EN
登录

热带爪蟾蝌蚪皮肤杯状细胞分泌粘蛋白后,粘蛋白成熟需要Tmem16a氯通道

The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin

Nature 等信源发布 2024-10-26 11:44

可切换为仅中文


AbstractThe TMEM16A chloride channel is proposed as a therapeutic target in cystic fibrosis, where activation of this ion channel might restore airway surface hydration and mitigate respiratory symptoms. While TMEM16A is associated with increased mucin production under stimulated or pro-inflammatory conditions, its role in baseline mucin production, secretion and/or maturation is less well understood.

摘要TMEM16A氯通道被提议作为囊性纤维化的治疗靶点,其中该离子通道的激活可能恢复气道表面水合作用并减轻呼吸道症状。虽然TMEM16A与刺激或促炎条件下粘蛋白产生增加有关,但其在基线粘蛋白产生,分泌和/或成熟中的作用尚不清楚。

Here, we use the Xenopus tadpole skin mucociliary surface as a model of human upper airway epithelium to study Tmem16a function in mucus production. We found that Xenopus tropicalis Tmem16a is present at the apical membrane surface of tadpole skin small secretory cells that express canonical markers of mammalian “goblet cells” such as Foxa1 and spdef.

在这里,我们使用非洲爪蟾蝌蚪皮肤粘液纤毛表面作为人类上呼吸道上皮的模型来研究Tmem16a在粘液产生中的功能。我们发现热带非洲爪蟾Tmem16a存在于蝌蚪皮肤小分泌细胞的顶膜表面,该细胞表达哺乳动物“杯状细胞”的典型标记,例如Foxa1和spdef。

X. tropicalis Tmem16a functions as a voltage-gated, calcium-activated chloride channel when transfected into mammalian cells in culture. Depletion of Tmem16a from the tadpole skin results in dysregulated mucin maturation post-secretion, with secreted mucins having a disrupted molecular size distribution and altered morphology assessed by sucrose gradient centrifugation and electron microscopy, respectively.

十、 当转染到培养的哺乳动物细胞中时,tropicalis Tmem16a充当电压门控的钙激活氯通道。蝌蚪皮肤中Tmem16a的消耗导致分泌后粘蛋白成熟失调,分泌的粘蛋白分子大小分布被破坏,形态改变分别通过蔗糖梯度离心和电子显微镜评估。

Our results show that in the Xenopus tadpole skin, Tmem16a is necessary for normal mucus barrier formation and demonstrate the utility of this model system to discover new biology relevant to human mucosal biology in health and disease..

我们的研究结果表明,在非洲爪蟾蝌蚪皮肤中,Tmem16a是正常粘液屏障形成所必需的,并证明了该模型系统在发现与健康和疾病中人类粘膜生物学相关的新生物学方面的实用性。。

IntroductionAberrant mucin production is a hallmark of airway diseases including asthma, cystic fibrosis (CF) and chronic obstructive pulmonary disease1. Excessive mucus production and/or dehydrated mucus can cause airway blockages, defective mucociliary clearance (MCC) and vulnerability to infection2,3.

引言异常粘蛋白产生是气道疾病的标志,包括哮喘,囊性纤维化(CF)和慢性阻塞性肺病1。粘液产生过多和/或脱水粘液可导致气道阻塞,粘液纤毛清除缺陷(MCC)和感染易感性2,3。

Mucins, the major structural component of mucus, are large, polymeric glycoproteins that require water for remodelling and expansion upon secretion from epithelial secretory cells and submucosal glands4. Understanding how mucins are packaged in secretory granules and, post-secretion, unfold to form the hydrated mucus network is critical for the development of therapeutics to tackle obstructive lung disease.

粘蛋白是粘液的主要结构成分,是大的聚合物糖蛋白,在上皮分泌细胞和粘膜下腺分泌时需要水进行重塑和扩张4。了解粘蛋白如何包装在分泌颗粒中,并在分泌后展开形成水合粘液网络,对于开发治疗阻塞性肺病的疗法至关重要。

In CF, the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel is dysfunctional5,6,7. Ionic imbalance leads to a dehydrated airway surface and mucus hyper-concentration8, and mucins that cannot properly expand9. This results in a more viscoelastic mucus not effectively cleared by cilia and chronic colonisation of mucus by potentially pathogenic organisms10,11.

在CF中,囊性纤维化跨膜电导调节剂(CFTR)离子通道功能异常5,6,7。离子失衡导致气道表面脱水,粘液浓度过高8,粘液不能正确膨胀9。这导致更粘弹性的粘液不能被纤毛有效清除,粘液被潜在的致病生物慢性定植10,11。

This devastating disease highlights the importance of ionic homeostasis for the maintenance of a healthy mucus barrier at the airway surface. Recently, several effective therapeutics have been developed to treat CF by directly modulating CFTR12,13. However, not all CFTR mutations are tractable to these drugs, and an unmet medical need within the genetically-diverse patient populations remains14.

这种破坏性疾病突出了离子稳态对于维持气道表面健康粘液屏障的重要性。最近,已经开发了几种有效的疗法来通过直接调节CFTR12,13来治疗CF。。

Accordingly, mutation-agnostic approaches have been developed to target other ion channels present in the airway, aiming to restore hydration of the airway surface.One candidate channel is the calcium-activated chloride channel TMEM16A (ANO1; in non-humans, Tmem16a/Ano1)15,16,17. TMEM16A is present in.

。一个候选通道是钙激活的氯离子通道TMEM16A(ANO1;在非人类中,TMEM16A/ANO1)15,16,17。TMEM16A存在于中。

X. tropicalis tmem16a is expressed in mucin-producing small secretory cells in tadpole skinFunctional studies of Tmem16a in Xenopus are limited to its role in the oocyte and the prevention of polyspermy39,40,41. RT-PCR expression analysis in adults shows expression in various tissues42,43, while bulk RNA sequencing in developing embryos shows expression at Nieuwkoop-Faber (NF) stages NF1, NF9 and NF24-NF4242.

