EN
登录

利用靶向代谢组学和生物信息学分析鉴定特发性肺动脉高压的代谢生物标志物

Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis

Nature 等信源发布 2024-10-25 14:23

可切换为仅中文


AbstractPulmonary arterial hypertension (PAH) is a life-threatening disease with a poor prognosis, and metabolic abnormalities play a critical role in its development. This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH.

摘要肺动脉高压(PAH)是一种危及生命的疾病,预后不良,代谢异常在其发展中起着至关重要的作用。这项研究使用代谢组学,机器学习算法和生物信息学来筛选与PAH诊断相关的潜在代谢生物标志物。

In this study, plasma samples were collected from 17 patients diagnosed with idiopathic pulmonary arterial hypertension (IPAH) and 20 healthy controls. Plasma metabolomic profiling was performed by high-performance liquid chromatography-mass spectrometry. Gene profiles of PAH patients were obtained from the GEO database.

在这项研究中,从17名诊断为特发性肺动脉高压(IPAH)的患者和20名健康对照中收集血浆样本。通过高效液相色谱-质谱法进行血浆代谢组学分析。PAH患者的基因谱是从GEO数据库获得的。

Key differentially expressed metabolites (DEMs) and metabolism-related genes were subsequently identified using machine learning algorithms. Twenty differential plasma metabolites associated with IPAH were identified (VIP score > 1 and p < 0 0.05), and enrichment analysis revealed the arginine biosynthesis pathway as the most altered pathway.

随后使用机器学习算法鉴定了关键的差异表达代谢物(DEM)和代谢相关基因。鉴定出20种与IPAH相关的差异血浆代谢物(VIP评分>1和p<0.05),富集分析显示精氨酸生物合成途径是改变最多的途径。

Using machine learning models, including least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM), we extracted key metabolites that correlated with clinical phenotypes. Our results suggested that five metabolites, kynurenine, homoserine, tryptophan, AMP, and spermine, are potential biomarkers for IPAH.

使用机器学习模型,包括最小绝对收缩和选择算子(LASSO),随机森林(RF)和支持向量机(SVM),我们提取了与临床表型相关的关键代谢物。我们的研究结果表明,犬尿氨酸,高丝氨酸,色氨酸,AMP和精胺五种代谢物是IPAH的潜在生物标志物。

Bioinformatics analysis also identified 3 metabolism-related genes, MAPK6, SLC7A11 and CDC42BPA, that are strongly correlated with pulmonary hypertension, demonstrating strong predictive power and clinical relevance. Our findings revealed some key genes associated with metabolism in PH, and provided crucial information about complex metabolic reprogramming signals and may lead to the identification of useful metabolic biomarkers for the diagno.

生物信息学分析还确定了与肺动脉高压密切相关的3个代谢相关基因MAPK6,SLC7A11和CDC42BPA,显示出强大的预测能力和临床相关性。我们的研究结果揭示了一些与PH代谢相关的关键基因,并提供了有关复杂代谢重编程信号的关键信息,并可能导致鉴定诊断有用的代谢生物标志物。

IntroductionPulmonary arterial hypertension (PAH) is a rare and severe condition characterized by progressive remodeling of the pulmonary vasculature, which ultimately leads to failure of the right ventricle (RV) and ultimately mortality if left untreated1,2. While conventional diagnostic approaches and therapeutic strategies have proven effective in certain cases, they have been unable to fully address the complex pathophysiology of PAH.

引言肺动脉高压(PAH)是一种罕见且严重的疾病,其特征是肺血管系统进行性重塑,最终导致右心室(RV)衰竭,如果不及时治疗,最终导致死亡1,2。虽然传统的诊断方法和治疗策略在某些情况下已被证明是有效的,但它们无法完全解决PAH的复杂病理生理学。

The five-year and seven-year survival rates for individuals diagnosed with PAH are approximately 57% and 49%, respectively3. Early diagnosis of PAH is of significant importance to patients. Consequently, there is an urgent need to elucidate the potential mechanisms underlying PAH and to identify associated biomarkers.In recent years, research into the potential causes of PAH has focused on the aberrant regulation of metabolic pathways.

