EN
登录

RAS基因突变的突出普遍致癌作用和组织特异性

The prominent pervasive oncogenic role and tissue specific permissiveness of RAS gene mutations

Nature 等信源发布 2024-10-26 14:35

可切换为仅中文


AbstractIn cancer research, RAS biology has been focused on only a handful of tumor types. While RAS genes have long been suspected as common contributors to a wide spectrum of cancer types, robust evidence is required to firmly establish their critical oncogenic significance. We present a data mining study using DepMap genome-wide CRISPR screening data, which provide substantial evidence to support the prominent pervasive oncogenic role and tissue-specific permissiveness of RAS gene mutations.

摘要在癌症研究中,RAS生物学仅关注少数几种肿瘤类型。虽然长期以来人们一直怀疑RAS基因是多种癌症类型的常见贡献者,但需要强有力的证据来确定其关键的致癌意义。我们提出了一项使用DepMap全基因组CRISPR筛选数据的数据挖掘研究,该研究提供了大量证据来支持RAS基因突变的突出普遍致癌作用和组织特异性允许性。

Differential analysis of CRISPR effect scores identifies K- or N-RAS genes as the most differential gene in contrasts of (K-, N-, combined) RAS mutant versus wild-type cell lines across multiple tissue types. The distinguished tissue-specific pattern of KRAS vs. NRAS as top differential genes in subsets of tissue types and evidence from genome data supported the idea of KRAS- and NRAS-engaged tissue types.

CRISPR效应评分的差异分析将K或N-RAS基因鉴定为跨越多种组织类型的(K,N,组合)RAS突变体与野生型细胞系对比中差异最大的基因。KRAS与NRAS作为组织类型子集中最高差异基因的独特组织特异性模式以及来自基因组数据的证据支持了KRAS和NRAS参与组织类型的想法。

To our knowledge, this is the first report of prominent pervasive oncogenic role of RAS mutations revealed by gene dependency data that is beyond the current understanding of the oncogenic role of RAS genes and their well-known involved tissue types. Our findings strongly support RAS mutations as primary oncogenic drivers beyond traditionally recognized cancer types and offer insights into their tissue-specific permissiveness..

据我们所知,这是基因依赖性数据揭示的RAS突变的显着普遍致癌作用的首次报道,该数据超出了目前对RAS基因及其众所周知的相关组织类型的致癌作用的理解。我们的发现强烈支持RAS突变作为传统公认的癌症类型之外的主要致癌驱动因素,并提供了对其组织特异性允许性的见解。。

IntroductionThe RAS genes (KRAS, NRAS, HRAS) hold significant historical importance as they were the first human oncogenes discovered in the field of cancer research. Moreover, they stand out as the most frequently mutated oncogenes in human cancers1,2,3,4. Notably, KRAS exhibits the highest frequency of mutations in Pancreatic Adenocarcinoma (PAAD), followed by Colon Adenocarcinoma (COAD) and Lung Adenocarcinoma (LUAD), which are also tumor types that garner considerable attention from the cancer research community1,4.However, it is crucial to recognize that RAS gene mutations occur in numerous other cancer types and are believed to play a pivotal role in the oncogenesis of approximately 20% of human cancers1,2,4.

引言RAS基因(KRAS,NRAS,HRAS)具有重要的历史意义,因为它们是癌症研究领域发现的第一个人类致癌基因。此外,它们是人类癌症中突变频率最高的癌基因1,2,3,4。值得注意的是,KRAS在胰腺癌(PAAD)中表现出最高的突变频率,其次是结肠腺癌(COAD)和肺腺癌(LUAD),这也是癌症研究界相当关注的肿瘤类型1,4。然而,认识到RAS基因突变发生在许多其他癌症类型中是至关重要的,并且被认为在大约20%的人类癌症的肿瘤发生中起关键作用1,2,4。

This suggests that RAS gene mutations may have a more extensive impact as oncogenic drivers than our current research focus suggests. Despite our ongoing efforts to advance our understanding of RAS biology, with a better understanding of RAS-engaged cancer types2,5,6, computational studies have also revealed that RAS genes possess potential oncogenic driver properties in various tumor or tissue types7,8,9.Over the past few years, the Cancer Dependency Map (DepMap) database has gained significant popularity as a valuable resource for data mining in cancer research fields10,11,12,13.