十、 热带tmem16a在蝌蚪皮肤中产生粘蛋白的小分泌细胞中表达非洲爪蟾tmem16a的功能研究仅限于其在卵母细胞中的作用和预防多精子症39,40,41。成人的RT-PCR表达分析显示在各种组织中表达42,43,而发育中的胚胎中的大量RNA测序显示在Nieuwkoop-Faber(NF)阶段NF1,NF9和NF24-NF4242表达。

We therefore sought tissue-specific expression during skin development.Briggs43 generated a developmental time series of single-cell transcriptomes in X. tropicalis embryos, covering early development from pre-gastrulation (NF8) to early tailbud (NF22), and disaggregated multiple cell lineages. Online interrogation of this dataset44 permits analysis of gene expression in specific cell types.

因此,我们在皮肤发育过程中寻求组织特异性表达。Briggs43在热带假丝酵母胚胎中产生了单细胞转录组的发育时间序列,涵盖了从原肠胚形成前(NF8)到早期尾芽(NF22)的早期发育,并分解了多个细胞谱系。在线查询该数据集44允许分析特定细胞类型中的基因表达。

Visualised as an ‘all stages’ SPRING plot45, the mucin-producing small secretory cell (SSC) lineage (Fig. 1a, upper) was originally identified by expression of met (Fig. 1a, lower left)43. tmem16a is expressed within this met-marked SSC lineage (Fig. 1a, lower right). No other clusters of expression in other cell lineages between NF8-NF22 were observed in this ‘all stages’ SPRING plot.

。tmem16a在该met标记的SSC谱系中表达(图1a,右下)。在这个“所有阶段”的春季图中,在NF8-NF22之间的其他细胞谱系中没有观察到其他表达簇。

To confirm specific expression in the SSC lineage and not other epidermal lineages, we analysed epidermal lineages in ‘tree view’. Over developmental time, the SSC lineage differentiates at NF14 from a pool of non-neural ectodermal cells that, from NF11 onwards, give rise to the major cell lineages of the tadpole skin.

为了确认SSC谱系而不是其他表皮谱系中的特异性表达,我们在“树状图”中分析了表皮谱系。随着发育时间的推移,SSC谱系在NF14处从非神经外胚层细胞库中分化出来,从NF11开始,产生蝌蚪皮肤的主要细胞谱系。

Analysis of tmem16a expression over differentiation of these epidermal lineages revealed expression only in SSCs in the developing epidermis, from NF18 and increasing to NF22 (Fig. 1b).Fig. 1X. tropicalis tmem16a is expressed in SSCs in the tadpole skin. (a–b) In a developmental ti.

对这些表皮谱系过度分化的tmem16a表达的分析显示,仅在发育中的表皮中的SSC中表达,从NF18增加到NF22(图1b)。图1X。热带tmem16a在蝌蚪皮肤的SSC中表达。(a–b)在发育性ti中。

X. tropicalis Tmem16a protein localises to the plasma membrane of mucin-producing SSCsTMEM16A has been localised to the apical plasma membrane in the mammalian airway epithelium53 in GCs secreting MUC5AC54, particularly during inflammation55. However, roles at the basolateral compartment of the plasma membrane in intestinal cells have also been described, as has the intracellular location of other paralogues of the TMEM16 family56,57.

十、 热带Tmem16a蛋白定位于产生粘蛋白的SSCsTMEM16A的质膜已定位于分泌MUC5AC54的GC中哺乳动物气道上皮细胞53的顶端质膜,特别是在炎症期间55。然而,还描述了肠细胞质膜基底外侧区室的作用,以及TMEM16家族其他旁系同源物的细胞内位置56,57。

We hypothesised that a functional role in mucin secretion/processing in the tadpole skin would most likely arise from apical expression of Tmem16a.We investigated the cellular localisation of X. tropicalis Tmem16a protein in different planes of individual SSCs in the tadpole skin at NF36 by confocal microscopy, using an antibody against the human TMEM16A protein.

我们假设蝌蚪皮肤中粘蛋白分泌/加工的功能性作用很可能来自Tmem16a的顶端表达。我们使用针对人Tmem16a蛋白的抗体,通过共聚焦显微镜研究了热带假丝酵母Tmem16a蛋白在NF36蝌蚪皮肤中单个SSC的不同平面中的细胞定位。

The SSCs are filled with large, mucin-containing vesicles, visible by scanning electron microscopy (SEM) as bulges at the apical surface of the cell (Fig. 3a). At the SSC apical surface, Tmem16a appeared to surround the PNA-positive vesicles (Fig. 3b, arrowhead), also observable in the mid-plane of the cell (Fig. 3c).

SSC充满大的含粘蛋白的囊泡,通过扫描电子显微镜(SEM)可以看到细胞顶表面的凸起(图3a)。在SSC顶端表面,Tmem16a似乎围绕着PNA阳性囊泡(图3b,箭头),在细胞的中平面也可以观察到(图3c)。

However, deep into the cell, expression was absent from the vesicle boundaries and appeared adjacent to the PNA-positive vesicles (Fig. 3d). Given the typical bulging of vesicles from the apical surface, we hypothesised that Tmem16a is, in fact, apical plasma membrane expression disrupted by this vesicle bulging, and this is supported by Tmem16a 3D surface rendering(Figure 3e).Fig.

然而,在细胞深处,囊泡边界不存在表达,并且出现在PNA阳性囊泡附近(图3d)。鉴于囊泡从顶端表面的典型凸起,我们假设Tmem16a实际上是被这种囊泡凸起破坏的顶端质膜表达,这得到了Tmem16a 3D表面渲染的支持(图3e)。图。

3Tmem16a localises to the plasma and not vesicle membrane in SSCs. (a) SEM of SSCs reveals the presence of large vesicles (example indicated by asterisk) that bulge beyond the apical cell membrane of SSCs. Dashed lines indicate the planes of view in (b–m). (b–e) Immunofluorescent localisat.

