拷贝数扩增的eccDNA方面显示出优异的效率。这些结果为研究人员选择合适的eccDNA研究方法提供了有价值的见解。。
IntroductionSequencing-based studies have greatly advanced our understanding of extrachromosomal circular DNA (eccDNA), on its roles in oncogene amplification1,2,3,4, gene expression regulation5, genome rearrangements6,7, and intratumor heterogeneity4. Diverse analysis pipelines and experimental methods have been developed to detect eccDNA (Table 1).
引言基于测序的研究极大地提高了我们对染色体外环状DNA(eccDNA)在癌基因扩增1,2,3,4,基因表达调控5,基因组重排6,7和肿瘤内异质性4中的作用的理解。已经开发了多种分析管道和实验方法来检测eccDNA(表1)。
Viraj Deshpande et al. introduced the AmpliconArchitect (AA) algorithm to predict amplicon structures and eccDNA from short-read (SR) whole-genome sequencing (WGS) (WGS-SR) data8. CReSIL utilizes coverage depths and breakpoint reads to identify eccDNA from long-read (LR) WGS (WGS-LR) data9. Kumar et al.
Viraj Deshpande等人介绍了AmpliconArchitect(AA)算法,该算法可从短读(SR)全基因组测序(WGS)(WGS-SR)数据预测扩增子结构和eccDNA 8。CReSIL利用覆盖深度和断点读取从长读取(LR)WGS(WGS-LR)数据中识别eccDNA 9。库马尔等人。
developed Circle_finder to identify eccDNA from short-read ATAC-Seq (ATAC-Seq-SR) data by analyzing split reads for eccDNA coordinates10. However, the performance of these analysis pipelines might be limited by the data generated from the corresponding experimental methods. For example, WGS and ATAC-Seq may have low eccDNA detection efficiency because vast majority of the sequencing reads were generated from linear DNA, and WGS-SR can only detect the copy number amplified eccDNA (ecDNA)4,6,11.Table 1 Summary of eccDNA analysis pipelines and supported experimental methodsFull size tableTo enhance eccDNA detection, researchers have developed methods such as Circle-Seq7,12,13 and 3SEP14,15 for eccDNA enrichment from crude DNA.
开发了Circle\u finder,通过分析eccDNA坐标的分裂读数,从短读ATAC-Seq(ATAC-Seq SR)数据中识别eccDNA 10。然而,这些分析管道的性能可能会受到相应实验方法产生的数据的限制。例如,WGS和ATAC-Seq可能具有较低的eccDNA检测效率,因为绝大多数测序读数是由线性DNA产生的,而WGS-SR只能检测拷贝数扩增的eccDNA(ecDNA)4,6,11。表1 eccDNA分析管道和支持的实验方法概述全尺寸表为了增强eccDNA检测,研究人员开发了Circle-Seq7,12,13和3SEP14,15等方法,用于从粗DNA中富集eccDNA。
Circle-Seq utilizes rolling circle amplification (RCA) for circular DNA amplification, whereas 3SEP employs Solution A for selective circular DNA recovery. Post-enrichment, eccDNA undergoes library construction for sequencing on platforms like Illumina (Circle-Seq-SR/3SEP-SR) or Oxford Nanopore Technology (ONT) (Circle-Seq-LR/3SEP-LR).
Circle-Seq利用滚环扩增(RCA)进行环状DNA扩增,而3SEP使用溶液A进行选择性环状DNA回收。富集后,eccDNA在Illumina(Circle-Seq SR/3SEP-SR)或Oxford Nanopore Technology(ONT)(Circle-Seq LR/3SEP-LR)等平台上进行文库构建以进行测序。
Concurrently, various analysis pipelines have been developed to proces.
同时,已经开发了各种分析管道来处理。
(1)
(1)
We applied ComplexHeatmap package46 to visualize our results.Repeat elements analysisThe genomic coordinates of repeat elements on the hg38 reference genome were obtained from UCSC genome browser47. We used pysam to calculate the proportion of reads mapped to different repeat elements, including LTR, LINE, SINE and satellite.Circular DNA enrichment efficiency evaluationqPCR was used to evaluate the circular DNA enrichment efficiency.
我们应用ComplexHeatmap软件包46来可视化我们的结果。重复元件分析hg38参考基因组上重复元件的基因组坐标是从UCSC基因组浏览器47获得的。我们使用pysam来计算映射到不同重复元素(包括LTR,LINE,SINE和satellite)的读取比例。循环DNA富集效率评估qPCR用于评估循环DNA富集效率。
qPCR primers for pUC19 (F: GCAGGTCGACTCTAGAGGAT, R: GGGCCTCTTCGCTATTACGC, ordered from Sangon Biotech), and Egfr fragment (F: AAACGGAAGATCCTGCCCTG; R: GTGTACCCTGAACACGAGGG, ordered from Sangon Biotech) were used to quantify the circular DNA and linear DNA, respectively. The ∆\({Ct}\)(original) was used to normalize the qPCR results.$$\Delta {Ct}\left({{original}}\right)=\frac{\mathop{\sum }_{i=1}^{N}\left({{Ct}\left({{pUC}}19\right)}_{i}-{{Ct}\left({Egfr}\right)}_{i}\right)}{N}$$.