这表明RAS基因突变作为致癌驱动因素的影响可能比我们目前的研究重点所表明的更为广泛。尽管我们正在努力提高对RAS生物学的理解,但随着对RAS参与的癌症类型的更好理解2,5,6,计算研究还表明,RAS基因在各种肿瘤或组织类型中具有潜在的致癌驱动特性7,8,9。在过去的几年中,癌症依赖图(DepMap)数据库作为癌症研究领域数据挖掘的宝贵资源获得了极大的普及10,11,12,13。

Hosted primarily by the BROAD Institute and collaboratively supported by the Sanger Institute, the DepMap database serves as a comprehensive repository of genome-wide high-throughput genetic knockout screening data. It offers systematic means to assess genetic dependencies for genes of interest.The DepMap database incorporates diverse genomic data collections, including gene expression and mutation data.

DepMap数据库主要由BROAD Institute托管,并由Sanger Institute合作支持,是全基因组高通量基因敲除筛选数据的综合存储库。它提供了系统的方法来评估感兴趣基因的遗传依赖性。DepMap数据库包含多种基因组数据收集,包括基因表达和突变数据。

It houses genome-wide CRISPR screening data for approximately 1000 Cancer Cell.

它包含了大约1000个癌细胞的全基因组CRISPR筛选数据。

Data availability

数据可用性

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

在当前研究期间生成和/或分析的数据集可根据合理要求从通讯作者处获得。

ReferencesMukhopadhyay, S., Vander Heiden, M. G. & McCormick, F. The Metabolic Landscape of RAS-Driven cancers from biology to therapy. Nat. Cancer. 2 (3), 271–283 (2021).Article

参考文献Mukhopadhyay,S.,Vander Heiden,M.G。和McCormick,F。RAS驱动的癌症从生物学到治疗的代谢景观。自然癌症。2(3),271-283(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of ras mutations in Cancer. Cancer Res. 80 (14), 2969–2974 (2020).Article

。癌症研究80(14),2969-2974(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging Ras back in the Ring. Cancer Cell. 25, 272–281 (2014).Article

Stephen,A.G.,Esposito,D.,Bagni,R.K.&McCormick,F。将Ras拖回环中。癌细胞。25272-281(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cook, J. H. et al. The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. Nat. Commun. 12, 1808 (2021).Article

KRAS突变的起源和遗传相互作用是等位基因和组织特异性的。。121808(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell. 170 (1), 17–33 (2017).Article

Simanshu,D.K.,Nissley,D.V。&McCormick,F.RAS蛋白及其调节剂在人类疾病中的作用。细胞。170(1),17-33(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waters, A. M. & Der, C. J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harbor Perspect. Med. 8 (9), a031435 (2018).Article

Waters,A.M.&Der,C.J.KRAS:胰腺癌的关键驱动因素和治疗靶点。冷泉港透视。医学杂志8(9),a031435(2018)。文章

Google Scholar

谷歌学者

Bailey, M. H. et al. Comprehensive characterization of Cancer driver genes and mutations. Cell. 173 (2), 371–385e18 (2018).Article

Bailey,M.H.等人。癌症驱动基因和突变的综合表征。细胞。173(2),371-385e18(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 578, 82–93 (2020).Article

ICGC/TCGA全基因组泛癌分析联盟。全基因组的泛癌分析。。578,82-93(2020)。文章

ADS

广告

Google Scholar

谷歌学者

Tokheim, C. & Karchin, R. CHASMplus reveals the scope of somatic missense mutations driving human cancers. Cell. Syst. 9 (1), 9–23e8 (2019).Article

