商务合作
动脉网APP
可切换为仅中文
AbstractImpaired secretion of an essential blood coagulation factor fibrinogen leads to hepatic fibrinogen storage disease (HFSD), characterized by the presence of fibrinogen-positive inclusion bodies and hypofibrinogenemia. However, the molecular mechanisms underlying the biogenesis of fibrinogen in the endoplasmic reticulum (ER) remain unexplored.
摘要必需凝血因子纤维蛋白原的分泌受损会导致肝纤维蛋白原贮积病(HFSD),其特征是存在纤维蛋白原阳性包涵体和低纤维蛋白原血症。然而,内质网(ER)中纤维蛋白原生物发生的分子机制尚未探索。
Here we uncover a key role of SEL1L-HRD1 complex of ER-associated degradation (ERAD) in the formation of aberrant inclusion bodies, and the biogenesis of nascent fibrinogen protein complex in hepatocytes. Acute or chronic deficiency of SEL1L-HRD1 ERAD in the hepatocytes leads to the formation of hepatocellular inclusion bodies.
在这里,我们揭示了ER相关降解(ERAD)的SEL1L-HRD1复合物在异常包涵体形成以及肝细胞中新生纤维蛋白原蛋白复合物的生物发生中的关键作用。肝细胞中SEL1L-HRD1 ERAD的急性或慢性缺乏会导致肝细胞包涵体的形成。
Proteomics studies followed by biochemical assays reveal fibrinogen as a major component of the inclusion bodies. Mechanistically, we show that the degradation of misfolded endogenous fibrinogen Aα, Bβ, and γ chains by SEL1L-HRD1 ERAD is indispensable for the formation of a functional fibrinogen complex in the ER.
蛋白质组学研究和生化分析表明,纤维蛋白原是包涵体的主要成分。从机理上讲,我们表明,SEL1L-HRD1 ERAD对错误折叠的内源性纤维蛋白原Aα,Bβ和γ链的降解对于ER中功能性纤维蛋白原复合物的形成是必不可少的。
Providing clinical relevance of these findings, SEL1L-HRD1 ERAD indeed degrades and thereby attenuates the pathogenicity of two disease-causing fibrinogen γ mutants. Together, this study demonstrates an essential role of SEL1L-HRD1 ERAD in fibrinogen biogenesis and provides insight into the pathogenesis of protein-misfolding diseases..
提供这些发现的临床相关性,SEL1L-HRD1 ERAD确实会降解,从而减弱两种致病纤维蛋白原γ突变体的致病性。总之,这项研究证明了SEL1L-HRD1 ERAD在纤维蛋白原生物发生中的重要作用,并为蛋白质错误折叠疾病的发病机理提供了见识。。
IntroductionFibrinogen is a highly abundant plasma glycoprotein complex essential for blood clot formation and hemostasis (i.e., the cessation of bleeding)1, as well as wound healing, inflammation, infection, angiogenesis, and tumor growth and metastasis2,3,4. It is produced by hepatocytes as three polypeptide chains, Aα, Bβ and γ, which undergo extensive folding, assembly, and maturation processes to form a 340 kDa hexameric (AαBβγ)2 complex with 29 disulfide bonds in the endoplasmic reticulum (ER) prior to entering the secretory pathway1,5.
简介纤维蛋白原是一种高度丰富的血浆糖蛋白复合物,对血栓形成和止血(即停止出血)1以及伤口愈合,炎症,感染,血管生成以及肿瘤生长和转移至关重要2,3,4。它由肝细胞产生为三条多肽链,Aα,Bβ和γ,它们经历广泛的折叠,组装和成熟过程,形成340kDa六聚体(AαBβγ)2复合物,在内质网(ER)中具有29个二硫键。进入分泌途径之前1,5。
Clinically, qualitative or quantitative defects in fibrinogen have been observed in congenital or acquired hypo-, a- and dys-fibrinogenemia6,7. Hepatic fibrinogen storage disease (HFSD) is a specific type of hypofibrinogenemia condition caused by impaired fibrinogen assembly and secretion in hepatocytes8,9.
临床上,在先天性或获得性低,α和dys-纤维蛋白原血症中观察到纤维蛋白原的定性或定量缺陷6,7。肝纤维蛋白原贮积病(HFSD)是一种特定类型的低纤维蛋白原血症,由肝纤维蛋白原组装和分泌受损引起[8,9]。
Patients with HFSD exhibit fibrinogen-positive inclusion bodies in the liver with hepatic damage and low circulating fibrinogen levels, yet most cases do not present hemostatic issues8,9,10,11,12,13,14,15,16. Despite clinical reports of HFSD for over two decades11,17, the molecular events regulating the biogenesis of fibrinogen in the ER and the formation of fibrinogen-positive inclusion bodies remain poorly understood.The synthesis, folding, and assembly of secretory and membrane proteins take place in the ER18,19.
HFSD患者在肝脏中表现出纤维蛋白原阳性包涵体,伴有肝损伤和低循环纤维蛋白原水平,但大多数病例不存在止血问题8,9,10,11,12,13,14,15,16。尽管HFSD的临床报道已有二十多年[11,17],但调节ER中纤维蛋白原生物发生和纤维蛋白原阳性包涵体形成的分子事件仍然知之甚少。分泌蛋白和膜蛋白的合成,折叠和组装发生在ER18,19中。
However, a portion of nascent proteins fail to attain their native conformation and are subsequently targeted for proteasomal degradation via an ER quality control mechanism known as ER-associated degradation (ERAD)20,21,22,23. The SEL1L-HRD1 protein complex represents the most conserved ERAD machinery24,25,26,27,28,29,30,31.
然而,一部分新生蛋白质未能获得其天然构象,随后通过称为ER相关降解(ERAD)20,21,22,23的ER质量控制机制靶向蛋白酶体降解。SEL1L-HRD1蛋白复合物代表最保守的ERAD机制24,25,26,27,28,29,30,31。
Using conditional and cell type-specific Sel1L-deficient mice, we have demonstrated an indis.
使用条件性和细胞类型特异性Sel1L缺陷小鼠,我们已经证明了INDI。
Alb hepatocytesTo explore the nature of inclusion bodies, we next performed transmission electron microscopy (TEM). In WT hepatocytes, organelles such as the ER, mitochondria, and glycogen granules appeared with normal morphology (Fig. 2a). In contrast, we noted dilated ER (white arrows) and large cytosolic inclusion bodies with homogeneous electron density in Sel1LAlb hepatocytes (Fig. 2b–d).