被诊断患有PAH的个体的五年和七年生存率分别约为57%和49%3。PAH的早期诊断对患者具有重要意义。因此,迫切需要阐明PAH的潜在机制并鉴定相关的生物标志物。近年来,对PAH潜在原因的研究集中在代谢途径的异常调节上。

Metabolomics is becoming an increasingly important tool for investigating the nature of metabolic abnormalities associated with PAH. This approach allows the identification of novel biomarkers and therapeutic targets4,5. Furthermore, the integration of metabolomic data with other omics technologies, including genomics, transcriptomics, and proteomics, has begun to enhance our understanding of the pathogenesis of PAH.

代谢组学正在成为研究与PAH相关的代谢异常性质的越来越重要的工具。这种方法允许鉴定新的生物标志物和治疗靶标4,5。此外,代谢组学数据与其他组学技术(包括基因组学,转录组学和蛋白质组学)的整合已经开始增强我们对PAH发病机制的理解。

This approach has led to the discovery of new metabolic pathways that were previously not associated with this disease6,7. The utilization of these comprehensive omics strategies is likely to elucidate the intricate etiology of PAH and facilitate the development of novel therapeutic interventions.A number of metabolomic studies of PAH have been conducted, and the results have already provided valuable insights into the potential for new pathway markers that could be used to aid in the diagno.

这种方法导致发现了以前与这种疾病无关的新代谢途径6,7。这些综合组学策略的利用可能会阐明PAH的复杂病因,并促进新型治疗干预措施的开发。已经进行了许多PAH的代谢组学研究,结果已经为可能用于辅助诊断的新途径标记的潜力提供了有价值的见解。

Data availability

数据可用性

The gene expression profiles of GSE131793, GSE113439 and GSE53408 were downloaded from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The datasets of metabolite are available from the corresponding author on reasonable request.

从gene expression Omnibus(GEO)下载了GSE131793、GSE113439和GSE53408的基因表达谱(https://www.ncbi.nlm.nih.gov/geo/)。代谢物的数据集可根据合理的要求从通讯作者处获得。

ReferencesSchermuly, R. T., Ghofrani, H. A., Wilkins, M. R. & Grimminger, F. Mechanisms of disease: Pulmonary arterial hypertension. Nat. Rev. Cardiol. 8, 443–455. https://doi.org/10.1038/nrcardio.2011.87 (2011).Article

参考文献Chermuly,R.T.,Ghofrani,H.A.,Wilkins,M.R。&Grimminger,F。疾病机制:肺动脉高压。国家心脏病修订版。8443-455。https://doi.org/10.1038/nrcardio.2011.87(2011年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lau, E. M. T., Giannoulatou, E., Celermajer, D. S. & Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 14, 603–614. https://doi.org/10.1038/nrcardio.2017.84 (2017).Article

。国家心脏病修订版。14603-614。https://doi.org/10.1038/nrcardio.2017.84(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Benza, R. L. et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 142, 448–456. https://doi.org/10.1378/chest.11-1460 (2012).Article

Benza,R.L.等人。REVEAL登记处对肺动脉高压诊断后长期生存的评估。胸围142448-456。https://doi.org/10.1378/chest.11-1460。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, M. et al. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation 134, 1105–1121. https://doi.org/10.1161/CIRCULATIONAHA.116.023171 (2016).Article .