使用pUC19(F:GCAGGTCGACTCTAGAGGAT,R:GGGCCTCTTCGCTATTACGC,从Sangon Biotech订购)和Egfr片段(F:AAACGGAAGATCCTGCCTG;R:GTGTACCCTGAACAGGG,从Sangon Biotech订购)的qPCR引物分别定量环状DNA和线性DNA。Δ\({Ct}\)(原始)用于标准化qPCR结果$$\Delta{Ct}\左({{original}}\右)=\ frac{\ mathop{\ sum}{i=1}^{N}\左({{Ct}\左({{pUC}19 \右)}_{i}-。
(2)
(2)
While \({{Ct}\left({{{\rm{pUC}}}}19\right)}_{i}\) and \({{Ct}\left({Egfr}\right)}_{i}\) represent the cycle threshold (Ct) value of pUC19 and Ct value of Egfr fragment of the replicate i of the original DNA pool. N represents the number of replicates.The circular DNA enrichment efficiency for each step was calculated by:$${{Circular}}\; {{enrichment}}\; {{efficiency}}\left({{{{\rm{Log}}}}}_{2}\right)=\frac{\mathop{\sum }_{j=1}^{N}-({\Delta {Ct}\left({{{\rm{step}}}}\right)}_{j}-\Delta {Ct}\left({{{\rm{original}}}}\right))}{N}$$.
而\({Ct}\ left({{rm{pUC}}}19 \ right)}{i}\)和\({Ct}\ left({Egfr}\ right)}{i}\)代表原始DNA库重复序列i的pUC19的循环阈值(Ct)值和Egfr片段的Ct值。N代表重复次数。每个步骤的环状DNA富集效率通过以下公式计算:$${{环状}}\;{{{富集}}\;{{{效率}}\左({{{{\ rm{Log}}}}}}{2}\右)=\ frac{\ mathop{\ sum}{j=1}^{N}-({\ Delta{Ct}\左({{\ rm{步骤}}}\右)}_{j}-\Delta{Ct}\左({{\rm{original}}}\右))}{N}$$。
(3)
(3)
\({\Delta {Ct}\left({{{\rm{step}}}}\right)}_{j}\) was calculated by:$${\Delta {Ct}\left({{{\rm{step}}}}\right)}_{j}={{Ct}\left({{{\rm{pUC}}}}19\right)}_{j}-{{Ct}\left({Egfr}\right)}_{j}$$
\({\ Delta{Ct}\ left({{\ rm{step}}}\ right)}{j}\)的计算公式为:$${\ Delta{Ct}\ left({{\ rm{step}}}\ right)}{j}={Ct}\ left({\ rm{pUC}}}19 \ right)}_{j}-{{Ct}\左({Egfr}\右)}{j}$$
(4)
(4)
While \({{Ct}\left({{{\rm{pUC}}}}19\right)}_{j}\) and \({{Ct}\left({Egfr}\right)}_{j}\) represent the Ct value of pUC19 and Ct value of Egfr fragment of the replicate j after the specific circular DNA enrichment step. N represents the number of replicates.PCR validationWe created a numerical index for each eccDNA from each sample and used the random number generating formula in EXCEL (=randbetween(start index:end index)) to select the eccDNA.
而\({Ct}\ left({{rm{pUC}}}19 \ right)}{j}\)和\({Ct}\ left({Egfr}\ right)}{j}\)代表特定环状DNA富集步骤后重复j的pUC19的Ct值和Egfr片段的Ct值。N代表重复次数。PCR验证我们为每个样本中的每个eccDNA创建了一个数字索引,并使用EXCEL中的随机数生成公式(=randbetween(开始索引:结束索引))来选择eccDNA。
For the eccDNA that we could not design primers (potentially due to repeat sequences or low sequence complexity), we added 1 to the rolled random number and redesigned the primer for the newly indexed eccDNA. DNA sequences spanning the breakpoint were obtained by using Genome Browser (https://genome.ucsc.edu/index.html).
对于我们无法设计引物的eccDNA(可能是由于重复序列或序列复杂性低),我们在滚动随机数中添加了1,并为新索引的eccDNA重新设计了引物。通过使用基因组浏览器获得跨越断点的DNA序列(https://genome.ucsc.edu/index.html)。
Primers targeting the eccDNA breakpoint were designed by using Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Supplementary Data 2) and ordered from Sangon Biotech. The Hela cell genome was extracted by using the DNeasy® Blood & Tissue Kit (QIAGEN Cat. No. 69504). KOD FX (TOYOBO No.