Tokheim,C。&Karchin,R。CHASMplus揭示了驱动人类癌症的体细胞错义突变的范围。细胞。系统。9(1),9-23e8(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell. 170 (3), 564–576e16 (2017).Article

Tshrenak,A。等人定义癌症依赖图。细胞。170(3),564-576e16(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).Article

Meyers,R.M。等人。拷贝数效应的计算校正提高了癌细胞中CRISPR-Cas9必要性筛选的特异性。纳特·吉内特。491779-1784(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dempster, J. M. et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat. Commun. 10, 5817 (2019).Article

Dempster,J.M.等人。两个大型泛癌CRISPR-Cas9基因依赖性数据集之间的一致性。。105817(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pacini, C. et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 12, 1661 (2021).Article

Pacini,C.等人。癌症遗传依赖性的综合交叉研究数据集。。121661(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Joshua, M. et al. Extracting Biological insights from the Project Achilles Genome-Scale CRISPR screens in Cancer Cell lines. bioRxiv 720243 (2019).Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol.

Joshua,M.等人从癌细胞系中的Achilles基因组规模CRISPR筛选项目中提取生物学见解。bioRxiv 720243(2019)。Dempster,J.M.等人,《Chronos:CRISPR实验的细胞群体动力学模型》,改进了基因适应性效应的推断。。

22, 343 (2021).Article .

22343(2021)。。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, M., Nissley, D. V., McCormick, F. & Stephens, R. M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep. 10, 10258 (2020).Article

Yi,M.,Nissley,D.V.,McCormick,F。&Stephens,R.M。基于ssGSEA评分的Ras依赖性指数来自基因表达数据,揭示了潜在的Ras成瘾机制,可能具有临床意义。科学。代表1010258(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weinstein, I. B. Addiction to oncogenes–the Achilles heal of cancer. Science. 297, 63–64 (2002).Article

Weinstein,I.B。致癌基因成瘾-癌症的致命弱点。科学。297,63-64(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, 499–513 (2020).Article

Aregger,M。等人。从头脂肪酸合成的遗传相互作用的系统作图确定C12orf49是脂质代谢的调节剂。自然代谢。2499-513(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shimada, K., Bachman, J. A., Muhlich, J. L. & Mitchison, T. J. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data. eLife. 10, e57116 (2021).Article

Shimada,K.,Bachman,J.A.,Muhlich,J.L。和Mitchison,T.J.shinyDepMap,一种从癌症依赖图数据中识别可靶向癌症基因及其功能联系的工具。埃利夫。10,e57116(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 (7), e47 (2015).Article

Ritchie,M.E.等人Limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43(7),e47(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15(12),550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26 (1), 139–140 (2010).Article

Robinson,M.D.,McCarthy,D.J。&Smyth,G.K.edgeR:用于数字基因表达数据差异表达分析的生物导体软件包。生物信息学。26(1),139-140(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M., Mudunuri, U., Che, A. & Stephens, R. M. Seeking unique and common biological themes in multiple gene lists or datasets: pathway pattern extraction pipeline for pathway-level comparative analysis. BMC Bioinform. 10, 200 (2009).Article

Yi,M.,Mudunuri,U.,Che,A。&Stephens,R.M。在多个基因列表或数据集中寻找独特和共同的生物学主题:用于途径水平比较分析的途径模式提取管道。BMC生物信息。10200(2009)。文章

Google Scholar

谷歌学者

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J. R Stat. Soc. B. 57, 289–300 (1995).Article

Benjamini,Y。&Hochberg,Y。控制错误发现率:多重假设检验的实用而有力的方法。J、 R Stat.Soc.B.57289–300(1995)。文章

Google Scholar

谷歌学者

Nissley, D. V. & McCormick, F. RAS at 40: update from the RAS Initiative. Cancer Discov. 12 (4), 895–898 (2022).Article