。(a) SSC的SEM显示存在大的囊泡(例如用星号表示),其凸起超过SSC的顶端细胞膜。虚线表示(b–m)中的视图平面。(b–e)免疫荧光定位。

X. tropicalis Tmem16a has calcium-activated, voltage-dependent chloride channel activityPrevious studies have shown that X. laevis Tmem16a is a calcium-activated chloride channel that is voltage-dependent26and sensitive to inhibitors41. However, the pharmacology of X. tropicalis Tmem16a has not been characterised, and these data are relevant to understand the potential of the tadpole skin as a model for TMEM16A in human health.We cloned and expressed full-length X.

十、 热带菌Tmem16a具有钙激活的电压依赖性氯离子通道活性。先前的研究表明,X.laevis Tmem16a是一种钙激活的氯离子通道,其电压依赖性26,对抑制剂敏感41。然而,热带假丝酵母Tmem16a的药理学尚未表征,这些数据与了解蝌蚪皮肤作为Tmem16a在人类健康中的模型的潜力有关。我们克隆并表达了全长X。

tropicalis tmem16a in HEK293 cells. At 48 h post-transfection, channel conductance and pharmacological characteristics were examined by whole-cell voltage clamp. Tmem16a channel activity was evoked using membrane depolarisation in the presence of intracellular calcium, and resultant whole-cell currents measured using chloride-selective buffers.

HEK293细胞中的热带tmem16a。转染后48小时,通过全细胞电压钳检查通道电导和药理学特征。在细胞内钙存在下,使用膜去极化诱发Tmem16a通道活性,并使用氯化物选择性缓冲液测量所得的全细胞电流。

A 1 s-step depolarisation from − 70 to + 70 mV in the presence of 338 nM free [Ca2+]i evoked a large current (2.15 ± 0.51 nA, n = 18), which was slow to activate (tauact 146 ± 34 ms, n = 18) and deactivate (taudeact 90 ± 21 ms, n = 18), and was completely inhibited by the presence of 10 µM Ani9 (Fig. 4a)58.

在338 nM游离[Ca2+]i存在下,从-70到+70 mV的1 s步去极化引起大电流(2.15±0.51 nA,n=18),其激活缓慢(tauact 146±34 ms,n=18)和失活(taudeact 90±21 ms,n=18),并且被存在完全抑制10µM Ani9(图4a)58。

These activation kinetics and Ani9 sensitivity are key similarities that X. tropicalis Tmem16a shares with human TMEM16A, which distinguish both from the closest human homologue TMEM16B59.Fig. 4Biophysical and pharmacological characterisation of X. tropicalis Tmem16a. (a) Example currents evoked by single depolarizing pulses from − 70 to + 70 mV when [Ca2+]i is 0, 180 (Ca2+ EC20) or 338 nM (Ca2+ EC100), with inhibition in the presence of 10 μm Ani9 shown in green.

这些激活动力学和Ani9敏感性是热带假丝酵母Tmem16a与人类Tmem16a共有的关键相似之处,这与最接近的人类同源物TMEM16B59都有区别。图4 X的生物物理和药理学表征。热带Tmem16a。(a) 当[Ca2+]i为0180(Ca2+EC20)或338 nM(Ca2+EC100)时,单个去极化脉冲从-70到+70 mV诱发的示例电流,在10μMAni9存在下抑制显示为绿色。

(b) X. tropicalis Tmem16a conductance is dependent on intracellular calcium levels (black) and inhibited in the presence of Ani9 (green). (c) In whole-cell current-voltage (I-V) tests recorded at 0, 180 & .

(b) 十。热带Tmem16a电导取决于细胞内钙水平(黑色),并在Ani9(绿色)存在下受到抑制。(c) 在0、180和记录的全电池电流-电压(I-V)测试中。

X. tropicalis Tmem16a has a comparable pharmacological profile to human TMEM16AWe have shown that, like human TMEM16A, X. tropicalis Tmem16a currents were sensitive to inhibition by Ani9. We extended our analysis of sensitivity to Ani9. Under conditions of maximal conductance (338 nM free [Ca2+]i combined with steady-state depolarisation to + 70 mV), the stepwise extracellular application of increasing concentrations of Ani9 caused a concentration-dependent inhibition of X.

十、 热带假丝酵母Tmem16a具有与人类Tmem16a相当的药理学特征。研究表明,与人类Tmem16a一样,热带假丝酵母Tmem16a电流对Ani9的抑制作用敏感。我们将敏感性分析扩展到Ani9。在最大电导条件下(338 nM游离[Ca2+]i结合稳态去极化至+70 mV),逐步增加浓度的Ani9的细胞外应用引起X的浓度依赖性抑制。

tropicalis Tmem16a current (Fig. 4d). The response of X. tropicalis Tmem16a to Ani9 was identical to that of human TMEM16A in terms of potency (Table 1), with current being blocked over a range of voltages (Fig. 4e). Ani9 inhibited both inward and outward chloride flux, with IC50 values at + 70 mV of 0.098 ± 0.009 µM and at - 70 mV of 0.066 ± 0.012 µM (n = 13; Fig. 4f, normalised for comparison of large currents at + 70 mV vs.