利用Primer-Blast设计了靶向eccDNA断裂点的引物(https://www.ncbi.nlm.nih.gov/tools/primer-blast/)(补充数据2),并从Sangon Biotech订购。通过使用DNeasy®血液和组织试剂盒(QIAGEN目录号69504)提取Hela细胞基因组。KOD FX(TOYOBO No。
KFX-101) was used to perform the PCR. In brief, 20 ng DNA template (Genome DNA or Sample), 1.5 µL 10 µM forward primer, 1.5 µL 10 µM reverse primer, 4 µl 2 mM dNTPs, 10 µL 2X PCR Buffer for KOD FX, 1 µL KOD FX and nuclease-free water (Invitrogen 10977015) (to a 20 µL final volume) were combined. PCR was carried out by using the following thermal cycle: 94 °C for 2 minutes and then 30 cycles at 98 °C for 10 s, 60 °C for 30 s, 68 °C for 1 minute and 68 °C for 5 minutes.
KFX-101)用于进行PCR。简而言之,将20 ng DNA模板(基因组DNA或样品),1.5µl10µM正向引物,1.5µl10µM反向引物,4µl2mM dNTPs,10µlKOD FX 2X PCR缓冲液,1µlKOD FX和无核酸酶水(Invitrogen 10977015)(最终体积为20µL)合并。通过使用以下热循环进行PCR:94℃2分钟,然后在98℃10秒,60℃30秒,68℃1分钟和68℃5分钟的30个循环。
The PCR product was cut from the electrophoresis gel and sent for Sanger sequencing validation (by Sangon Biotech). We classified chimeric eccDNA as fully validated when all breakpoints were confirmed through Sanger sequencing (considered .
从电泳凝胶上切下PCR产物,并送去进行Sanger测序验证(由Sangon Biotech提供)。当通过Sanger测序确认所有断点时,我们将嵌合eccDNA分类为完全验证的(考虑)。
(5)
(5)
$${Precision}=\frac{{TP}}{{TP}+{FP}}$$
$${精度}=\frac{{TP}}{{TP}+{FP}$$
(6)
(6)
$${Recall}=\frac{{TP}}{{TP}+{FN}}$$
$${召回}=\frac{{TP}}{{TP}+{FN}$$
(7)
(7)
Where TP represents the number of true positive event, FP represents the number of false positive event, and FN represents the number of false negative event.Base pair difference$${Base}\; {pair}\; {difference}=\frac{\mathop{\sum }_{i=1}^{N}\left({LEN}R{-}{LEN}1+{LEN}Q{-}{LEN}2\right)}{N}$$.
其中TP表示真阳性事件的数量,FP表示假阳性事件的数量,FN表示假阴性事件的数量。碱基对差异$${Base}\;{对}\;{差}=\frac{\mathop{\sum}\ui=1}^{N}\左({LEN}R{-}{LEN}1+(笑声){LEN}Q{-}{LEN}2\右)}{N}$$。
(8)
(8)
Where LEN R and LEN Q are length of reference eccDNA and query eccDNA, LEN 1 and LEN 2 are length of alignment on reference and query eccDNA. N is the number of query eccDNA that has more than 90% identity and 90% overlap with reference eccDNA.Duplication RateThe duplication rate is defined by the number of identified eccDNA (TP2) that have at least a 90% overlap of simulated eccDNA divided by the number of simulated eccDNAs (TP1) that can be identified by each pipeline.$${{Dupilcation}}{{Rate}}=\frac{{TP}2}{{TP}1}$$.
其中LEN R和LEN Q是参考eccDNA和查询eccDNA的长度,LEN 1和LEN 2是参考和查询eccDNA的比对长度。N是与参考eccDNA具有90%以上同一性和90%重叠的查询eccDNA的数量。复制率复制率由具有至少90%模拟eccDNA重叠的已识别eccDNA(TP2)的数量除以每个管道可以识别的模拟eccDNA(TP1)的数量来定义$${{{复制}}{{速率}}=\frac{{TP}2}(笑声){{TP}1}$$。
(9)
(9)
Detection efficiency of specific type of eccDNADetection efficiency of specific type of eccDNA (per Gb) was calculated by using the following formula:$${E}_{{ij}}=\frac{{n}_{{ij}}}{{D}_{i}}$$
$${E}_{{ij}}=\frac{{n}_{{{ij}}{{D}_{i} }$$
(10)
(10)
Where: Eij is the detection efficiency of experimental method i in detecting eccDNA type j, nij is the number of eccDNA in type j detected by experimental method i, and Di is the size of the data (Gb) generated by experimental method i.Statistics & reproducibilityFor performance evaluation of bioinformatic pipelines.
其中:Eij是实验方法i检测j型eccDNA的检测效率,nij是实验方法i检测到的j型eccDNA的数量,Di是实验方法i产生的数据大小(Gb)。统计和重现性用于生物信息学管道的性能评估。
We used Seaborn48 to visualize statistical data. Each point showed the Mean ± SEM (Standard Error of the Mean) in the figure. For column chart, one-way ANOVA (by GraphPad Prism 9) was used to evaluate the statistical significance (degrees of freedom between methods are 6, and degrees of freedom within methods are 14).