为了探索包涵体的性质,我们接下来进行了透射电子显微镜(TEM)。在WT肝细胞中,ER,线粒体和糖原颗粒等细胞器的形态正常(图2a)。相比之下,我们注意到Sel1Lab肝细胞中扩张的ER(白色箭头)和具有均匀电子密度的大胞质包涵体(图2b–d)。
The inclusion bodies were notably bound by single membranes (red arrows, Fig. 2b, c), likely representing the ER membranes (discussed more below). We also noted the likely fusion of a small vesicle with the inclusion body (green arrow, Fig. 2c), providing a plausible explanation for the progressive enlargement of the inclusion bodies as shown in Fig. 1.
包涵体明显被单个膜结合(红色箭头,图2b,c),可能代表ER膜(下面将详细讨论)。我们还注意到小囊泡可能与包涵体融合(绿色箭头,图2c),为包涵体的逐渐扩大提供了合理的解释,如图1所示。
The electron density of the inclusion bodies was uniformly low, distinct from that of lipid droplets, excluding the possibility of the inclusion bodies being lipid-laden (Fig. 2d). Morphologically, mitochondria appeared normal in Sel1LAlb hepatocytes (Fig. 2a–d). Thus, inclusion bodies in Sel1LAlb hepatocytes are single membrane-bound structures in the cytosol containing non-lipid materials.Fig.
包涵体的电子密度均匀较低,与脂滴的电子密度不同,不包括包涵体富含脂质的可能性(图2d)。从形态学上看,SEL1ALB肝细胞中的线粒体似乎正常(图2a–d)。因此,SEL1ALB肝细胞中的包涵体是含有非脂质物质的胞质溶胶中的单膜结合结构。图。
2: Inclusion bodies are encased in ER membrane with the identification of fibrinogen chains as a possible major component.a–d TEM images of liver tissues from 6-week-old WT and Sel1LAlb littermates with insets of higher magnification shown (n = 2 mice each genotype). White arrowheads, normal ER; red arrows, inclusion bodies bounded by a single membrane; white arrows, dilated ER; green arrow, a vesicle in the process of fusing to a large inclusion body; N, nucleus; m, mitochondria; IB, inclusion bodies; LD, lipid droplets.
2: 包涵体被包裹在ER膜中,纤维蛋白原链被鉴定为可能的主要成分。6周龄WT和SEL1ALB同窝仔肝组织的a-d TEM图像显示了更高放大倍数的插图(每个基因型n=2只小鼠)。白色箭头,正常ER;红色箭头,由单个膜包围的包涵体;白色箭头,扩张的ER;绿色箭头,一个融合到大包涵体过程中的囊泡;N、 细胞核;m、 线粒体;IB,包涵体;LD,脂滴。
Glycogen granules are noted in both WT and Sel1LAlb livers. e Proteomics analysis of purified microsomes from WT and Sel.
在WT和SEL1ALB肝脏中都注意到糖原颗粒。e来自WT和Sel的纯化微粒体的蛋白质组学分析。
Alb liversWe next defined the biochemical nature of fibrinogen inclusions. Fibrinogen is a 340 kDa hexamer formed by three polypeptide chains, Aα, Bβ and γ, via a total of 29 inter- or intra-molecular disulfide bonds (Fig. 5a)1,5. Bβ and γ are glycosylated, but not Aα (Fig. 5a). Denaturing Western blot analyses of individual chains64,65 revealed that all three chains were increased by ~2 folds in Sel1LAlb livers compared to those of WT livers (Fig. 5b, c), independently of gene transcription (Fig. 5d).Fig.
Alb肝脏接下来定义了纤维蛋白原包涵体的生化性质。纤维蛋白原是由三条多肽链aα,Bβ和γ通过总共29个分子间或分子内二硫键形成的340kDa六聚体(图5a)1,5。Bβ和γ被糖基化,但不是Aα(图5a)。单个链的变性Western印迹分析64,65显示,与WT肝脏相比,SEL1ALB肝脏中的所有三条链都增加了约2倍(图5b,c),与基因转录无关(图5d)。图。
5: Fibrinogen chains accumulate and form insoluble aggregates in Sel1L-deficient livers.a The overall structure of fibrinogen showing a hexamer of Aα, Bβ and γ chains. The 29 highly conserved disulfide bonds are shown as red bars, and the glycosylation sites on Bβ and γ are marked in purple. Aα is not glycosylated.
5: 纤维蛋白原链在Sel1L缺陷的肝脏中积累并形成不溶性聚集体。纤维蛋白原的整体结构显示aα,Bβ和γ链的六聚体。29个高度保守的二硫键显示为红色条,Bβ和γ上的糖基化位点标记为紫色。Aα不被糖基化。
Image created in BioRender. Tushi, N. (2024) BioRender.com/l49l811. (b–e) Liver samples from 6-week-old WT and Sel1LAlb littermates were analyzed for: (b) reducing Western blot analysis with quantitation normalized to HSP90 shown in (c); (d) qPCR analysis; (e) non-reducing SDS-PAGE and Western blot analysis using the same protein lysates shown in (b).
在BioRender中创建的图像。北图西(2024)BioRender.com/l49l811。(b–e)分析了来自6周龄WT和SEL1ALB同窝仔的肝脏样品:(b)减少蛋白质印迹分析,定量标准化为(c)中所示的HSP90;(d) qPCR分析;(e) 使用(b)中所示的相同蛋白质裂解物进行非还原性SDS-PAGE和蛋白质印迹分析。
In (b) and (e), fibrinogen proteins were analyzed by antibodies specific for each chain or all fibrinogen chains (Fib). Red arrows point to high molecular weight aggregates of fibrinogen. N = 3 for Western blot analyses, n = 5 for WT and n = 6 for Sel1LAlb for qPCR analyses. Values, mean ± SEM. *, p < 0.05; **, p < 0.01 by two-tailed Student’s t test.
在(b)和(e)中,通过对每条链或所有纤维蛋白原链(Fib)特异的抗体分析纤维蛋白原蛋白。红色箭头指向纤维蛋白原的高分子量聚集体。对于蛋白质印迹分析,N=3,对于WT,N=5,对于qPCR分析,对于SEL1ALB,N=6。数值,平均值±SEM。*,p<0.05;**,通过双尾学生t检验,p<0.01。
f Sucrose gradient fractionation (fractions 1 to 11 from top to bottom) of liver samples from WT and Sel1LAlb littermates analyzed by nonreducing or reducing SDS-PAGE using an Aα chain-specific antibody. Red arrow points to fibrinogen aggregates. #, a non-specifi.
f使用Aα链特异性抗体通过非还原或还原SDS-PAGE分析来自WT和Sel1Alb同窝仔的肝脏样品的蔗糖梯度分级(从上到下的级分1至11)。红色箭头指向纤维蛋白原聚集体,a非特定。
Alb hepatocytesWe next examined the impact of ERAD on fibrinogen secretion. We first performed an endoglycosidase H (EndoH) digestion assay to distinguish fibrinogen pools that are in the ER with high mannose glycosylation (EndoH sensitive) vs. those that have matured and exited the ER with complex glycosylation (EndoH resistant).