热带Tmem16a电流(图4d)。热带假丝酵母Tmem16a对Ani9的响应在效力方面与人Tmem16a的响应相同(表1),电流在一定电压范围内被阻断(图4e)。Ani9抑制向内和向外的氯化物通量,IC50值在+70 mV时为0.098±0.009μM,在-70 mV时为0.066±0.012μM(n=13;图4f,标准化以比较+70 mV vs。

very small currents at - 70 mV).Table 1 Pharmacological profile comparison of X. tropicalis Tmem16a with published data from human TMEM16A (abc and acd isoforms).Full size tableUnder the same conditions of maximal conductance, we defined concentration-inhibition relationships for a selection of chloride channel inhibitors known to inhibit human TMEM16A (it is noteworthy that CaCCinhA01 is also an inhibitor of CFTR)60,61,62,63,64,65.

在-70 mV时电流很小)。表1热带假丝酵母Tmem16a的药理学特征与来自人Tmem16a(abc和acd同种型)的公开数据的比较。全尺寸表在相同的最大电导条件下,我们定义了一系列已知抑制人TMEM16A的氯通道抑制剂的浓度-抑制关系(值得注意的是,CaCCinhA01也是CFTR的抑制剂)60,61,62,63,64,65。

IC50 values for X. tropicalis Tmem16a are given in Table 1, alongside literature values for human TMEM16A from similar whole-cell patch-clamp studies. Side-by-side comparison of these values shows the compounds are similarly potent (within 3-fold of human TMEM16A values) except for niflumic acid, which was found to be markedly less potent at inhibiting X.

表1给出了热带假丝酵母Tmem16a的IC50值,以及来自类似全细胞膜片钳研究的人Tmem16a的文献值。这些值的并排比较表明,这些化合物具有相似的效力(在人类TMEM16A值的3倍以内),但尼氟米特酸除外,尼氟米特酸对X的抑制作用明显较弱。

tropicalis Tmem16a. There is some dispute in the literature of the effectiveness of T16inh-A01 .

热带Tmem16a。关于T16inh-A01的有效性,文献中存在一些争议。

X. tropicalis tmem16a expression constructA pCS2-tmem16a expression construct was generated by PCR amplification and cloning of the X. tropicalis tmem16a coding sequence from cDNA derived from animal cap mRNA (to enrich for epidermal mRNAs). Animal caps were dissected at NF8 and cultured in suspension on agarose-coated dishes in Danilchick’s for Amy (DFA) media until sibling stage NF35.

十、 热带假丝酵母tmem16a表达构建体pCS2-tmem16a表达构建体是通过PCR扩增和克隆来自动物帽mRNA的cDNA的热带假丝酵母tmem16a编码序列产生的(以富集表皮mRNA)。在NF8处解剖动物帽,并在Danilchick for Amy(DFA)培养基中的琼脂糖包被的培养皿上悬浮培养,直到兄弟姐妹阶段NF35。

RNA from 10 animal caps was isolated using an RNeasy Mini kit (Qiagen) and reverse transcribed using Superscript IV reverse transcriptase (Thermo Fisher). PCR amplification was performed with primers previously used to clone X. tropicalis tmem16a from oocytes89. Primer sequences were: forward primer 5’-GTACCATTGGTGGTGCGCACAGTATATAG-3’; reverse primer 5’-TCTATCAGTGGAATGAAT GCC-3’.

使用RNeasy Mini kit(Qiagen)从10个动物帽中分离RNA,并使用Superscript IV逆转录酶(Thermo Fisher)进行逆转录。用先前用于从卵母细胞中克隆热带假丝酵母tmem16a的引物进行PCR扩增89。引物序列为:正向引物5'-GTACCATTGGTGCGCACAGTATATAG-3';反向引物5'-TCTATCAGTGGAATGAAT GCC-3'。

PCR reactions comprised 1 X Phusion High-Fidelity DNA Polymerase (NEB), 1 µl cDNA reaction and 500 nm each primer, and were performed on a Veriti 96-well fast thermal cycler (Thermo Fisher) using standard PCR methods. The PCR product (approximately 3 kb) was isolated via agarose gel electrophoresis and TA-cloned into the pCRII-TOPO vector (Thermo Fisher) and then subcloned into the pCS2 expression vector using BamHI and XhoI sites.

PCR反应包括1 X Phusion高保真DNA聚合酶(NEB),1µl cDNA反应和每个引物500 nm,并使用标准PCR方法在Veriti 96孔快速热循环仪(Thermo Fisher)上进行。通过琼脂糖凝胶电泳分离PCR产物(约3 kb),并将TA克隆到pCRII-TOPO载体(Thermo Fisher)中,然后使用BamHI和XhoI位点亚克隆到pCS2表达载体中。

The plasmid was amplified using standard microbiological methods.Mammalian cell culture and transfectionHEK Flp-In-293 null cells (Thermo Fisher) were stored, thawed and cultured as described by the supplier, but without antibiotic supplementation of the growth medium. For transfections, cells were seeded in 75 cm2 vented culture flasks at a density of 0.018 × 106 cells per cm2 and maintained at 37 oC in 5% CO2 for 24 h, to ensure approximately 40% confluence at the point of transfection.

使用标准微生物学方法扩增质粒。哺乳动物细胞培养和转染HEK Flp-In-293空细胞(Thermo Fisher)按照供应商的描述进行储存,解冻和培养,但不添加抗生素补充生长培养基。对于转染,将细胞以每平方厘米0.018×106个细胞的密度接种在75平方厘米的通风培养瓶中,并在37℃,5%CO 2中保持24小时,以确保转染点约40%汇合。

Cells were transfected with 6 µg of pCS2-tmem16a plasmid in a 1:6 volume ratio with transfection .

转染后,用6µg pCS2-tmem16a质粒以1:6的体积比转染细胞。

Data availability

数据可用性

Data in this manuscript is available upon reasonable request to the corresponding author.