我们使用Seaborn48可视化统计数据。每个点显示图中的平均值±SEM(平均值的标准误差)。对于柱状图,使用单向ANOVA(通过GraphPad Prism 9)来评估统计显着性(方法之间的自由度为6,方法内的自由度为14)。
For group column chart we also used one-way ANOVA (degrees of freedom between methods are 6 and degrees of freedom within methods are 14), because we focused on the comparison within each length range. Each column showed the Mean ± SEM and data points were shown as black dot on the column. For correlation dot plot (Fig. 2e), we used two-sided Pearson correlation in scipy.stats49 to measure the linear relationship between the density of coding genes and the density of eccDNA for each chromosome, and used Seaborn to present the result.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..
对于组柱状图,我们还使用了单向方差分析(方法之间的自由度为6,方法内的自由度为14),因为我们专注于每个长度范围内的比较。每列显示平均值±SEM,数据点在列上显示为黑点。对于相关点图(图2e),我们使用scipy.stats49中的双侧Pearson相关性来测量编码基因密度与每个染色体的eccDNA密度之间的线性关系,并使用Seaborn来呈现结果。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。
Data availability
数据可用性
The raw sequencing data (WGS-SR, WGS-LR, ATAC-Seq-SR, 3SEP-SR, 3SEP-LR, Circle-Seq-SR, and Circle-Seq-LR) generated in this study are openly available and have been deposited in the Genome Sequence Archive for Human (GSA-Human) database50 in National Genomics Data Center51, China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences under accession code HRA006020.The public data used in this study in Supplementary Fig. 1 to generate our simulation datasets are openly available from following study..
本研究中产生的原始测序数据(WGS-SR,WGS-LR,ATAC-Seq SR,3SEP-SR,3SEP-LR,Circle-Seq SR和Circle-Seq LR)是公开的,并已保存在中国科学院国家生物信息中心/北京基因组研究所国家基因组学数据中心51的人类基因组序列档案(GSA Human)数据库50中,登录号为HRA006020。补充图1中用于生成我们的模拟数据集的本研究中使用的公共数据可从以下研究中公开获得。。
Dataset 1 (sperm cells): the raw sequencing data are available in the Sequence Read Archive (SRA) database under accession code PRJNA6558197.
数据集1(精子细胞):原始测序数据可在序列读取存档(SRA)数据库中获得,登录号为PRJNA6558197。
Dataset 2 (EJM cell line) and Dataset 3 (JJN3 cell line): the raw sequencing data are available in the Sequence Read Archive (SRA) database under accession code PRJNA8068669.
数据集2(EJM细胞系)和数据集3(JJN3细胞系):原始测序数据可在序列读取存档(SRA)数据库中获得,登录号为PRJNA8068669。
Dataset 4 (Kelly cell line): the raw sequencing data are available in the European Nucleotide Archive (ENA) database under accession code PRJEB5051820.
数据集4(凯利细胞系):原始测序数据可在欧洲核苷酸档案(ENA)数据库中获得,登录号为PRJEB5051820。
Dataset 5 (medulloblastoma): the raw sequencing data are available in the Gene Expression Omnibus (GEO) repository under accession code GSE20517821.
数据集5(髓母细胞瘤):原始测序数据可在Gene Expression Omnibus(GEO)存储库中获得,登录号为GSE20517821。
Dataset 6 (muscle cells): the raw sequencing data are available in the Sequence Read Archive (SRA) database under accession code SRR631540013.
数据集6(肌肉细胞):原始测序数据可在序列读取存档(SRA)数据库中获得,登录号为SRR631540013。
Dataset 7 (OVCAR8 cell line): the raw sequencing data are available in the Gene Expression Omnibus (GEO) repository under accession code GSE6864422.
数据集7(OVCAR8细胞系):原始测序数据可在Gene Expression Omnibus(GEO)存储库中获得,登录号为GSE6864422。
We reanalyzed the data of EJM, JJN3, Kelly cell line, and muscle cells with corresponding pipelines in Supplementary Fig. 1. We used processed data of sperm cells, medulloblastoma and OVCAR8 cell line in their original paper. The processed template files can be found at [https://github.com/QuKunLab/eccDNABenchmarking/tree/main/ecsim/ecsim/resource/template]..
我们在补充图1中用相应的管道重新分析了EJM,JJN3,Kelly细胞系和肌肉细胞的数据。我们在他们的原始论文中使用了精子细胞,髓母细胞瘤和OVCAR8细胞系的处理数据。处理过的模板文件可以在[https://github.com/QuKunLab/eccDNABenchmarking/tree/main/ecsim/ecsim/resource/template]。。
All other data supporting the findings described in this paper are available in the article and its Supplementary Information files. Source data are provided with this paper.
本文及其补充信息文件中提供了支持本文所述发现的所有其他数据。本文提供了源数据。
Code availability
代码可用性
All original code has been deposited at Github [https://github.com/QuKunLab/eccDNABenchmarking]. We uploaded all codes and scripts used for the analyses and figure plotting in this study to a public Zenodo repository [https://zenodo.org/records/13769429]52.The simulated datasets can be generated by using the uploaded code..