Alb肝细胞接下来检查了ERAD对纤维蛋白原分泌的影响。我们首先进行了内切糖苷酶H(EndoH)消化测定,以区分具有高甘露糖基化(EndoH敏感)的ER中的纤维蛋白原库与具有复杂糖基化(EndoH抗性)的ER中成熟并退出ER的纤维蛋白原库。
In WT hepatocytes, about 70% of Bβ and 50% of γ were EndoH resistant (Fig. 6a, b), suggesting that they are able to fold and readily exit the ER. In contrast, ~ 65% Bβ and 85% γ chains were EndoH sensitive in the absence of SEL1L, suggesting that they are retained in the ER (Fig. 6a, b). The differential mobility observed in EndoH-treated samples resulted from glycosylation, as the EndoH-resistant form was sensitive to PNGase F treatment, which removes all N-linked glycan from glycoproteins (Fig. 6a).
在WT肝细胞中,约70%的Bβ和50%的γ具有EndoH抗性(图6a,B),表明它们能够折叠并容易退出ER。相反,约65%的Bβ和85%的γ链在不存在SEL1L的情况下对EndoH敏感,表明它们保留在ER中(图6a,B)。在EndoH处理的样品中观察到的差异迁移率是由糖基化引起的,因为EndoH抗性形式对PNGase F处理敏感,PNGase F处理可从糖蛋白中去除所有N-连接的聚糖(图6a)。
In keeping with these findings, circulating levels of fibrinogen in Sel1LAlb mice were significantly reduced by 20-50% as measured by ELISA and Western blot analyses (Fig. 6c, d). The reduction is specific for fibrinogen, as plasma levels of albumin were unaffected by Sel1L deficiency (Fig. 6d), again excluding the possibility that ER retention of fibrinogen is due to a general secretory defect.
与这些发现一致,通过ELISA和蛋白质印迹分析测量,Sel1LAlb小鼠中纤维蛋白原的循环水平显着降低了20-50%(图6c,d)。这种降低是纤维蛋白原特有的,因为血浆白蛋白水平不受Sel1L缺乏的影响(图6d),再次排除了纤维蛋白原ER保留是由于一般分泌缺陷引起的可能性。
Similar observations were obtained in inducible Sel1L-deficient livers (Fig. S7a, b).Fig. 6: Fibrinogen is retained in the ER of Sel1L-deficient hepatocytes, with BiP attenuating its further aggregation.a–b Western blot analysis of fibrinogen Bβ and γ in liver lysates treated with EndoH or PNGase F.
在诱导型Sel1L缺陷型肝脏中获得了类似的观察结果(图S7a,b)。图6:纤维蛋白原保留在Sel1L缺陷型肝细胞的ER中,BiP减弱了其进一步聚集。用EndoH或PNGase F处理的肝裂解物中纤维蛋白原bβ和γ的a-b蛋白质印迹分析。
R and s, EndoH-resistant and sensitive, respectively. The percentages of EndoH-sensitive Bβ and γ chains are quantitated in b. N = 5 per cohort. c–d ELISA (c) and Western blot (d) analyses of inferior vena cava (IVC) plasma from 6-week-old WT and Sel1LAlb litt.
R和s分别具有EndoH抗性和敏感性。EndoH敏感的Bβ和γ链的百分比以B定量。每个队列N=5。c–d ELISA(c)和Western blot(d)分析了6周龄WT和Sel1Lab-litt的下腔静脉(IVC)血浆。
Data availability
数据可用性
All study data are included in the article and/or SI Appendix. Source data are provided with this paper. The proteomics data of fibrinogen interactomes have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD047658. The previously published proteomics data of purified microsomes can be found at ProteomeXchange Consortium with dataset identifier PXD035243. Source data are provided with this paper..
所有研究数据均包含在文章和/或SI附录中。本文提供了源数据。。先前发布的纯化微粒体的蛋白质组学数据可以在ProteomeXchange Consortium上找到,数据集标识符为PXD035243。本文提供了源数据。。
ReferencesPieters, M. & Wolberg, A. S. Fibrinogen and fibrin: An illustrated review. Res Pr. Thromb. Haemost. 3, 161–172 (2019).Article
参考文献Pieters,M。&Wolberg,A.S。纤维蛋白原和纤维蛋白:插图综述。血栓研究。血友病。31161-172(2019)。文章
Google Scholar
谷歌学者
Luyendyk, J. P., Schoenecker, J. G. & Flick, M. J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 133, 511–520 (2019).Article
。血液133511-520(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. & Shi, B. Progress in research on the role of fibrinogen in lung cancer. Open Life Sci. 15, 326–330 (2020).Article
Liu,X。&Shi,B。纤维蛋白原在肺癌中作用的研究进展。开放生活科学。15326-330(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Casini A., Neerman-Arbez M., & de Moerloose P. Heterogeneity of congenital afibrinogenemia, from epidemiology to clinical consequences and management. Blood Rev. 100793 (2020).Tamura, T., Arai, S., Nagaya, H., Mizuguchi, J. & Wada, I. Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells.
Casini A.,Neerman-Arbez M.,&de Moerloose P.先天性无纤维蛋白原血症的异质性,从流行病学到临床后果和管理。Blood Rev.100793(2020)。Tamura,T.,Arai,S.,Nagaya,H.,Mizuguchi,J。&Wada,I.纤维蛋白原的逐步组装由HepG2细胞中的内质网凝集素伴侣系统辅助。
PLoS One 8, e74580 (2013).Article .