。癌症发现。12(4),895-898(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Morkel, M., Riemer, P., Bläker, H. & Sers, C. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 6 (25), 20785–20800 (2015).Article

Morkel,M.,Riemer,P.,Bläker,H。&Sers,C。相似但不同:KRAS和BRAF癌基因在结直肠癌发展和治疗抵抗中的不同作用。Oncotarget。6(25),20785–20800(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roock, W. D. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762 (2010).Article

Roock,W.D.等人。KRAS,BRAF,NRAS和PIK3CA突变对西妥昔单抗联合化疗治疗化疗难治性转移性结直肠癌疗效的影响:回顾性联合分析。柳叶刀Oncol。11753-762(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Oh, J. H. et al. Spontaneous mutations in the single TTN gene represent high tumor mutation burden. Npj Genom Med. 5, 33 (2020).Article

Oh,J.H.等人。单个TTN基因的自发突变代表了较高的肿瘤突变负担。Npj Genom Med。5,33(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, A. et al. A gene expression signature associated with K-Ras addiction reveals regulators of EMT and tumor cell survival. Cancer Cell. 15 (6), 489–500 (2009).Article

与K-Ras成瘾相关的基因表达特征揭示了EMT和肿瘤细胞存活的调节因子。癌细胞。15(6),489-500(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bonsor, D. A. et al. Structure of the SHOC2–MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat. Struct. Mol. Biol. 29 (10), 966–977 (2022).Article

Bonsor,D.A。等人。SHOC2-MRAS-PP1C复合物的结构提供了对RAF激活和Noonan综合征的见解。自然结构。分子生物学。29(10),966-977(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mohi, M. G. & Neel, B. G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17 (1), 23–30 (2007).Article

Mohi,M.G。&Neel,B.G。Shp2(PTPN11)在癌症中的作用。货币。。基因。德文17(1),23-30(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nichols, R. J. et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell. Biol. 20 (9), 1064–1073 (2018).Article

Nichols,R.J。等人。RAS核苷酸循环是突变型BRAF,NF1和RAS驱动的癌症的SHP2磷酸酶依赖性的基础。自然细胞。生物学杂志20(9),1064-1073(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fedele, C. et al. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple Cancer models. Cancer Discov. 8 (10), 1237–1249 (2018).Article

Fedele,C。等人。SHP2抑制可防止多种癌症模型中对MEK抑制剂的适应性抗性。癌症发现。8(10),1237-1249(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature. 568, 511–516 (2019).Article

。。568511-516(2019)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 568, 551–556 (2019).Article

。。568551-556(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

The AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7 (8), 818–831 (2017).Article

AACR项目GENIE联盟。AACR项目精灵:通过国际财团为精准医学提供动力。癌症发现。7(8),818-831(2017)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hartley, J., Yi, M. & Update Mutations in human cancers through the Lens of KRAS. Ras Central Dialogue (2021). https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2021/update-kras-cancer-comutationsPopow, O. & Haigis, K. Oncogene turned bystander - how molecular context shapes KRAS oncogenicity.

Hartley,J.,Yi,M。&通过KRAS的视角更新人类癌症的突变。Ras中央对话(2021)。https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2021/update-kras-cancer-comutationsPopow,O。&Haigis,K。致癌基因成为旁观者-分子背景如何影响KRAS致癌性。

Ras Central Dialogue (2023). https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2023/popow-haigisWesolowski, L. et al. The SWI/SNF complex member SMARCB1 supports lineage fidelity in kidney cancer. iScience. 26 (8), 107360 (2023).Article .

Ras中央对话(2023年)。https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2023/popow-haigisWesolowskiSWI/SNF复合体成员SMARCB1支持肾癌的谱系保真度。iScience。26(8),107360(2023)。。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stephens, R. M., Yi, M., Kessing, B., Nissley, D. V. & McCormick, F. Tumor RAS Gene expression levels are influenced by the Mutational Status of RAS genes and both upstream and downstream RAS Pathway. Genes Cancer Inf. 16, 1176935117711944 (2017).