所有原始代码都存放在Github[https://github.com/QuKunLab/eccDNABenchmarking]。我们将本研究中用于分析和图形绘制的所有代码和脚本上传到公共Zenodo存储库[https://zenodo.org/records/13769429]52、可以使用上传的代码生成模拟数据集。。
ReferencesYi, E., Chamorro González, R., Henssen, A. G. & Verhaak, R. G. W. Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet. 23, 760–771 (2022).Article
参考文献Syi,E.,Chamorro-González,R.,Henssen,A.G。&Verhaak,R.G.W。癌症中的染色体外DNA扩增。Genet自然Rev。23760-771(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).Article
Verhaak,R.G.W.,Bafna,V。&Mischel,P.S。肿瘤发病机制和进化中的染色体外癌基因扩增。《国家癌症评论》19283-288(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1, 55–58 (1965).Article
Cox,D.,Yuncken,C。&Spriggs,A.I。儿童恶性肿瘤中的微小染色质体。柳叶刀1,55-58(1965)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).Article
Turner,K.M.等人。染色体外癌基因扩增驱动肿瘤进化和遗传异质性。自然543122-125(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paulsen, T., Shibata, Y., Kumar, P., Dillon, L. & Dutta, A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 47, 4586–4596 (2019).Article
Paulsen,T.,Shibata,Y.,Kumar,P.,Dillon,L。&Dutta,A。小的染色体外环状DNA,microDNA产生短的调节RNA,其抑制独立于经典启动子的基因表达。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Noer, J. B., Hørsdal, O. K., Xiang, X., Luo, Y. & Regenberg, B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet 38, 766–781 (2022).Article
Noer,J.B.,Hørsdal,O.K.,Xiang,X.,Luo,Y。&Regenberg,B。癌症中的染色体外环状DNA:历史,当前知识和方法。趋势Genet 38766-781(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Henriksen, R. A. et al. Circular DNA in the human germline and its association with recombination. Mol. Cell 82, 209–217.e207 (2022).Article
Henriksen,R.A.等人,《人类种系中的环状DNA及其与重组的关系》。分子细胞82209–217.e207(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deshpande, V. et al. Exploring the landscape of focal amplifications in cancer using ampliconarchitect. Nat. Commun. 10, 392 (2019).Article
Deshpande,V。等人。使用ampliconarchitect探索癌症局灶性扩增的前景。。10392(2019)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wanchai, V. et al. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform 23 https://doi.org/10.1093/bib/bbac422 (2022).Kumar, P. et al. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv.
Wanchai,V。等人。CReSIL:从长读序列中准确鉴定染色体外环状DNA。简介Bioinform 23https://doi.org/10.1093/bib/bbac422(2022年)。Kumar,P。等人ATAC-seq在癌症和细胞系中鉴定了数千个染色体外环状DNA。。高级。
6, eaba2489 (2020).Article .
6,EABA2489(2020年)。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34 (2020).Article
Koche,R.P。等人。染色体外环状DNA驱动神经母细胞瘤中的致癌基因组重塑。纳特·吉内特。52,29–34(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Møller, H. D. Circle-seq: isolation and sequencing of chromosome-derived circular DNA elements in cells. Methods Mol. Biol. 2119, 165–181 (2020).Article
Møller,H.D。Circle-seq:细胞中染色体衍生的环状DNA元件的分离和测序。方法分子生物学。2119165-181(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Møller, H. D. et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat. Commun. 9, 1069 (2018).Article
Møller,H.D.等人。染色体起源的环状DNA元素在健康的人体组织中很常见。。91069(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).Article
Wang,Y。等人。eccDNA是具有高先天免疫刺激活性的凋亡产物。自然599308-314(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y., Wang, M. & Zhang, Y. Purification, full-length sequencing and genomic origin mapping of eccDNA. Nat. Protoc. 18, 683–699 (2023).Article
Wang,Y.,Wang,M。&Zhang,Y。eccDNA的纯化,全长测序和基因组起源作图。自然协议。18683-699(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prada-Luengo, I., Krogh, A., Maretty, L. & Regenberg, B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinforma. 20, 663 (2019).Article
Prada-Luengo,I.,Krogh,A.,Maretty,L。&Regenberg,B。使用部分比对读数的引导重新排列,以单核苷酸分辨率敏感检测环状DNA。BMC生物信息学。20663(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Mann, L., Seibt, K. M., Weber, B. & Heitkam, T. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinforma. 23, 40 (2022).Article
Mann,L.,Seibt,K.M.,Weber,B。&Heitkam,T。ECCsplorer:从下一代测序数据中检测染色体外环状DNA(eccDNA)的管道。BMC生物信息学。23,40(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, P., Peng, H., Llauro, C., Bucher, E. & Mirouze, M. ecc_finder: a robust and accurate tool for detecting extrachromosomal circular DNA from sequencing data. Front Plant Sci. 12, 743742 (2021).Article