PLoS One 8,e74580(2013)。。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maghzal, G. J., Brennan, S. O., Homer, V. M. & George, P. M. The molecular mechanisms of congenital hypofibrinogenaemia. Cell Mol. Life Sci. 61, 1427–1438 (2004).Article
Maghzal,G.J.,Brennan,S.O.,Homer,V.M。和George,P.M。先天性低纤维蛋白原血症的分子机制。细胞分子生命科学。611427-1438(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ariens, R. A. Fibrin(ogen) and thrombotic disease. J. Thromb. Haemost. 11, 294–305 (2013).Article
Ariens,R.A。纤维蛋白(ogen)和血栓性疾病。J、 。血友病。11294-305(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Callea, F., Brisigotti, M., Fabbretti, G., Bonino, F. & Desmet, V. J. Hepatic endoplasmic reticulum storage diseases. Liver 12, 357–362 (1992).Article
Callea,F.,Brisigotti,M.,Fabbretti,G.,Bonino,F。&Desmet,V.J。肝内质网贮积病。肝脏12357-362(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zen, Y. & Nishigami, T. Rethinking fibrinogen storage disease of the liver: ground glass and globular inclusions do not represent a congenital metabolic disorder but acquired collective retention of proteins. Hum. Pathol. 100, 1–9 (2020).Article
。哼。感伤。100,1-9(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vu, D. & Neerman-Arbez, M. Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to intracellular retention of misfolded proteins. J. Thromb. Haemost. 5, 125–131 (2007).Article
Vu,D。&Neerman-Arbez,M。解释纤维蛋白原缺乏的分子机制:从大缺失到错误折叠蛋白的细胞内保留。J、 。血友病。5125-131(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brennan, S. O., Wyatt, J., Medicina, D., Callea, F. & George, P. M. Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly–>Arg mutation. Am. J. Pathol. 157, 189–196 (2000).Article
Brennan,S.O.,Wyatt,J.,Medicina,D.,Callea,F。&George,P.M。纤维蛋白原brescia:由于gamma284 Gly–>Arg突变导致的肝内质网储存和低纤维蛋白原血症。美国J.Pathol。157189-196(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Asselta, R. et al. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen gamma-module. J. Thromb. Haemost. 13, 1459–1467 (2015).Article
Asselta,R。等人。肝纤维蛋白原贮积病:鉴定影响纤维蛋白原γ模块的两个新突变(p.Asp316Asn,纤维蛋白原Pisa和p.Gly366Ser,纤维蛋白原Beograd)。J、 。血友病。131459-1467(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brennan, S. O. et al. Novel fibrinogen gamma375 Arg–>Trp mutation (fibrinogen aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology 36, 652–658 (2002).Article
Brennan,S.O.等人。新型纤维蛋白原gamma375 Arg–>Trp突变(纤维蛋白原aguadilla)引起肝内质网储存和低纤维蛋白原血症。肝病36652-658(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brennan, S. O., Davis, R. L., Conard, K., Savo, A. & Furuya, K. N. Novel fibrinogen mutation gamma314Thr–>Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia. Liver Int. 30, 1541–1547 (2010).Article
Brennan,S.O.,Davis,R.L.,Conard,K.,Savo,A。&Furuya,K.N。与肝纤维蛋白原贮积病和低纤维蛋白原血症相关的新型纤维蛋白原突变gamma314Thr–>Pro(纤维蛋白原AI杜邦)。《肝脏国际》301541-1547(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rubbia-Brandt, L., Neerman-Arbez, M., Rougemont, A. L., Male, P. J. & Spahr, L. Fibrinogen gamma375 arg–>trp mutation (fibrinogen aguadilla) causes hereditary hypofibrinogenemia, hepatic endoplasmic reticulum storage disease and cirrhosis. Am. J. Surg. Pathol. 30, 906–911 (2006).Article .
Rubbia-Brandt,L.,Neerman-Arbez,M.,Rougemont,A.L.,Male,P.J。&Spahr,L。纤维蛋白原gamma375 arg–>trp突变(纤维蛋白原aguadilla)导致遗传性低纤维蛋白原血症,肝内质网贮积病和肝硬化。美国外科病理学杂志。30906–911(2006)。。
PubMed
PubMed
Google Scholar
谷歌学者
Callea F., Francalanci P., and Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci. 22 (2021).Terasawa, F. et al. Hypofibrinogenemia associated with a heterozygous missense mutation gamma153Cys to arg (Matsumoto IV): in vitro expression demonstrates defective secretion of the variant fibrinogen.
Callea F.,Francalanci P。和Giovannoni I.内质网贮积病的肝和肝外来源和表现。国际分子科学杂志。22(2021年)。Terasawa,F。等人。与杂合错义突变gamma153Cys至arg(Matsumoto IV)相关的低纤维蛋白原血症:体外表达表明变异纤维蛋白原的分泌缺陷。
Blood 94, 4122–4131 (1999).Article .
血液944122-4131(1999)。。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. life Sci.: Cmls. 73, 79–94 (2016).Article
Schwarz,D.S。和Blower,M.D。内质网:结构,功能和对细胞信号传导的反应。细胞。分子生命科学:慢性粒细胞白血病。73,79-94(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chino, H. & Mizushima, N. ER-Phagy: Quality Control and Turnover of Endoplasmic Reticulum. Trends Cell Biol. 30, 384–398 (2020).Article
Chino,H。&Mizushima,N。ER-Phagy:内质网的质量控制和周转。趋势细胞生物学。30384-398(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Needham P. G., Guerriero C. J., & Brodsky J. L. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harbor Perspect. Biol. 11 (2019).Sun, Z. & Brodsky, J. L. Protein quality control in the secretory pathway. J. Cell Biol. 218, 3171–3187 (2019).Article .