Li,M。等人。代谢重编程通过转录辅阻遏物C末端结合蛋白-1调节肺动脉高压外膜成纤维细胞的增殖和炎症表型。发行量1341105–1121。https://doi.org/10.1161/CIRCULATIONAHA.116.023171(2016年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sutendra, G. & Michelakis, E. D. The metabolic basis of pulmonary arterial hypertension. Cell. Metab. 19, 558–573. https://doi.org/10.1016/j.cmet.2014.01.004 (2014).Article

Sutendra,G。&Michelakis,E.D。肺动脉高压的代谢基础。细胞。代谢。19558-573。https://doi.org/10.1016/j.cmet.2014.01.004(2014年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, Y. D. et al. De novo synthesize of bile acids in pulmonary arterial hypertension lung. Metabolomics 10, 1169–1175. https://doi.org/10.1007/s11306-014-0653-y (2014).Article

Zhao,Y.D.等。肺动脉高压肺中胆汁酸的从头合成。代谢组学101169-1175。https://doi.org/10.1007/s11306-014-0653-y(2014年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reel, P. S., Reel, S., Pearson, E., Trucco, E. & Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 49, 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 (2021).Article

Reel,P.S.,Reel,S.,Pearson,E.,Trucco,E。&Jefferson,E。使用机器学习方法进行多组学数据分析:综述。生物技术。Adv.49107739。https://doi.org/10.1016/j.biotechadv.2021.107739(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pi, H. et al. Metabolomic signatures associated with pulmonary arterial hypertension outcomes. Circ. Res. 132, 254–266. https://doi.org/10.1161/CIRCRESAHA.122.321923 (2023).Article

Pi,H。等人。与肺动脉高压结果相关的代谢组学特征。保监会。第132254-266号决议。https://doi.org/10.1161/CIRCRESAHA.122.321923(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, C. et al. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J. Cell. Mol. Med. 24, 2484–2496. https://doi.org/10.1111/jcmm.14937 (2020).Article

Chen,C.等人。代谢组学揭示了中国肺动脉高压患者的代谢物变化。J、 细胞。分子医学242484-2496。https://doi.org/10.1111/jcmm.14937(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alotaibi, M. et al. Sex-related differences in eicosanoid levels in chronic thromboembolic pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 68, 228–231. https://doi.org/10.1165/rcmb.2022-0272LE (2023).Article

Alotaibi,M.等。慢性血栓栓塞性肺动脉高压中类花生酸水平的性别差异。Am.J.Respir。细胞。分子生物学。68228-231。https://doi.org/10.1165/rcmb.2022-0272LE(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Buergel, T. et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 28, 2309–2320. https://doi.org/10.1038/s41591-022-01980-3 (2022).Article

Buergel,T。等人。代谢组学谱预测个体多疾病的结果。《自然医学》282309-2320。https://doi.org/10.1038/s41591-022-01980-3(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Albaradei, S. et al. Machine learning and deep learning methods that use omics data for metastasis prediction. Comput. Struct. Biotechnol. J. 19, 5008–5018. https://doi.org/10.1016/j.csbj.2021.09.001 (2021).Article

Albaradei,S.等人。使用组学数据进行转移预测的机器学习和深度学习方法。计算机。结构。生物技术。J、 19508年至5018年。https://doi.org/10.1016/j.csbj.2021.09.001(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rhodes, C. J. et al. Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension. Circulation 135, 460–475. https://doi.org/10.1161/CIRCULATIONAHA.116.024602 (2017).Article

Rhodes,C.J.等人,《血浆代谢组学》暗示了修饰的转移RNA和改变的生物能学在肺动脉高压的结果中的作用。发行量135460–475。https://doi.org/10.1161/CIRCULATIONAHA.116.024602(2017年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, S. et al. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L46–56. https://doi.org/10.1152/ajplung.00247.2007 (2008).Article .

Sharma,S。等人。肉碱体内平衡的改变与肺动脉高压羔羊的线粒体功能降低和一氧化氮信号改变有关。Am.J.Physiol。肺细胞。分子生理学。294,L46-56。https://doi.org/10.1152/ajplung.00247.2007(2008年)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, Y. et al. Metabolomic heterogeneity of pulmonary arterial hypertension. PLoS One 9, e88727. https://doi.org/10.1371/journal.pone.0088727 (2014).Article

赵,Y。等。肺动脉高压的代谢组学异质性。PLoS One 9,e88727。https://doi.org/10.1371/journal.pone.0088727(2014年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Correale, M. et al. Circulating biomarkers in pulmonary arterial hypertension: An update. Biomolecules 14. https://doi.org/10.3390/biom14050552 (2024).Bujak, R. et al. New biochemical insights into the mechanisms of pulmonary arterial hypertension in humans. PLoS One 11, e0160505. https://doi.org/10.1371/journal.pone.0160505 (2016).Article .