Zhang,P.,Peng,H.,Llauro,C.,Bucher,E。&Mirouze,M。ecc\u finder:一种从测序数据中检测染色体外环状DNA的强大而准确的工具。前沿植物科学。12743742(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Norman, A. et al. An improved method for including upper size range plasmids in metamobilomes. PLOS ONE 9, e104405 (2014).Article
Norman,A。等人。一种改进的方法,用于在metamobilomes中包含较大尺寸范围的质粒。PLOS ONE 9,e104405(2014)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tüns, A. I. et al. Detection and validation of circular DNA fragments using Nanopore sequencing. Front. Genet. 13, 867018 (2022).Article
Tüns,A.I.等人。使用纳米孔测序检测和验证环状DNA片段。正面。基因。13867018(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, Y. et al. Whole-genome sequencing of extrachromosomal circular DNA of cerebrospinal fluid of medulloblastoma. Front. Oncol. 12, 934159 (2022).Article
Zhu,Y。等。髓母细胞瘤脑脊液染色体外环状DNA的全基因组测序。正面。Oncol公司。12934159(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dillon, L. W. et al. Production of extrachromosomal microDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep. 11, 1749–1759 (2015).Article
Dillon,L.W。等人。染色体外microDNA的产生与错配修复途径和转录活性有关。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y., Sun, J. & Zhao, M. ONGene: A literature-based database for human oncogenes. J. Genet. genomics 44, 119–121 (2017).Article
Liu,Y.,Sun,J。&Zhao,M。ONGene:基于文献的人类癌基因数据库。J、 基因。基因组学44119-121(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Thollet, A. et al. ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells. Mol. Cancer 9, 291 (2010).Article
Thollet,A。等人ZNF217赋予乳腺癌细胞对紫杉醇促凋亡信号和Aurora-A异常表达的抗性。Mol.Cancer 9291(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hou, C. et al. Knockdown of Trio by CRISPR/Cas9 suppresses migration and invasion of cervical cancer cells. Oncol. Rep. 39, 795–801 (2018).CAS
Hou,C。等人。通过CRISPR/Cas9敲低Trio抑制宫颈癌细胞的迁移和侵袭。Oncol公司。代表39795-801(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mei, Q., Ye, L. J., Lin, H. & Chen, C. Y. CUL4A promotes the invasion of cervical cancer cells by regulating NF-κB signaling pathway. Eur. Rev. Med Pharm. Sci. 24, 10403–10409 (2020).CAS
Mei,Q.,Ye,L.J.,Lin,H。&Chen,C.Y。CUL4A通过调节NF-κB信号通路促进宫颈癌细胞的侵袭。欧洲医学杂志。2410403-10409(2020)。中科院
Google Scholar
谷歌学者
Wang, C. et al. C-Myc-activated long non-coding RNA PVT1 enhances the proliferation of cervical cancer cells by sponging miR-486-3p. J. Biochem 167, 565–575 (2020).Article
Wang,C。等人。C-Myc激活的长非编码RNA PVT1通过海绵状miR-486-3p增强宫颈癌细胞的增殖。J、 生物化学167565-575(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, C. et al. Long non-coding RNA plasmacytoma variant translocation 1 gene promotes the development of cervical cancer via the NF-κB pathway. Mol. Med Rep. 20, 2433–2440 (2019).CAS
Wang,C。等。长链非编码RNA浆细胞瘤变异易位1基因通过NF-κB途径促进宫颈癌的发展。Mol.Med Rep.202433–2440(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, Y. L. et al. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol. Res. 25, 1391–1398 (2017).Article
Gao,Y。L。等人。长非编码RNA PVT1通过负调控miR-424促进宫颈癌进展。Oncol公司。第251391-1398号决议(2017年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, F. et al. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 620, 218–225 (2023).Article
Yang,F。等人。逆转录转座子劫持alt EJ进行DNA复制和eccDNA生物发生。自然620218-225(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, H., Lu, X. & Zou, L. EccBase: a high-quality database for exploration and characterization of extrachromosomal circular DNAs in cancer. Computational Struct. Biotechnol. J. 21, 2591–2601 (2023).Article
Sun,H.,Lu,X。&Zou,L。EccBase:用于探索和表征癌症中染色体外环状DNA的高质量数据库。计算结构。生物技术。J、 212591-2601(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Xi, R. et al. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc. Natl Acad. Sci. 108, E1128–E1136 (2011).Article
Xi,R.等人。使用贝叶斯信息准则在全基因组测序数据中检测拷贝数变异。程序。国家科学院。。108,E1128–E1136(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y. et al. DNA methylation-calling tools for oxford nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).Article
Liu,Y.等。牛津纳米孔测序的DNA甲基化调用工具:调查和人类表观基因组范围的评估。基因组生物学。22295(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sin, S. T. K. et al. Characteristics of fetal extrachromosomal circular DNA in maternal plasma: methylation Status and clearance. Clin. Chem. 67, 788–796 (2021).Article