Needham P.G.,Guerriero C.J.,&Brodsky J.L.伴侣内质网相关降解(ERAD)和蛋白质构象疾病。冷泉港透视。生物学杂志11(2019)。Sun,Z。&Brodsky,J.L。分泌途径中的蛋白质质量控制。J、 细胞生物学。2183171-3187(2019)。。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qi, L., Tsai, B. & Arvan, P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol. 27, 430–440 (2017).Article
Qi,L.,Tsai,B。&Arvan,P。对内质网相关降解的生理作用的新见解。趋势细胞生物学。27430-440(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92, 537–576 (2012).Article
Guerriero,C.J。&Brodsky,J.L。人体生理学中分泌蛋白折叠与内质网相关降解之间的微妙平衡。生理学。修订版92537–576(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell. 7, 2029–2044 (1996).Article
Hampton,R.Y.,Gardner,R.G。&Rine,J。26S蛋白酶体和HRD基因在降解3-羟基-3-甲基戊二酰辅酶A还原酶(一种完整的内质网膜蛋白)中的作用。分子生物学。细胞。72029-2044(1996)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2012).Article
Christianson,J.C.等人。通过综合映射策略定义人类ERAD网络。自然细胞生物学。14,93-105(2012)。文章
CAS
中科院
Google Scholar
谷歌学者
Mueller, B., Lilley, B. N. & Ploegh, H. L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175, 261–270 (2006).Article
Mueller,B.,Lilley,B.N。&Ploegh,H.L.SEL1L是酵母Hrd3p的同源物,参与哺乳动物ER.J.细胞生物学的蛋白质脱位。175261-270(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).Article
Gardner,R.G。等人。内质网降解需要内腔到胞质溶胶的信号传导。Hrd3p对Hrd1p的跨膜控制。J、 细胞生物学。151,69-82(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 112, 4123–4134 (1999).Article
Plemper,R.K。等人。Hrd3p和Der3p/Hrd1p与Sec61p的遗传相互作用表明,反向易位复合物介导了ER降解的蛋白质转运。J、 细胞科学。1124123-4134(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).Article
Carvalho,P.,Goder,V。&Rapoport,T.A。不同的泛素连接酶复合物定义了ER蛋白降解的收敛途径。细胞126361-373(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl Acad. Sci. USA. 105, 12325–12330 (2008).Article
Mueller,B.,Klemm,E.J.,Spooner,E.,Claessen,J.H。&Ploegh,H.L。SEL1L使错误折叠的糖蛋白脱位所需的蛋白质复合物成核。程序。国家科学院。科学。。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sundaram, M. & Greenwald, I. Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. Genetics 135, 765–783 (1993).Article
Sundaram,M。&Greenwald,I。lin-12亚型的抑制子定义了与秀丽隐杆线虫中的lin-12和glp-1相互作用的基因。遗传学135765-783(1993)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, S. et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc. Natl Acad. Sci. USA. 111, E582–E591 (2014).Article
Sun,S。等人,Sel1L对于哺乳动物内质网相关的降解,内质网稳态和存活是必不可少的。程序。国家科学院。科学。美国111,E582–E591(2014)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, L. L. et al. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat. Commun. 15, 1440 (2024).Article
Lin,L.L.等人,需要SEL1L-HRD1相互作用才能形成功能性HRD1 ERAD复合物。。151440(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bhattacharya A., & Qi L. ER-associated degradation in health and disease - from substrate to organism. J. Cell Sci. 132 (2019).Yoshida S., et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest. 131 (2021).Shrestha, N.
Bhattacharya A.,&Qi L.ER相关的健康和疾病降解-从基质到生物体。J、 细胞科学。132(2019)。内质网相关降解是肾素成熟和肾小球滤过功能所必需的。J临床投资。131(2021年)。什莱斯塔,N。
et al. Sel1L-Hrd1 ER-associated degradation maintains beta cell identity via TGF-beta signaling. J. Clin. Invest. 130, 3499–3510 (2020).Article .
Sel1L-Hrd1 ER相关降解通过TGF-β信号传导维持β细胞身份。J、 临床。投资。1303499-3510(2020)。。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Z. et al. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 368, 54–60 (2020).Article
Zhou,Z。等人。内质网相关降解调节棕色脂肪细胞中的线粒体动力学。科学368,54-60(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, L. et al. ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 136, 2975–2986 (2020).Article
。血液1362975-2986(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, L. et al. Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nat. Cell Biol. 22, 1162–1169 (2020).Article
Xu,L。等人。通过内质网相关降解的蛋白质质量控制维持造血干细胞的身份和生态位相互作用。自然细胞生物学。221162-1169(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wei, J. et al. HRD1-mediated METTL14 degradation regulates m(6)A mRNA modification to suppress ER proteotoxic liver disease. Mol. Cell. 81, 5052–65.e6 (2021).Article
Wei,J。等人。HRD1介导的METTL14降解调节m(6)A mRNA修饰以抑制ER蛋白毒性肝病。摩尔电池。815052-65.e6(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, H. et al. Regulation of hepatic circadian metabolism by the E3 ubiquitin ligase HRD1-controlled CREBH/PPARalpha transcriptional program. Mol. Metab. 49, 101192 (2021).Article
Kim,H。等人。通过E3泛素连接酶HRD1控制的CREBH/PPARalpha转录程序调节肝脏昼夜节律代谢。分子代谢。49101192(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bhattacharya A. et al. Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J. 37 (2018).Wei J. et al. HRD1-ERAD controls production of the hepatokine FGF21 through CREBH polyubiquitination. EMBO J. 37 (2018).Sun, S. et al. IRE1alpha is an endogenous substrate of endoplasmic-reticulum-associated degradation.
。Wei J.等人,HRD1-ERAD通过CREBH多泛素化控制肝因子FGF21的产生。EMBO J.37(2018)。Sun,S。等人。IRE1α是内质网相关降解的内源性底物。
Nat. Cell Biol. 17, 1546–1555 (2015).Article .
自然细胞生物学。171546-1555(2015)。。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, T. et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28, 708–722 (2014).Article
Wu,T。等人。Hrd1在肝硬化期间抑制Nrf2介导的细胞保护。基因发展28708-722(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, G. et al. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J. Clin. Invest. 127, 3897–3912 (2017).Article
Shi,G。等人。与ER相关的降解是加压素激素原加工和全身水稳态所必需的。J、 临床。投资。1273897-3912(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, G. H. et al. Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J. Clin. Invest. 128, 1125–1140 (2018).Article
Kim,G.H.等人。下丘脑ER相关降解调节POMC成熟,喂养和与年龄相关的肥胖。J、 临床。投资。1281125-1140(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sim, H. J. et al. Augmented ERAD (ER-associated degradation) activity in chondrocytes is necessary for cartilage development and maintenance. Sci. Adv. 8, eabl4222 (2022).Article
Sim,H.J.等人。软骨细胞中增强的ERAD(ER相关降解)活性对于软骨发育和维持是必需的。科学。Adv.8,eabl4222(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abdon B., et al. Muscle-specific ER-associated degradation maintains postnatal muscle hypertrophy and systemic energy metabolism. JCI insight. 8 (2023).Ji, Y. et al. SEL1L-HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool.
肌肉特异性ER相关降解维持出生后肌肉肥大和全身能量代谢。JCI insight。8(2023年)。。
Nat. Cell Biol. 25, 726–739 (2023).Article .
自然细胞生物学。25726-739(2023)。。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, S. A. et al. The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes. Nat. Commun. 14, 3132 (2023).Article
Wu,S.A.等人。脂肪细胞内质网中错误折叠蛋白质的处理机制。。143132(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang H. H., et al. Hypomorphic variants of SEL1L-HRD1 ER-associated degradation are associated with neurodevelopmental disorders. J. Clin. Invest. 134 (2024).Weis D. et al. Biallelic Cys141Tyr variant of SEL1L is associated with neurodevelopmental disorders, agammaglobulinemia, and premature death.
Wang H.H.等人。SEL1L-HRD1 ER相关降解的亚型变异与神经发育障碍有关。J、 临床。投资。134(2024年)。Weis D.等人,SEL1L的双等位基因Cys141Tyr变体与神经发育障碍,无丙种球蛋白血症和过早死亡有关。
J. Clin. Invest.134 (2024).Bhattacharya, A. et al. SEL1L-HRD1 ER-associated degradation suppresses hepatocyte hyperproliferation and liver cancer. iScience 25, 105183 (2022).Article .