Stephens,R.M.,Yi,M.,Kessing,B.,Nissley,D.V。&McCormick,F。肿瘤RAS基因表达水平受RAS基因突变状态以及上游和下游RAS途径的影响。Genes Cancer Inf.16117693517711944(2017)。

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors would like to thank Jigui Shan for maintaining R environment and packages in servers. The authors also thank Frantz Jean-Francois, Peter Johnson, and Anna Maciag for helpful discussions about Ras biology and for their helpful suggestions after reading the manuscript.

下载参考文献致谢作者要感谢Jigui Shan在服务器中维护R环境和软件包。作者还感谢Frantz-Jean-Francois,Peter Johnson和Anna Maciag在阅读手稿后对Ras生物学的有益讨论以及他们的有益建议。

We would like to thank the editor and referees for helpful comments that led to improvements in this paper.FundingOpen access funding provided by the National Institutes of HealthAuthor informationAuthors and AffiliationsNCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USAMing Yi, Daniel Soppet, Frank McCormick & Dwight V.

我们要感谢编辑和裁判的有益评论,这些评论导致了本文的改进。基金开放获取资金由美国国立卫生研究院作者信息作者和附属机构NCI RAS倡议,癌症研究技术计划,弗雷德里克国家癌症研究实验室,弗雷德里克,医学博士,易国明,丹尼尔·索佩特,弗兰克·麦考密克和德怀特V。

NissleyUCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USAFrank McCormickAuthorsMing YiView author publicationsYou can also search for this author in.

NissleyUCSF Helen Diller家庭综合癌症中心,美国加利福尼亚州旧金山Frank McCormickAuthorsMing YiView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarDaniel SoppetView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel SoppetView作者出版物您也可以在

PubMed Google ScholarFrank McCormickView author publicationsYou can also search for this author in

PubMed Google ScholarFrank McCormickView作者出版物您也可以在

PubMed Google ScholarDwight V. NissleyView author publicationsYou can also search for this author in

PubMed Google ScholarDwight V.NissleyView作者出版物您也可以在

PubMed Google ScholarContributionsM.Y. conceived the study and designed the project. M.Y. performed data curation and download. M.Y. performed the data analysis, wrote the original draft of the manuscript and revised the manuscript. D.S., F.M., and D.V.N. revised the manuscript, and provided insightful suggestions for further data analysis.

PubMed谷歌学术贡献。Y、 构思了这项研究并设计了这个项目。M、 Y.执行数据管理和下载。M、 Y.进行了数据分析,撰写了稿件的初稿并修改了稿件。D、 S.,F.M。和D.V.N.修订了手稿,并为进一步的数据分析提供了有见地的建议。

All authors read and approved the final manuscript.Corresponding authorCorrespondence to.

。对应作者对应。

Ming Yi.Ethics declarations

明毅。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary Information41598_2024_76591_MOESM1_ESM.docxSupplementary Material 1.  A supplementary information file accompanies this paper including Supplementary Fig. 1 to 18, and Supplementary Tables 1 to 7.

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息41598\U 2024\U 76591\U MOESM1\U ESM.docx补充材料1。本文附有补充信息文件,包括补充图1至18和补充表1至7。

Rights and permissions.

权限和权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleYi, M., Soppet, D., McCormick, F. et al. The prominent pervasive oncogenic role and tissue specific permissiveness of RAS gene mutations.

Sci Rep 14, 25452 (2024). https://doi.org/10.1038/s41598-024-76591-8Download citationReceived: 03 June 2024Accepted: 15 October 2024Published: 26 October 2024DOI: https://doi.org/10.1038/s41598-024-76591-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1425452(2024)。https://doi.org/10.1038/s41598-024-76591-8Downloadhttps://doi.org/10.1038/s41598-024-76591-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供