Sin,S.T.K.等人。母体血浆中胎儿染色体外环状DNA的特征:甲基化状态和清除率。临床。化学。67788-796(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet 52, 891–897 (2020).Article
Kim,H。等人。染色体外DNA与多种癌症的癌基因扩增和不良预后有关。《自然遗传学》52891-897(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, R., Yang, M., Zhang, S. & Huang, M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct. Biotechnol. J. 21, 3073–3080 (2023).Article
Jiang,R.,Yang,M.,Zhang,S。&Huang,M。基于测序的microDNA和ecDNA研究进展:数据库,鉴定方法以及与单细胞分析的整合。计算结构。生物技术。J、 213073-3080(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lv, W. et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs. Clin. Transl. Med. 12, e817 (2022).Article
Lv,W。等人,Circle-Seq揭示了无尿细胞染色体外环状DNA的基因组和疾病特异性标志。临床。翻译。医学12,e817(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Early detection of colorectal cancer based on circular DNA and common clinical detection indicators. World J. Gastrointest. Surg. 14, 833–848 (2022).Article
Li,J。等。基于环状DNA和常见临床检测指标的结直肠癌早期检测。世界J.Gastrointest。外科手术14833-848(2022)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).Article
Huang,W.,Li,L.,Myers,J.R。和Marth,G.T。ART:下一代测序读取模拟器。生物信息学28593-594(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ono, Y., Asai, K. & Hamada, M. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics 37, 589–595 (2020).Article
Ono,Y.,Asai,K。&Hamada,M。PBSIM2:用于长读测序仪的模拟器,具有新颖的质量得分生成模型。生物信息学37589-595(2020)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article
Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, 1–9 (2004).Article
Kurtz,S.等人。用于比较大型基因组的多功能开放软件。基因组生物学。。文章
Google Scholar
谷歌学者
Norrander, J., Kempe, T. & Messing, J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–106 (1983).Article
Norrander,J.,Kempe,T。&Messing,J。使用寡脱氧核苷酸定向诱变构建改进的M13载体。基因26101-106(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).Article
Boeva,V。等人。Control-FREEC:使用下一代测序数据评估拷贝数和等位基因含量的工具。生物信息学28423-425(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article
。生物信息学26841-842(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).Article
Gu,Z.,Eils,R。&Schlesner,M。复杂热图揭示了多维基因组数据中的模式和相关性。生物信息学322847–2849(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 51, D1188–D1195 (2022).Article
Nassar,L.R.等人,《UCSC基因组浏览器数据库:2023年更新》。核酸研究51,D1188–D1195(2022)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).Article
Waskom,M.L.Seaborn:统计数据可视化。J、 开源软件。63021(2021)。文章
ADS
广告
Google Scholar
谷歌学者
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. methods 17, 261–272 (2020).Article
Virtanen,P.等人,《SciPy 1.0:Python科学计算的基本算法》。自然方法17261-272(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteom. Bioinforma. 19, 578–583 (2021).Article
Chen,T.等人,《基因组序列档案家族:走向爆炸性数据增长和多样化数据类型》。基因组学,蛋白质组学。生物信息学。19578-583(2021)。文章
Google Scholar
谷歌学者
Database resources of the national genomics data center, china national center for bioinformation in 2022. Nucleic Acids Research 50, D27–D38 (2022).Liu, K. QuKunLab/eccDNABenchmarking: v1.0.1, https://doi.org/10.5281/zenodo.13769429 (2024).Download referencesAcknowledgementsWe thank all members in the Qu laboratory for helpful discussions.
2022年中国国家生物信息中心国家基因组数据中心的数据库资源。核酸研究50,D27–D38(2022)。Liu,K.QuKunLab/eccDNABenchmarking:v1.0.1,https://doi.org/10.5281/zenodo.13769429(2024年)。下载参考文献致谢我们感谢Qu实验室的所有成员进行了有益的讨论。
We are grateful for the gift of NIH3T3 cells from Prof. Shu Zhu of the University of Science and Technology of China. This work was supported by the National Natural Science Foundation of China grants (T2125012 to K.Q., 32270978 to C.G., and 32100457 to J.F.), the National Key R&D Program of China (2020YFA0112200 and 2022YFA1303200 to K.Q.), the CAS Project for Young Scientists in Basic Research (YSBR-005 to K.Q.), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.
我们非常感谢中国科技大学朱曙教授赠送的NIH3T3细胞。这项工作得到了国家自然科学基金资助(T2125012授予K.Q.,32270978授予C.G.,32100457授予J.F.),中国国家重点研发计划(2020YFA0112200和2022YFA1303200授予K.Q.),中国科学院基础研究青年科学家项目(YSBR-005授予K.Q.),中国科学院战略优先研究计划(批准号:。
XDB0940301 to K.Q.), USTC Research Funds of the Double First-Class Initiative (YD9100002032 to K.Q.) and the Fundamental Research Funds for the Central Universities (YD2070002019, WK9110000141, and WK2070000158 to K.Q.). We thank the USTC Supercomputing Center and the School of Life Science Bioinformatics Center for providing computing resources for this project.