J、 临床。Invest.134(2024)。Bhattacharya,A。等人。SEL1L-HRD1 ER相关降解抑制肝细胞过度增殖和肝癌。iScience 25105183(2022)。。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thepsuwan, P. et al. Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin. Proc. Natl Acad. Sci. USA. 120, e2212644120 (2023).Article
Thepsuwan,P。等人。肝脏SEL1L-HRD1 ER相关降解通过铜蓝蛋白调节全身铁稳态。程序。国家科学院。科学。美国120,e2212644120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cnop, M. et al. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J. Biol. Chem. 282, 3989–3997 (2007).Article
Cnop,M。等人。选择性抑制真核翻译起始因子2α去磷酸化可增强脂肪酸诱导的内质网应激,并导致胰腺β细胞功能障碍和凋亡。J、 生物。。2823989-3997(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim H., Zheng Z., Walker P. D., Kapatos G., & Zhang K. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis. Mol Cell Biol. 37 (2017).Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).Article .
Kim H.,Zheng Z.,Walker P.D.,Kapatos G.,&Zhang K.CREBH通过调节肝糖原分解和糖异生来维持昼夜葡萄糖稳态。摩尔细胞生物学。37(2017)。张,Y。等人。饥饿激素,成纤维细胞生长因子-21,延长了小鼠的寿命。eLife 1,e00065(2012)。。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).Article
Hidvegi,T。等人。一种自噬增强药物促进突变型α1抗胰蛋白酶Z的降解并减少肝纤维化。科学329229-232(2010)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Inayat, F. et al. Lafora Disease Masquerading as Hepatic Dysfunction. Cureus 10, e3197 (2018).PubMed
Inayat,F。等人。Lafora病伪装成肝功能障碍。Cureus 10,e3197(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ye, Y., Baek, S. H., Ye, Y. & Zhang, T. Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. Cell Biosci. 8, 46 (2018).Article
Ye,Y.,Baek,S.H.,Ye,Y。&Zhang,T。哺乳动物泛素连接酶Hrd1内源性底物的蛋白质组学表征。细胞生物科学。8,46(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Flick, M. J. et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J. Clin. Invest. 113, 1596–1606 (2004).Article
Flick,M.J。等人。白细胞通过整合素受体alphaMbeta2/Mac-1参与纤维蛋白(ogen)对体内宿主炎症反应至关重要。J、 临床。投资。1131596-1606(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Holmback, K., Danton, M. J., Suh, T. T., Daugherty, C. C. & Degen, J. L. Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin alpha IIb beta 3. EMBO J. 15, 5760–5771 (1996).Article
Holmback,K.,Danton,M.J.,Suh,T.T.,Daugherty,C.C。&Degen,J.L。在缺乏整合素αIIbβ3结合的纤维蛋白原基序的小鼠中,血小板聚集受损并持续出血。EMBO J.155760–5771(1996)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Golanov, E. V. et al. Fibrinogen Chains Intrinsic to the Brain. Front Neurosci. 13, 541 (2019).Article
Golanov,E.V.等人。大脑固有的纤维蛋白原链。前神经科学。13541(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poole, L. G. et al. Chronic liver injury drives non-traditional intrahepatic fibrin(ogen) crosslinking via tissue transglutaminase. J. Thromb. Haemost. 17, 113–125 (2019).Article
慢性肝损伤通过组织转谷氨酰胺酶驱动非传统肝内纤维蛋白(ogen)交联。J、 。血友病。17113-125(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Paton, A. W. et al. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443, 548–552 (2006).Article
Paton,A.W。等人,AB5枯草酶细胞毒素使内质网伴侣BiP失活。《自然》443548-552(2006)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Suh, T. T. et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 9, 2020–2033 (1995).Article
Suh,T.T.等人。纤维蛋白原缺陷小鼠自发性出血事件的解决,但妊娠失败。《基因发展》92020-2033(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xia, H. & Redman, C. The degradation of nascent fibrinogen chains is mediated by the ubiquitin proteasome pathway. Biochem Biophys. Res Commun. 261, 590–597 (1999).Article
Xia,H。&Redman,C。新生纤维蛋白原链的降解是由泛素-蛋白酶体途径介导的。生物化学生物物理。。261590-597(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).Article
Kikkert,M。等人。人HRD1是一种E3泛素连接酶,参与内质网蛋白质的降解。J、 生物。。2793525–3534(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Juang, L. J. et al. Suppression of fibrin(ogen)-driven pathologies in disease models through controlled knockdown by lipid nanoparticle delivery of siRNA. Blood 139, 1302–1311 (2022).Article
Juang,L.J.等人,《通过脂质纳米颗粒递送siRNA的受控敲低抑制疾病模型中纤维蛋白(ogen)驱动的病理学》,《血液》1391302–1311(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hur, W. S. et al. Hypofibrinogenemia with preserved hemostasis and protection from thrombosis in mice with an Fga truncation mutation. Blood 139, 1374–1388 (2022).Article
Hur,W.S.等人。Fga截短突变小鼠的低纤维蛋白原血症,具有止血和血栓形成保护作用。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wei, X. et al. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat. Commun. 15, 659 (2024).Article
Wei,X。等人。SEL1L-HRD1 ER相关降解底物的蛋白质组学筛选揭示了其在糖基磷脂酰肌醇锚定蛋白生物发生中的作用。。15659(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roy, S., Sun, A. & Redman, C. In vitro assembly of the component chains of fibrinogen requires endoplasmic reticulum factors. J. Biol. Chem. 271, 24544–24550 (1996).Article
Roy,S.,Sun,A。&Redman,C。纤维蛋白原组分链的体外组装需要内质网因子。J、 生物。。27124544-24550(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun S., et al. Epithelial Sel1L is required for the maintenance of intestinal homeostasis. Mol Biol Cell. 2015.Shrestha N., et al. Integration of ER protein quality control mechanisms defines beta cell function and ER architecture. J. Clin. Invest. 133 (2023).Dickens, J. A. et al. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-alpha1-antitrypsin.
Sun S.等人。上皮Sel1L是维持肠内稳态所必需的。摩尔生物细胞。2015年。Shrestha N.等人。ER蛋白质量控制机制的整合定义了β细胞功能和ER结构。J、 临床。投资。133(2023年)。Dickens,J.A。等人。内质网在表达Z-α1-抗胰蛋白酶的细胞中断裂后,通过囊泡运输在功能上保持连接。
FASEB J. 30, 4083–4097 (2016).Article .