本手稿中的数据可根据通讯作者的合理要求提供。

ReferencesZhou-Suckow, Z., Duerr, J., Hagner, M. & Mall, M. A. Airway mucus, inflammation and remodeling: Emerging links in the pathogenesis of chronic lung diseases. Cell. Tissue Res. 367, 537–550 (2017).Article

参考文献Zhou Suckow,Z.,Duerr,J.,Hagner,M。&Mall,M.A。气道粘液,炎症和重塑:慢性肺病发病机制中的新兴环节。细胞。Tissue Res.367537–550(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kurbatova, P. et al. Model of mucociliary clearance in cystic fibrosis lungs. J. Theor. Biol. 372, 81–88 (2015).Article

Kurbatova,P。等人。囊性纤维化肺粘膜纤毛清除模型。J、 理论。生物学372,81-88(2015)。文章

ADS

广告

MathSciNet

MathSciNet

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morgan, L. E. et al. Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat. Commun. 12, 249 (2021).Article

Morgan,L.E.等人。二硫化物破坏可逆转过敏性气道疾病中的粘液功能障碍。国家公社。12249(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McShane, A. et al. Mucus Curr. Biol. 31, R938–R945 (2021).Article

McShane,A。等人粘液Curr。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rommens, J. M. et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245, 1059–1065 (1989).Article

Rommens,J.M.等人。囊性纤维化基因的鉴定:染色体行走和跳跃。科学2451059-1065(1989)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Riordan, J. R. et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).Article

Riordan,J.R.等人。囊性纤维化基因的鉴定:互补DNA的克隆和表征。科学2451066-1073(1989)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kerem, B. S. et al. Identification of the cystic fibrosis gene: Genetic analysis. Science 245, 1073–1080 (1989).Article

Kerem,B.S.等人。囊性纤维化基因的鉴定:遗传分析。科学2451073-1080(1989)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Boucher, R. C. Evidence for airway surface dehydration as the initiating event in CF airway disease. J. Intern. Med. 261, 5–16 (2007).Article

Boucher,R.C。气道表面脱水作为CF气道疾病起始事件的证据。J、 实习生。医学261,5-16(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ehre, C., Ridley, C. & Thornton, D. J. Cystic fibrosis: An inherited disease affecting mucin-producing organs. Int. J. Biochem. Cell. Biol. 52, 136–145 (2014).Article

Ehre,C.,Ridley,C。&Thornton,D.J。囊性纤维化:一种影响粘蛋白产生器官的遗传性疾病。Int.J.生物化学。细胞。生物学52136-145(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guss, A. M. et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 5, 20 (2011).Article

Guss,A.M.等人。与囊性纤维化相关的细菌的系统发育和代谢多样性。ISME J.5,20(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rudkjøbing, V. B. et al. The microorganisms in chronically infected end-stage and non-end-stage cystic fibrosis patients. FEMS Immunol. Med. Microbiol. 65, 236–244 (2012).Article

Rudkjøbing,V.B.等人。慢性感染终末期和非终末期囊性纤维化患者的微生物。FEMS免疫。医学微生物学。65236-244(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Middleton, P. G. & Taylor-Cousar, J. L. Development of elexacaftor – tezacaftor – ivacaftor: Highly effective CFTR modulation for the majority of people with cystic fibrosis. Expert Rev. Respir. Med. 15, 723–735 (2021).Article

Middleton,P.G。和Taylor Cousar,J.L。elexacaftor–tezacaftor–ivacaftor的开发:对大多数囊性纤维化患者的高效CFTR调节。专家副总裁。医学15723-735(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tewkesbury, D. H., Robey, R. C. & Barry, P. J. Progress in precision medicine in cystic fibrosis: A focus on CFTR modulator therapy. Breathe (Sheff) 17, 210112 (2021).Article

Tewkesbury,D.H.,Robey,R.C。和Barry,P.J。囊性纤维化精准医学进展:关注CFTR调节剂治疗。呼吸(脱落)17210112(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Laselva, O. et al. Small-molecule drugs for cystic fibrosis: Where are we now?. Pulm. Pharmacol. Ther. 72, 102098 (2022).Article

Laselva,O.等人,《治疗囊性纤维化的小分子药物:我们现在在哪里?》?。脉冲。药理学。他们。72102098(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Danahay, H. & Gosling, M. TMEM16A: An alternative approach to restoring airway anion secretion in cystic fibrosis?. Int. J. Mol. Sci. 21, 2386 (2020).Article

Danahay,H。&Gosling,M。TMEM16A:恢复囊性纤维化中气道阴离子分泌的替代方法?。Int.J.Mol.Sci。212386(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Danahay, H. L. et al. TMEM16A potentiation: A novel therapeutic approach for the treatment of cystic fibrosis. Am. J. Respir. Crit. Care Med. 201, 946–954 (2020).Article

Danahay,H.L.等人,《TMEM16A增强:一种治疗囊性纤维化的新型治疗方法》。Am.J.Respir。暴击。护理医学201946-954(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mitri, C., Sharma, H., Corvol, H. & Tabary, O. TMEM16A/ANO1: Current strategies and novel drug approaches for cystic fibrosis. Cells 10, 2867 (2021).Article

Mitri,C.,Sharma,H.,Corvol,H。&Tabary,O。TMEM16A/ANO1:囊性纤维化的当前策略和新药方法。细胞102867(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pedemonte, N. & Galietta, L. J. V. Structure and function of tmem16 proteins (anoctamins). Physiol. Rev. 94, 419–459 (2014).Article

Pedemonte,N。&Galietta,L.J.V。tmem16蛋白(anoctamins)的结构和功能。生理学。修订版94419–459(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oh, U. & Jung, J. Cellular functions of TMEM16/anoctamin. Pflugers Arch. 468, 443 (2016).Article

Oh,U。&Jung,J。TMEM16/anoctamin的细胞功能。普卢格斯拱门。468443(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Agostinelli, E. & Tammaro, P. Polymodal control of TMEM16x channels and scramblases. Int. J. Mol. Sci. 23, 1580 (2022).Article