Correale,M.等。肺动脉高压中的循环生物标志物:最新进展。生物分子14。https://doi.org/10.3390/biom14050552(2024年)。Bujak,R.等人。对人类肺动脉高压机制的新生化见解。PLoS One 11,e0160505。https://doi.org/10.1371/journal.pone.0160505(2016年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galal, A., Talal, M. & Moustafa, A. Applications of machine learning in metabolomics: Disease modeling and classification. Front. Genet. 13, 1017340. https://doi.org/10.3389/fgene.2022.1017340 (2022).Article

Galal,A.,Talal,M。&Moustafa,A。机器学习在代谢组学中的应用:疾病建模和分类。正面。基因。131017340。https://doi.org/10.3389/fgene.2022.1017340(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liebal, U. W., Phan, A. N. T., Sudhakar, M., Raman, K. & Blank, L. M. Machine learning applications for mass spectrometry-based metabolomics. Metabolites 10. https://doi.org/10.3390/metabo10060243 (2020).Deutelmoser, H. et al. Robust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data.

Liebal,U.W.,Phan,A.N.T.,Sudhakar,M.,Raman,K。&Blank,L.M。基于质谱的代谢组学的机器学习应用。代谢物10。https://doi.org/10.3390/metabo10060243(2020年)。Deutelmoser,H。等人。Robust Huber-LASSO,用于根据个体基因型数据改进蛋白质,代谢物和基因表达水平的预测。

Brief. Bioinform. 22. https://doi.org/10.1093/bib/bbaa230 (2021).Sampson, J. N., Chatterjee, N., Carroll, R. J. & Müller, S. Controlling the local false discovery rate in the adaptive Lasso. Biostatistics 14, 653–666. https://doi.org/10.1093/biostatistics/kxt008 (2013).Article .

简介。生物信息。22https://doi.org/10.1093/bib/bbaa230(2021年)。Sampson,J.N.,Chatterjee,N.,Carroll,R.J。&Müller,S。控制自适应套索中的局部错误发现率。生物统计学14653-666。https://doi.org/10.1093/biostatistics/kxt008(2013年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barberis, E. et al. Precision medicine approaches with metabolomics and artificial intelligence. Int. J. Mol. Sci. 23. https://doi.org/10.3390/ijms231911269 (2022).Vallance, P. & Chan, N. Endothelial function and nitric oxide: Clinical relevance. Heart 85, 342–350. https://doi.org/10.1136/heart.85.3.342 (2001).Article .

Barberis,E.等人。代谢组学和人工智能的精准医学方法。Int.J.Mol.Sci。23https://doi.org/10.3390/ijms231911269(2022年)。Vallance,P。&Chan,N。内皮功能和一氧化氮:临床相关性。心脏85342-350。https://doi.org/10.1136/heart.85.3.342(2001年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lewis, G. D. et al. Metabolic profiling of right ventricular-pulmonary vascular function reveals circulating biomarkers of pulmonary hypertension. J. Am. Coll. Cardiol. 67, 174–189. https://doi.org/10.1016/j.jacc.2015.10.072 (2016).Article

Lewis,G.D.等人。右心室肺血管功能的代谢谱揭示了肺动脉高压的循环生物标志物。J、 美国科罗拉多州。心脏病。67174-189。https://doi.org/10.1016/j.jacc.2015.10.072(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kao, C. C. et al. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm. Circ. 5, 124–134. https://doi.org/10.1086/679720 (2015).Article