FASEB J.304083–4097(2016)。。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chambers, J. E. et al. Z-alpha(1)-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. Sci. Adv. 8, eabm2094 (2022).Article
Chambers,J.E.等人的Z-α(1)-抗胰蛋白酶聚合物在经历固态相变后在内质网中施加分子过滤。科学。Adv.8,eabm2094(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, P. S. & Arvan, P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr. Rev. 19, 173–202 (1998).CAS
Kim,P。S。&Arvan,P。内质网(ER)贮积病家族中的内分泌病:蛋白质运输障碍和ER分子伴侣的作用。内分泌。第19173-202版(1998年)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rutishauser, J. & Spiess, M. Endoplasmic reticulum storage diseases. Swiss Med Wkly. 132, 211–222 (2002).CAS
Rutishauser,J。&Spiess,M。内质网贮积病。瑞士医学Wkly。132211-222(2002)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li H., and Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells. 10 (2021).Callea, F. et al. A novel fibrinogen gamma chain mutation (c.1096C>G; p.His340Asp), fibrinogen Ankara, causing hypofibrinogenaemia and hepatic storage. Pathology 49, 534–537 (2017).Article
Li H.和Sun S.ER中的蛋白质聚集:风暴背后的平静。细胞。10(2021年)。。病理学49534-537(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dib, N. et al. Fibrinogen angers with a new deletion (gamma GVYYQ 346-350) causes hypofibrinogenemia with hepatic storage. J. Thromb. Haemost. 5, 1999–2005 (2007).Article
Dib,N。等人。具有新缺失的纤维蛋白原angers(γGVYYQ 346-350)导致肝脏储存的低纤维蛋白原血症。J、 。血友病。1999年至2005年(2007年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, M. J., Venick, R., Bhuta, S., Li, X. & Wang, H. L. Hepatic Fibrinogen Storage Disease in a Patient with Hypofibrinogenemia: Report of a Case with a Missense Mutation of the FGA Gene. Semin Liver Dis. 35, 439–443 (2015).Article
Lee,M.J.,Venick,R.,Bhuta,S.,Li,X。&Wang,H.L。低纤维蛋白原血症患者的肝纤维蛋白原贮积病:一例FGA基因错义突变的病例报告。精肝疾病。35439-443(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fraga, M. et al. Hepatocellular type II fibrinogen inclusions in a patient with severe COVID-19 and hepatitis. J. Hepatol. 73, 967–970 (2020).Article
Fraga,M.等人。患有严重COVID-19和肝炎的患者中的肝细胞II型纤维蛋白原包涵体。J、 肝病。73967-970(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moon, W. S., Yu, H. C., Chung, M. J., Kang, M. J. & Lee, D. G. Pale bodies in hepatocellular carcinoma. J. Korean Med Sci. 15, 516–520 (2000).Article
Moon,W.S.,Yu,H.C.,Chung,M.J.,Kang,M.J。&Lee,D.G。肝细胞癌中的苍白身体。J、 韩国医学科学。15516-520(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Le Fourn, V. et al. Large protein complexes retained in the ER are dislocated by non-COPII vesicles and degraded by selective autophagy. Cell Mol. Life Sci. 70, 1985–2002 (2013).Article
保留在ER中的大蛋白复合物被非COPII囊泡脱位,并被选择性自噬降解。细胞分子生命科学。701985-2002(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kruse, K. B. et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am. J. Pathol. 168, 1299–1308 (2006).Article
Kruse,K.B.等人。通过内质网相关蛋白降解和自噬从内质网清除的突变纤维蛋白原:肝病的解释。美国J.Pathol。1681299-1308(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Puls, F. et al. Autophagy-enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. J. Hepatol. 59, 626–630 (2013).Article
Puls,F。等人。自噬增强药物卡马西平减少纤维蛋白原贮积病中的肝细胞死亡。J、 肝病。59626-630(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, M. H., Knisely, A. S., Wang, N. L., Gong, J. Y. & Wang, J. S. Fibrinogen storage disease in a Chinese boy with de novo fibrinogen Aguadilla mutation: Incomplete response to carbamazepine and ursodeoxycholic acid. BMC Gastroenterol. 16, 92 (2016).Article
Zhang,M.H.,Knisely,A.S.,Wang,N.L.,Gong,J.Y。&Wang,J.S。患有新生纤维蛋白原Aguadilla突变的中国男孩的纤维蛋白原贮积病:对卡马西平和熊去氧胆酸的不完全反应。BMC胃肠道。16,92(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. Usa. 106, 16657–16662 (2009).Article
Iwawaki,T.,Akai,R.,Yamanaka,S。&Kohno,K。胎盘中IRE1α的功能对于胎盘发育和胚胎活力至关重要。程序。国家科学院。科学。美国10616657–16662(2009)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).Article
Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸研究50,D543–D552(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sha H., et al. The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab. 2014:pii: S1550–4131(14)00307-6.Coate, K. C. et al. FGF21 Is an Exocrine Pancreas Secretagogue. Cell Metab. 25, 472–480 (2017).Article
与ER相关的降解衔接蛋白Sel1L调节LPL分泌和脂质代谢。细胞代谢。2014年:pii:S1550–4131(14)00307-6.Coate,K.C。等人。FGF21是外分泌胰腺促分泌剂。细胞代谢。25472-480(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Drs. Yuan Zhang, David J. Mangelsdorf and Steven A. Kliewer for sharing reagents; Drs. James P. Luyendyk, Alisa S. Wolberg, Lih Jiin Juang, Ling Qi, and members of the Sun laboratories for their insightful discussions. We also thank the University of Virginia Advanced Microscopy Facility, Wayne State University Microscopy, Imaging and Cytometry Resources Core, Michigan Diabetes Research Center, University of Michigan In-vivo Animal Core, and Vector Core for their support.