XDB0940301至K.Q.),USTC双一流计划研究基金(YD9100002032至K.Q.)和中央大学基础研究基金(YD2070002019、WK9110000141和WK207000158至K.Q.)。我们感谢中国科学技术大学超级计算中心和生命科学学院生物信息学中心为该项目提供计算资源。
Declaration of generative AI and AI-assisted technologies in the writing process. During the preparation of this work the authors used ChatGPT 3.5 and ChatGPT 4.0 in order to improve the language and readability. After using these tools, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.Author informationAuthor notesThese authors contributed equally: Xuyuan Gao, Ke Liu, Songwen Luo.Authors and AffiliationsDepartment of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Divi.
在写作过程中声明生成人工智能和人工智能辅助技术。在这项工作的准备过程中,作者使用了ChatGPT 3.5和ChatGPT 4.0,以提高语言和可读性。使用这些工具后,作者根据需要对内容进行了审查和编辑,并对出版物的内容承担全部责任。作者信息作者注意到这些作者做出了同样的贡献:高旭元,刘科,罗松文。作者和附属机构中国科学技术大学第一附属医院肿瘤科,基础医学院,Divi。
PubMed Google ScholarKe LiuView author publicationsYou can also search for this author in
PubMed Google ScholarSongwen LuoView author publicationsYou can also search for this author in
PubMed Google ScholarSongwen LuoView作者出版物您也可以在
PubMed Google ScholarMeifang TangView author publicationsYou can also search for this author in
PubMed Google Scholarmanfang TangView作者出版物您也可以在
PubMed Google ScholarNianping LiuView author publicationsYou can also search for this author in
PubMed Google ScholarNianping LiuView作者出版物您也可以在
PubMed Google ScholarChen JiangView author publicationsYou can also search for this author in
PubMed Google ScholarChen JiangView作者出版物您也可以在
PubMed Google ScholarJingwen FangView author publicationsYou can also search for this author in
PubMed谷歌学者Jingwen FangView作者出版物您也可以在
PubMed Google ScholarShouzhen LiView author publicationsYou can also search for this author in
PubMed Google ScholarShouzhen LiView作者出版物您也可以在
PubMed Google ScholarYanbing HouView author publicationsYou can also search for this author in
PubMed Google ScholarYanbing HouView作者出版物您也可以在
PubMed Google ScholarChuang GuoView author publicationsYou can also search for this author in
PubMed Google ScholarChuang GuoView作者出版物您也可以在
PubMed Google ScholarKun QuView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsK.Q. and J. F. conceived the project. X.G., K.L., S.L., S.Z.L., and J.F. designed the framework. X.G. and S.L. performed all the wet-lab experiments with the help of M.T, S.Z.L., Y.H., and C.G.; K.L. and S.L. performed all the bioinformatics analysis with the help of N.L.
PubMed谷歌学术贡献SK。Q、 J.F.构思了这个项目。十、 G.,K.L.,S.L.,S.Z.L。和J.F.设计了框架。X.G.和S.L.在M.T,S.Z.L.,Y.H。和C.G.的帮助下进行了所有湿实验室实验。;K、 L.和S.L.在N.L.的帮助下进行了所有的生物信息学分析。
and C.J.; X.G., K.Q., K.L., C.G., and S.L. wrote the manuscript with inputs from all authors. K.Q. supervised the project.Corresponding authorsCorrespondence to.
和C.J。;十、 G.,K.Q.,K.L.,C.G。和S.L.在所有作者的投入下撰写了手稿。K、 Q.监督项目。通讯作者通讯。
Chuang Guo or Kun Qu.Ethics declarations
创国或昆曲.道德宣言
Competing interests
相互竞争的利益
Jingwen Fang is the chief executive officer of HanGen Biotech. The other authors declare no competing interests.
方敬文是汉根生物科技的首席执行官。其他作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Reporting SummarySource dataSource data Fig.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6报告摘要源数据源数据图。
1Source data Fig. 2Source data Fig. 3Source data Fig. 4Source data Supplementary Fig. 3Source data Supplementary Fig. 4Source data Supplementary Fig. 5Source data Supplementary Fig.6Source data Supplementary Fig. 7Transparent Peer Review fileRights and permissions.
1源数据图2源数据图3源数据图4源数据补充图3源数据补充图4源数据补充图5源数据补充图6源数据补充图7透明同行评审文件权限。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleGao, X., Liu, K., Luo, S. et al. Comparative analysis of methodologies for detecting extrachromosomal circular DNA.
转载和许可本文引用本文Gao,X.,Liu,K.,Luo,S。等人。检测染色体外环状DNA方法的比较分析。
Nat Commun 15, 9208 (2024). https://doi.org/10.1038/s41467-024-53496-8Download citationReceived: 07 December 2023Accepted: 14 October 2024Published: 25 October 2024DOI: https://doi.org/10.1038/s41467-024-53496-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》159208(2024)。https://doi.org/10.1038/s41467-024-53496-8Download引文收到日期:2023年12月7日接受日期:2024年10月14日发布日期:2024年10月25日OI:https://doi.org/10.1038/s41467-024-53496-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供