Kao,C.C.等。肺动脉高压中的精氨酸代谢内型。脉冲。保监会。5124-134。https://doi.org/10.1086/679720(2015年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anwardeen, N. R., Diboun, I., Mokrab, Y., Althani, A. A. & Elrayess, M. A. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinform. 24, 250. https://doi.org/10.1186/s12859-023-05383-0 (2023).Article

Anwardeen,N.R.,Diboun,I.,Mokrab,Y.,Althani,A.A。和Elrayes,M.A。使用代谢组学发现生物标志物的统计方法和资源。BMC生物信息。24250页。https://doi.org/10.1186/s12859-023-05383-0(2023年)。文章

Google Scholar

谷歌学者

Zhang, Y. et al. Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open. Diabetes Res. Care 9. https://doi.org/10.1136/bmjdrc-2021-002337 (2021).Chen, W. et al. Using an untargeted metabolomics approach to analyze serum metabolites in COVID-19 patients with nucleic acid turning negative.

Zhang,Y.等人。人血清代谢组学分析揭示了2型糖尿病高血压的进展。BMJ开放。糖尿病研究护理9。https://doi.org/10.1136/bmjdrc-2021-002337(2021年)。Chen,W.等人使用非靶向代谢组学方法分析核酸转为阴性的新型冠状病毒肺炎患者的血清代谢物。

Front. Pharmacol. 13, 964037. https://doi.org/10.3389/fphar.2022.964037 (2022).Article .

Front. Pharmacol. 13, 964037. https://doi.org/10.3389/fphar.2022.964037 (2022).Article .

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Igata, M. et al. Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ. Res. 97, 837–844. https://doi.org/10.1161/01.Res.0000185823.73556.06 (2005).Article

一磷酸腺苷激活的蛋白激酶通过抑制细胞周期进程抑制血管平滑肌细胞增殖。保监会。第97837-844号决议。https://doi.org/10.1161/01.Res.0000185823.73556.06(2005年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bartoli, F. et al. The association of kynurenine pathway metabolites with symptom severity and clinical features of bipolar disorder: An overview. Eur. Psychiatry 65, e82. https://doi.org/10.1192/j.eurpsy.2022.2340 (2022).Article

犬尿氨酸途径代谢物与双相情感障碍症状严重程度和临床特征的关系:概述。欧洲精神病学65,e82。https://doi.org/10.1192/j.eurpsy.2022.2340(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tao, S. et al. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci. 201, 81–88. https://doi.org/10.1016/j.lfs.2018.03.049 (2018).Article

Tao,S。等人。N-(3-氧代癸酰基)-l-高丝氨酸内酯调节线粒体功能并抑制肠杯状细胞的增殖。生命科学。201,81-88。https://doi.org/10.1016/j.lfs.2018.03.049(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guo, J. et al. N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium. Cell. Signal. 75, 109740. https://doi.org/10.1016/j.cellsig.2020.109740 (2020).Article

Guo,J。等。N-(3-氧代癸酰基)-高丝氨酸内酯通过介导细胞内钙调节成骨细胞凋亡和分化。细胞。信号。75109740。https://doi.org/10.1016/j.cellsig.2020.109740(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Patel, A., Abdelmalek, L., Thompson, A. & Jialal, I. Decreased homoserine levels in metabolic syndrome. Diabetes Metab. Syndr. 14, 555–559. https://doi.org/10.1016/j.dsx.2020.04.052 (2020).Article

Patel,A.,Abdelmalek,L.,Thompson,A。&Jialal,I。降低代谢综合征中的高丝氨酸水平。糖尿病代谢。Syndr公司。14555-559。https://doi.org/10.1016/j.dsx.2020.04.052(2020年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

He, Y. Y. et al. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension. Eur. Respir. J. 56. https://doi.org/10.1183/13993003.00522-2020 (2020).Bogucka, K. et al. ERK3/MAPK6 controls IL-8 production and chemotaxis.