Agostinelli,E。&Tammaro,P。TMEM16x通道和scramblases的多模态控制。Int.J.Mol.Sci。231580(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fischer, H., Illek, B., Sachs, L., Finkbeiner, W. E. & Widdicombe, J. H. CFTR and calcium-activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L585–L594 (2010).Article

Fischer,H.,Illek,B.,Sachs,L.,Finkbeiner,W.E。&Widdicombe,J.H。CFTR和浆液或粘液表型的人气道腺细胞原代培养物中的钙激活氯通道。Am.J.Physiol。肺细胞。分子生理学。299,L585–L594(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, F. et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. USA 109, 16354–16359 (2012).Article

Huang,F。等人。钙激活的氯离子通道TMEM16A调节粘蛋白分泌和气道平滑肌收缩。程序。纳特尔。阿卡德。。美国10916354–16359(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gorrieri, G. et al. Goblet cell hyperplasia requires high bicarbonate transport to support mucin release. Sci. Rep. 6, 1–15 (2016).Article

Gorrieri,G。等人。杯状细胞增生需要高碳酸氢盐转运以支持粘蛋白释放。。。文章

Google Scholar

谷歌学者

Kondo, M. et al. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model. Clin. Exp. Allergy. 47, 795–804 (2017).Article

Kondo,M.等人。豚鼠哮喘模型中氯离子的转运和TMEM16A的过表达。临床。实验过敏。47795-804(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scudieri, P. et al. Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J. Physiol. 590, 6141–6155 (2012).Article

Scudieri,P。等人。TMEM16A氯通道过表达与气道杯状细胞化生的关联。J、 生理学。5906141-6155(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schroeder, B. C., Cheng, T., Jan, Y. N. & Jan, L. Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134, 1019–1029 (2008).Article

Schroeder,B.C.,Cheng,T.,Jan,Y.N。&Jan,L.Y。表达克隆TMEM16A作为钙激活的氯通道亚基。细胞。1341019-1029(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322, 590–594 (2008).Article

Caputo,A。等人,TMEM16A,一种与钙依赖性氯通道活性相关的膜蛋白。科学。322590-594(2008)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455, 1210–1215 (2008).Article

Yang,Y.D.等人TMEM16A赋予受体激活的钙依赖性氯化物电导。自然。4551210-1215(2008)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiao, Q. et al. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc. Natl. Acad. Sci. USA. 108, 8891–8896 (2011).Article

Xiao,Q。等人。TMEM16A/Ano1氯化物通道的电压和钙依赖性门控通过第一个细胞内环物理耦合。程序。纳特尔。阿卡德。。美国1088891–8896(2011)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Segura-Covarrubias, G. et al. Voltage-dependent protonation of the calcium pocket enable activation of the calcium-activated chloride channel anoctamin-1 (TMEM16A). Sci. Rep. 10, 6644 (2020).Article

Segura-Covarrubias,G。等人。钙袋的电压依赖性质子化能够激活钙激活的氯离子通道anoctamin-1(TMEM16A)。。代表106644(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qu, Z. & Hartzell, H. C. Anion permeation in Ca2+-activated Cl – channels. J. Gen. Physiol. 116, 825–844 (2000).Article

Qu,Z。和Hartzell,H.C。Ca2+激活的Cl-通道中的阴离子渗透。J、 一般生理学。116825-844(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jung, J. et al. Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin. Proc. Natl. Acad. Sci. USA 110, 360–365 (2013).Article

Jung,J。等人。Ca2+/钙调蛋白对ANO1/TMEM16A HCO3渗透性的动态调节。程序。纳特尔。阿卡德。。美国110360–365(2013)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sondo, E., Caci, E. & Galietta, L. J. V. The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int. J. Biochem. Cell Biol. 52, 73–76 (2014).Article

Sondo,E.,Caci,E。&Galietta,L.J.V。TMEM16A氯通道作为囊性纤维化的替代治疗靶点。Int.J.生物化学。细胞生物学。52,73-76(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Benedetto, R., Cabrita, I., Schreiber, R. & Kunzelmann, K. TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB J. 33, 4502–4512 (2019).Article

Benedetto,R.,Cabrita,I.,Schreiber,R。&Kunzelmann,K。TMEM16A对于气道和肠道的基础粘液分泌是必不可少的。FASEB J.334502–4512(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Simões, F. B. et al. TMEM16A chloride channel does not drive mucus production. Life Sci. Alliance. 2, e201900462 (2019).Article

Simões,F.B.等人,TMEM16A氯化物通道不会驱动粘液产生。生命科学。联盟。2,e201900462(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dubaissi, E. A tad of hope in the fight against airway disease. Biochem. Soc. Trans. 48, 2347–2357 (2020).Article

杜拜西,E。在抗击气道疾病方面有一点希望。生物化学。社会事务。482347-2357(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walentek, P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis. 59, e23406 (2021).Article

Walentek,P。非洲爪蟾表皮和内胚层上皮作为粘液纤毛上皮进化,疾病和化生的模型。起源。59,e23406(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dubaissi, E. et al. Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface. Proc. Natl. Acad. Sci. USA. 115, 726–731 (2018).Article

Dubaissi,E。等人。热带非洲爪蟾皮肤表面粘液屏障的功能表征。程序。纳特尔。阿卡德。。美国115726-731(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miledi, R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc. R. Soc. Lond. 215, 491–497 (1982).ADS

Miledi,R。非洲爪蟾卵母细胞中钙依赖性瞬时外向电流。程序。R、 Soc。隆德。215491-497(1982)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barish, M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. 342, 309–325 (1983).Article

Barish,M.E。未成熟非洲爪蟾卵母细胞中的瞬时钙依赖性氯电流。J、 生理学。342309-325(1983)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wozniak, K. L., Phelps, W. A., Tembo, M., Lee, M. T. & Carlson, A. E. The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis. J. Gen. Physiol. 150, 1249–1259 (2018).Article