下载参考文献致谢我们感谢Yuan Zhang博士,David J.Mangelsdorf博士和Steven A.Kliewer博士分享试剂;James P.Luyendyk博士,Alisa S.Wolberg,Lih Jiin Juang,Ling Qi和Sun实验室的成员进行了深入的讨论。我们还感谢弗吉尼亚大学高级显微镜设施,韦恩州立大学显微镜,成像和细胞资源核心,密歇根糖尿病研究中心,密歇根大学体内动物核心和载体核心的支持。
This work was supported by the funding from NIH (R01DK132068 and R01DK128077 to SS; R01HL160046 to MJF; R01HL166382 to CJK; R01DK120330 and R01DK126908 to DF; DK090313 and R01DK126908 to KZ; R01HL163516 to ZZ; and R21HD104904 to JW), American Society of Nephrology (XW), and National Health and Medical Research Council Investigator Grant 1174876 (JCP).Author informationAuthor notesJuncheng WeiPresent address: Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USAThese authors contributed equally: Zhenfeng Song, Pattaraporn Thepsuwan.Authors and AffiliationsDepartment of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USAZhenfeng Song, Nusrat Jahan Tushi & Shengyi SunCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USAZhenfeng Song, Pattaraporn Thepsuwan, Nusrat Jahan Tushi, Kezhong Zhang & Shengyi SunDepartment of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USAWoosuk Steve Hur & Matthew James FlickLineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
这项工作得到了NIH的资助(R01DK132068和R01DK128077给SS;R01HL160046给MJF;R01HL166382给CJK;R01DK120330和R01DK126908给DF;DK090313和R01DK126908给KZ;R01HL163516给ZZ;R21HD104904给JW),美国肾脏病学会(XW)和国家卫生与医学研究委员会调查员拨款1174876(JCP)。作者信息作者注朱成伟目前的地址:美国宾夕法尼亚州费城坦普尔大学路易斯·卡茨医学院心血管科学系和代谢疾病研究中心这些作者做出了同样的贡献:宋振峰,Pattaraporn Thepsuwan。作者和附属机构弗吉尼亚大学医学院药理学系,弗吉尼亚州夏洛茨维尔,22908,USAZhenfeng Song,Nusrat Jahan Tushi&Shengyi SunCenter for Molecular Medicine and Genetics,Wayne State University School of Medicine,Detroit,MI,48201,USAZhenfeng Song,Pattaraporn Thepsuwan,Nusrat Jahan Tushi,Kezhong Zhang&Shengyi SunDepartment of Pathology and Laboratory Medicine,北卡罗莱纳大学教堂山分校,北卡罗莱纳州教堂山分校,USAWoosuk Steve Hur&Matthew James FlickLineberger综合癌症中心。
PubMed Google ScholarPattaraporn ThepsuwanView author publicationsYou can also search for this author in
PubMed Google ScholarPattaraporn ThepsuwanView作者出版物您也可以在
PubMed Google ScholarWoosuk Steve HurView author publicationsYou can also search for this author in
PubMed Google ScholarWoosuk Steve HurView作者出版物您也可以在
PubMed Google ScholarMauricio TorresView author publicationsYou can also search for this author in
PubMed Google ScholarMauricio TorresView作者出版物您也可以在
PubMed Google ScholarShuangcheng Alivia WuView author publicationsYou can also search for this author in
PubMed Google ScholarShuangcheng Alivia WuView作者出版物您也可以在
PubMed Google ScholarXiaoqiong WeiView author publicationsYou can also search for this author in
PubMed Google ScholarXiaoqiong WeiView作者出版物您也可以在
PubMed Google ScholarNusrat Jahan TushiView author publicationsYou can also search for this author in
PubMed Google ScholarNusrat Jahan TushiView作者出版物您也可以在
PubMed Google ScholarJuncheng WeiView author publicationsYou can also search for this author in
PubMed谷歌学者Juncheng WeiView作者出版物您也可以在
PubMed Google ScholarFrancesca FerraressoView author publicationsYou can also search for this author in
PubMed Google ScholarFrancesca FerraressoView作者出版物您也可以在
PubMed Google ScholarAdrienne W. PatonView author publicationsYou can also search for this author in
PubMed Google ScholarAdrienne W.PatonView作者出版物您也可以在
PubMed Google ScholarJames C. PatonView author publicationsYou can also search for this author in
PubMed谷歌学者James C.PatonView作者出版物您也可以在
PubMed Google ScholarZe ZhengView author publicationsYou can also search for this author in
PubMed Google ScholarZe ZhengView作者出版物您也可以在
PubMed Google ScholarKezhong ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarKezhong ZhangView作者出版物您也可以在
PubMed Google ScholarDeyu FangView author publicationsYou can also search for this author in
PubMed Google ScholarDeyu FangView作者出版物您也可以在
PubMed Google ScholarChristian J. KastrupView author publicationsYou can also search for this author in
PubMed Google ScholarChristian J.KastrupView作者出版物您也可以在
PubMed Google ScholarSunil JaimanView author publicationsYou can also search for this author in
PubMed Google ScholarSunil JaimanView作者出版物您也可以在
PubMed Google ScholarMatthew James FlickView author publicationsYou can also search for this author in
PubMed Google ScholarMatthew James FlickView作者出版物您也可以在
PubMed Google ScholarShengyi SunView author publicationsYou can also search for this author in
PubMed Google ScholarShengyi SunView作者出版物您也可以在
PubMed Google ScholarContributionsZ.S. and P.T. performed most in vivo and in vitro studies. W.S.H., M.T., S.A.W., X.W., and N.J.T. assisted with some in vivo tests, biochemical studies and data analyses. S.J. helped with histology analysis. J.W., F.F., A.W.P., J.C.P., Z.Z., K.Z., D.F., C.J.K., and M.J.F.
PubMed谷歌学术贡献。S、 和P.T.进行了大多数体内和体外研究。W、 S.H.,M.T.,S.A.W.,X.W。和N.J.T.协助进行了一些体内测试,生化研究和数据分析。S、 J.帮助进行组织学分析。J、 W.,F.F.,A.W.P.,J.C.P.,Z.Z.,K.Z.,D.F.,C.J.K。和M.J.F。
provided critical reagents, insights and discussions. S.S. conceived the study, designed experiments, and wrote the manuscript. All authors commented on and approved the manuscript. First-authorship order was determined based on the extent of involvement during the completion of the study.Corresponding authorCorrespondence to.
提供了关键的试剂,见解和讨论。S、 美国构思了这项研究,设计了实验,并撰写了手稿。所有作者都评论并批准了手稿。第一作者顺序是根据研究完成期间的参与程度确定的。对应作者对应。
Shengyi Sun.Ethics declarations
孙盛义。道德宣言
Competing interests
相互竞争的利益
The authors declared no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Reporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息其他补充文件的描述补充数据1补充数据2报告摘要透明的同行评审文件源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleSong, Z., Thepsuwan, P., Hur, W.S. et al. Regulation of hepatic inclusions and fibrinogen biogenesis by SEL1L-HRD1 ERAD.
。
Nat Commun 15, 9244 (2024). https://doi.org/10.1038/s41467-024-53639-xDownload citationReceived: 30 January 2024Accepted: 16 October 2024Published: 26 October 2024DOI: https://doi.org/10.1038/s41467-024-53639-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》159244(2024)。https://doi.org/10.1038/s41467-024-53639-xDownload引文接收日期:2024年1月30日接受日期:2024年10月16日发布日期:2024年10月26日OI:https://doi.org/10.1038/s41467-024-53639-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供