He,Y。Y。等人。精胺促进肺血管重塑,其合酶是肺动脉高压的治疗靶点。欧元呼吸。J、 。https://doi.org/10.1183/13993003.00522-2020(2020年)。Bogucka,K。等人。ERK3/MAPK6控制IL-8的产生和趋化性。

Elife 9. https://doi.org/10.7554/eLife.52511 (2020).Bogucka-Janczi, K. et al. ERK3/MAPK6 dictates CDC42/RAC1 activity and ARP2/3-dependent actin polymerization. Elife 12. https://doi.org/10.7554/eLife.85167 (2023).Tan, J., Yang, L., Liu, C. & Yan, Z. MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia.

埃利夫9。https://doi.org/10.7554/eLife.52511(2020年)。Bogucka-Janczi,K。等人。ERK3/MAPK6决定CDC42/RAC1活性和ARP2/3依赖性肌动蛋白聚合。埃利夫12。https://doi.org/10.7554/eLife.85167(2023年)。Tan,J.,Yang,L.,Liu,C。&Yan,Z。MicroRNA-26a靶向MAPK6以抑制平滑肌细胞增殖和静脉移植物新内膜增生。

Sci. Rep. 7, 46602. https://doi.org/10.1038/srep46602 (2017).Article .

Sci. Rep. 7, 46602. https://doi.org/10.1038/srep46602 (2017).Article .

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ambrosio, L. F. et al. Association between altered tryptophan metabolism, plasma aryl hydrocarbon receptor agonists, and inflammatory Chagas disease. Front. Immunol. 14, 1267641. https://doi.org/10.3389/fimmu.2023.1267641 (2023).Article

Ambrosio,L.F.等人。色氨酸代谢改变、血浆芳烃受体激动剂和炎性恰加斯病之间的关联。正面。免疫。141267641。https://doi.org/10.3389/fimmu.2023.1267641(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xue, C. et al. Tryptophan metabolism in health and disease. Cell. Metab. 35, 1304–1326. https://doi.org/10.1016/j.cmet.2023.06.004 (2023).Article

薛,C。等。色氨酸在健康和疾病中的代谢。细胞。代谢。351304-1326年。https://doi.org/10.1016/j.cmet.2023.06.004(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seo, S. K. & Kwon, B. Immune regulation through tryptophan metabolism. Exp. Mol. Med. 55, 1371–1379. https://doi.org/10.1038/s12276-023-01028-7 (2023).Article

Seo,S.K。&Kwon,B。通过色氨酸代谢进行免疫调节。实验分子医学551371-1379。https://doi.org/10.1038/s12276-023-01028-7(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jyotsana, N., Ta, K. T. & DelGiorno, K. E. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front. Oncol. 12, 858462. https://doi.org/10.3389/fonc.2022.858462 (2022).Article

Jyotsana,N.,Ta,K.T。和DelGiorno,K.E。胱氨酸/谷氨酸逆向转运蛋白SLC7A11/xCT在癌症病理生理学中的作用。正面。Oncol公司。12858462页。https://doi.org/10.3389/fonc.2022.858462(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, J. & Roh, J. L. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxid. (Basel) 11. https://doi.org/10.3390/antiox11122444 (2022).Zeng, C. et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling.

Lee,J。&Roh,J。L。SLC7A11作为癌症代谢紊乱和铁浓化易感性的门户。抗氧化剂。(巴塞尔)11。https://doi.org/10.3390/antiox11122444(2022年)。Zeng,C。等人SHARPIN通过p53/SLC7A11/GPX4信号传导促进胆管癌细胞增殖并抑制铁浓化。

Cancer Sci. 113, 3766–3775. https://doi.org/10.1111/cas.15531 (2022).Article .

Cancer Sci. 113, 3766–3775. https://doi.org/10.1111/cas.15531 (2022).Article .