Wozniak,K.L.,Phelps,W.A.,Tembo,M.,Lee,M.T。&Carlson,A.E。TMEM16A通道介导非洲爪蟾的快速多精子阻滞。J、 一般生理学。1501249-1259(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ryu, R. H. et al. Cloning and heterologous expression of new xANO2 from Xenopus laevis. Biochem. Biophys. Res. Commun. 408, 559–565 (2011).Article

Ryu,R.H.等人。非洲爪蟾新xANO2的克隆和异源表达。生物化学。生物物理。公共资源。408559-565(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huanosta-Gutiérrez, A. et al. TMEM16A alternative splicing isoforms in Xenopus tropicalis: distribution and functional properties. Biochem. Biophys. Res. Commun. 446, 1096–1101 (2014).Article

Hunosta Gutiérrez,A。等人。热带非洲爪蟾TMEM16A选择性剪接亚型:分布和功能特性。生物化学。生物物理。公共资源。4461096-1101(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bowes, J. B. et al. Xenbase: Gene expression and improved integration. Nucleic Acids Res. 38, D607–D612 (2010).Article

Bowes,J.B.等人,Xenbase:基因表达和改进的整合。核酸研究38,D607–D612(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360 (2018).Available at. https://kleintools.hms.harvard.edu/tools/currentDatasetsList_xenopus_v2.htmlWeinreb, C., Wolock, S. & Klein, A. M. SPRING: A kinetic interface for visualizing high dimensional single-cell expression data.

Briggs,J.A.等人。单细胞分辨率下脊椎动物胚胎发生中基因表达的动态。科学360(2018)。可在获得。https://kleintools.hms.harvard.edu/tools/currentDatasetsList_xenopus_v2.htmlWeinreb,C.,Wolock,S。&Klein,A.M。SPRING:用于可视化高维单细胞表达数据的动力学界面。

Bioinformatics 34, 1246–1248 (2018).Article .

生物信息学341246-1248(2018)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dubaissi, E. et al. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, antiinfective function in the frog embryonic mucociliary epidermis. Development 141, 1514–1525 (2014).Article

Dubaissi,E。等人。分泌细胞类型与多纤毛细胞,离子细胞和杯状细胞一起发育,并在青蛙胚胎粘液纤毛表皮中提供保护性,抗感染功能。发展1411514-1525(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, J. et al. A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development. Sci. Adv. 9, eadd5745 (2023).Article

Lee,J。等人。非洲爪蟾粘液纤毛上皮的单细胞,时间分辨分析揭示了发育的非层次模型。。Adv.9,eadd5745(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Billett, F. S. & Gould, R. P. Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. J. Anat. 108, 465 (1971).CAS

Billett,F.S。&Gould,R.P。非洲爪蟾胚胎分化表皮的精细结构变化。J、 阿纳特。108465(1971)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Okuda, K. et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am. J. Respir. Crit. Care Med. 199, 715–727 (2019).Article

Okuda,K。等人。分泌粘蛋白MUC5AC和MUC5B在正常/健康人气道中的定位。Am.J.Respir。暴击。护理医学199715-727(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walentek, P. et al. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev. Biol. 408, 292–304 (2015).Article

非洲爪蟾粘液纤毛表皮的发育和功能需要ATP4a,这是研究质子泵抑制剂相关性肺炎的潜在模型。开发生物。408292-304(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, G. et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Invest. 119, 2914–2924 (2009).CAS

SPDEF是小鼠肺杯状细胞分化所必需的,并调节与粘液产生相关的基因网络。J、 临床。投资。1192914-2924(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paranjapye, A., Mutolo, M. J., Ebron, J. S., Leir, S. H. & Harris, A. The FOXA1 transcriptional network coordinates key functions of primary human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 319, L126–L136 (2020).Article

Paranjapye,A.,Mutolo,M.J.,Ebron,J.S.,Leir,S.H。&Harris,A。FOXA1转录网络协调原代人气道上皮细胞的关键功能。Am.J.Physiol。肺细胞。分子生理学。319,L126–L136(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, F. et al. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc. Natl. Acad. Sci. 106, 21413–21418 (2009).Article

Huang,F。等。TMEM16A钙激活氯通道表达和功能的研究。程序。纳特尔。阿卡德。。10621413-21418(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Caci, E. et al. Upregulation of TMEM16A protein in bronchial epithelial cells by bacterial pyocyanin. PLoS ONE 10, e0131775 (2015).Article

Caci,E。等人。细菌绿脓菌素对支气管上皮细胞中TMEM16A蛋白的上调。PLoS ONE 10,e0131775(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, Y. et al. Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. Int. Immunopharmacol. 40, 106–114 (2016).Article

秦,Y。等人。白细胞介素-13通过STAT6-TMEM16A-ERK1/2途径在人气道上皮细胞中刺激MUC5AC表达。国际免疫药理学。40106-114(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duran, C., Qu, Z., Osunkoya, A. O., Cui, Y. & Hartzell, H. C. ANOs 3–7 in the anoctamin/Tmem16 Cl – channel family are intracellular proteins. Am. J. Physiol. Cell. Physiol. 302, C482 (2012).Article

Duran,C.,Qu,Z.,Osunkoya,A.O.,Cui,Y.&Hartzell,H.C。anoctamin/Tmem16 Cl-通道家族中的ANOs 3-7是细胞内蛋白质。Am.J.Physiol。细胞。生理学。302,C482(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schreiber, R., Ousingsawat, J. & Kunzelmann, K. Targeting of intracellular TMEM16 proteins to the plasma membrane and activation by purinergic signaling. Int. J. Mol. Sci. 21, 1–16 (2020).Article