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, P. et al. The mechanism of the imbalance between proliferation and ferroptosis in pulmonary artery smooth muscle cells based on the activation of SLC7A11. Eur. J. Pharmacol. 928, 175093. https://doi.org/10.1016/j.ejphar.2022.175093 (2022).Article

Hu,P。等人。基于SLC7A11激活的肺动脉平滑肌细胞增殖和铁浓化不平衡的机制。欧洲药理学杂志。928175093年。https://doi.org/10.1016/j.ejphar.2022.175093(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leonetti, A. et al. Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase. Amino Acids 52, 129–139. https://doi.org/10.1007/s00726-019-02749-8 (2020).Article

Leonetti,A。等人。过表达精胺氧化酶的小鼠模型中的癫痫发作和氧化应激。氨基酸52129-139。https://doi.org/10.1007/s00726-019-02749-8(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, P. Y. et al. Inhibition of cell migration and invasion by miR–29a–3p in a colorectal cancer cell line through suppression of CDC42BPA mRNA expression. Oncol. Rep. 38, 3554–3566. https://doi.org/10.3892/or.2017.6037 (2017).Article

He,P.Y.等人。通过抑制CDC42BPA mRNA表达,miR-29a-3p抑制结直肠癌细胞系中的细胞迁移和侵袭。Oncol公司。代表383554–3566。https://doi.org/10.3892/or.2017.6037(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

DeWane, G., Salvi, A. M. & DeMali, K. A. Fueling the cytoskeleton - links between cell metabolism and actin remodeling. J. Cell. Sci. 134. https://doi.org/10.1242/jcs.248385 (2021).Galiè, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT).

DeWane,G.,Salvi,A.M。和DeMali,K.A。为细胞骨架提供燃料-细胞代谢和肌动蛋白重塑之间的联系。J、 细胞。。134https://doi.org/10.1242/jcs.248385(2021年)。Galiè,N.等人,2015年ESC/ERS肺动脉高压诊断和治疗指南:欧洲心脏病学会(ESC)和欧洲呼吸学会(ERS)肺动脉高压诊断和治疗联合工作组:认可:欧洲儿科和先天性心脏病协会(AEPC),国际心肺移植学会(ISHLT)。

Eur. Heart J. 37, 67–119. https://doi.org/10.1093/eurheartj/ehv317 (2016).Article .

Eur. Heart J. 37, 67–119. https://doi.org/10.1093/eurheartj/ehv317 (2016).Article .

PubMed

PubMed

Google Scholar

谷歌学者

Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, e86. https://doi.org/10.1002/cpbi.86 (2019).Article

Chong,J.,Wishart,D.S。和Xia,J。使用MetaboAnalyst 4.0进行全面和综合的代谢组学数据分析。货币。普罗托克。生物信息。68,e86。https://doi.org/10.1002/cpbi.86(2019年)。文章

Google Scholar

谷歌学者

Kanehisa, M. & Goto, S. KEGG: Uyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).Article

Kanehisa,M。&Goto,S。KEGG:Uyoto基因和基因组百科全书。核酸研究28,27-30。https://doi.org/10.1093/nar/28.1.27(2000年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 16, 284–287. https://doi.org/10.1089/omi.2011.0118 (2012).Article

Yu,G.,Wang,L.G.,Han,Y。&He,Q.Y。clusterProfiler:用于比较基因簇之间生物学主题的R包。组学16284-287。https://doi.org/10.1089/omi.2011.0118。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, G., Wang, L. G., Yan, G. R. & He, Q. Y. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608–609. https://doi.org/10.1093/bioinformatics/btu684 (2015).Article

Yu,G.,Wang,L.G.,Yan,G.R。&He,Q.Y。剂量:用于疾病本体语义和富集分析的R/Bioconductor软件包。生物信息学31608-609。https://doi.org/10.1093/bioinformatics/btu684(2015年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, H. Controlling the false discoveries in LASSO. Biometrics 73, 1102–1110. https://doi.org/10.1111/biom.12665 (2017).Article

Huang,H。控制套索中的错误发现。生物特征731102-1110。https://doi.org/10.1111/biom.12665(2017年)。文章

MathSciNet

MathSciNet

PubMed

PubMed

Google Scholar

谷歌学者

Lin, X. et al. Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics. Molecules 23. https://doi.org/10.3390/molecules23010052 (2017).Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Download referencesFundingThis work was supported by grants from the Natural Science Foundation of Jilin Province(YDZJ202301ZYTS525).Author informationAuthors and AffiliationsDepartment of cardiology, China–Japan Union Hospital of Jilin University, No.126, Xiantan Street, Changchun, 130033, ChinaHai-Kuo ZhengDepartment of cardiology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, ChinaChuang Yang & Yi-Hang LiuAuthorsChuang YangView author publicationsYou can also search for this author in.

Lin,X。等人。基于SVM-RFE和重叠比选择特征子集及其在生物信息学中的应用。分子23。https://doi.org/10.3390/molecules23010052(2017年)。Breiman,L。随机森林。。学习。45,5-32。https://doi.org/10.1023/A:1010933404324(2001年)。下载参考文献资助这项工作得到了吉林省自然科学基金(YDZJ202301ZYTS525)的资助。作者信息作者和附属机构吉林大学中日联合医院心内科,长春市仙潭街126号,130033,中国海国正吉林大学第二医院心内科,长春市自强街218号,130000,中国创阳和刘益航作者创阳观点作者出版物你也可以在中搜索这位作者。

PubMed Google ScholarYi-Hang LiuView author publicationsYou can also search for this author in

PubMed Google ScholarYi Hang LiuView作者出版物您也可以在

PubMed Google ScholarHai-Kuo ZhengView author publicationsYou can also search for this author in

PubMed Google ScholarHai Kuo ZhengView作者出版物您也可以在

PubMed Google ScholarContributionsZ.H.K. conceived the study, designed the experiments, acquired the funding and drafted the article. Y.C. performed the bioinformatics analyses, interpreted the data and wrote the manuscript. L.Y.H. was responsible for bioinformatics analysis.

PubMed谷歌学术贡献。H、 K.构思了这项研究,设计了实验,获得了资金并起草了这篇文章。Y、 C.进行了生物信息学分析,解释了数据并撰写了手稿。五十、 Y.H.负责生物信息学分析。

All authors Z.H.K., Y.C. and L.Y.H. contributed to revising the manuscript critically for important intellectual content and have given final approval for the version to be published. Each author agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.Corresponding authorCorrespondence to.

所有作者Z.H.K.,Y.C.和L.Y.H.都对稿件的重要知识内容进行了批判性修改,并最终批准了该版本的发布。每位作者同意对作品的各个方面负责,以确保与作品任何部分的准确性或完整性有关的问题得到适当的调查和解决。对应作者对应。

Hai-Kuo Zheng.Ethics declarations

郑海阔。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethical approval

道德认可

for research involving human subjects was obtained from the Ethics Committee of the China-Japan Union Hospital of Jilin University. All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained from all subjects and/or their legal guardians.

涉及人类受试者的研究来自吉林大学中日联合医院伦理委员会。所有方法均按照相关指南和规定进行。所有受试者和/或其法定监护人均已获得知情同意。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleYang, C., Liu, YH. & Zheng, HK. Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis.

转载和许可本文引用本文Yang,C.,Liu,YH。&郑,香港。使用靶向代谢组学和生物信息学分析鉴定特发性肺动脉高压的代谢生物标志物。

Sci Rep 14, 25283 (2024). https://doi.org/10.1038/s41598-024-76514-7Download citationReceived: 13 July 2024Accepted: 14 October 2024Published: 25 October 2024DOI: https://doi.org/10.1038/s41598-024-76514-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1425283(2024)。https://doi.org/10.1038/s41598-024-76514-7Download引文接收日期:2024年7月13日接受日期:2024年10月14日发布日期:2024年10月25日OI:https://doi.org/10.1038/s41598-024-76514-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsIdiopathic pulmonary arterial hypertensionMetabolomicsBiomarkersMachine learningBiochemical pathways

关键词糖尿病性肺动脉高压代谢组学生物标志物机器学习生化途径