Schreiber,R.,Ousingsawat,J。&Kunzelmann,K。将细胞内TMEM16蛋白靶向质膜并通过嘌呤能信号传导激活。Int.J.Mol.Sci。21,1-16(2020)。文章

Google Scholar

谷歌学者

Seo, Y. et al. Ani9, a novel potent small-molecule ANO1 inhibitor with negligible effect on ANO2. PLoS ONE 11, e0155771 (2016).Article

。PLoS ONE 11,e0155771(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Scudieri, P., Sondo, E., Caci, E., Ravazzolo, R. & Galietta, L. J. V. TMEM16A-TMEM16B chimaeras to investigate the structure-function relationship of calcium-activated chloride channels. Biochem. J. 452, 443–455 (2013).Article

Scudieri,P.,Sondo,E.,Caci,E.,Ravazzolo,R。&Galietta,L.J.V。TMEM16A-TMEM16B嵌合体研究钙激活氯通道的结构-功能关系。生物化学。J、 452443-455(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bradley, E. et al. Pharmacological characterization of TMEM16A currents. Channels. 8, 308–320 (2014).Article

Bradley,E。等人。TMEM16A电流的药理学表征。渠道。8308–320(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seo, Y. et al. Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines. PLoS ONE 10, e0133656 (2015).Article

Seo,Y。等人。艾地苯醌对ANO1/TMEM16A氯通道的抑制及其对癌细胞系的细胞毒性。PLoS ONE 10,e0133656(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Characterization of the effects of Cl – channel modulators on TMEM16A and bestrophin-1 Ca2 + activated Cl – channels. Pflugers Arch. Eur. J. Physiol. 467, 1417–1430 (2015).Article

Liu,Y。等人。Cl-通道调节剂对TMEM16A和bestrophin-1 Ca2++激活Cl-通道影响的表征。普卢格斯拱门。Eur.J.Physiol。4671417-1430(2015)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Miner, K. et al. Drug repurposing: the anthelmintics niclosamide and nitazoxanide are potent TMEM16A antagonists that fully bronchodilate airways. Front. Pharmacol. 10, 51 (2019).Article

Miner,K。等人。药物再利用:驱虫药氯硝柳胺和硝唑尼特是有效的TMEM16A拮抗剂,可完全支气管扩张气道。正面。药理学。10,51(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Henckels, K. A., Fong, D. & Phillips, J. E. Development of a QPatch-automated electrophysiology assay for identifying TMEM16A small-molecule inhibitors. Assay. Drug Dev. Technol. 18, 134–147 (2020).Article

Henckels,K.A.,Fong,D。&Phillips,J.E。开发用于鉴定TMEM16A小分子抑制剂的QPatch自动电生理测定。测定。药物开发技术。18134-147(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Danahay, H. et al. Niclosamide does not modulate airway epithelial function through blocking of the calcium activated chloride channel, TMEM16A. Front. Pharmacol. 14, 1142342 (2023).Article

Danahay,H。等人。氯硝柳胺不通过阻断钙激活的氯离子通道TMEM16A来调节气道上皮功能。正面。药理学。141142342(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).Article

Martin,F.J.等人,Ensembl 2023。核酸研究51,D933-D941(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kesimer, M., Makhov, A. M., Griffith, J. D., Verdugo, P. & Sheehan, J. K. Unpacking a gel-forming mucin: A view of MUC5B organization after granular release. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, 15–22 (2010).Article

Kesimer,M.,Makhov,A.M.,Griffith,J.D.,Verdugo,P。&Sheehan,J.K。解开凝胶形成粘蛋白:颗粒释放后MUC5B组织的视图。Am.J.Physiol。肺细胞。分子生理学。298,15-22(2010)。文章

Google Scholar

谷歌学者

Abdullah, L. H. et al. Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways. JCI Insight. 2, e89752 (2017).Article

Abdullah,L.H.等人。囊性纤维化气道中MUC5B粘蛋白分泌后成熟缺陷。JCI Insight。2,e89752(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bartoszewski, R., Matalon, S. & Collawn, J. F. Ion channels of the lung and their role in disease pathogenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, 859–872 (2017).Article

Bartoszewski,R.,Matalon,S。&Collawn,J.F。肺离子通道及其在疾病发病机制中的作用。Am.J.Physiol。肺细胞。分子生理学。313859-872(2017)。文章

CAS

中科院

Google Scholar

谷歌学者

Shi, S. et al. Recent progress in structural studies on TMEM16A channel. Comput. Struct. Biotechnol. J. 18, 714–722 (2020).Article

Shi,S.等人。TMEM16A通道结构研究的最新进展。计算机。结构。生物技术。J、 18714-722(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Namkung, W., Phuan, P. W. & Verkman, A. S. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 2365–2374 (2011).Article

Namkung,W.,Phuan,P.W。&Verkman,A.S。TMEM16A抑制剂揭示TMEM16A是气道和肠上皮细胞中钙激活氯通道电导的次要成分。J、 生物。化学。第二章第二节第二节第二节第二节第二节第二节第二节第二节第二节第二节第二节第二节第二节第二节第三节第三节第三节第三节第三节第三。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rock, J. R. et al. Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. J. Biol. Chem. 284, 14875–14880 (2009).Article

Rock,J.R。等人。跨膜蛋白16A(TMEM16A)是小鼠气道中Ca2+调节的Cl分泌通道。J、 生物。化学。28414875–14880(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, J. et al. TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13. Exp. Cell. Res. 334, 260–269 (2015).Article

Lin,J。等人。TMEM16A介导白细胞介素-13诱导的粘液分泌过多。扩展单元格。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, M. et al. Chloride channels regulate differentiation and barrier functions of the mammalian airway. Elife. 9, e53085 (2020).Article

He,M。等人。氯离子通道调节哺乳动物气道的分化和屏障功能。埃利夫。9,e53085(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gustafsson, J. K. et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209, 1263–1272 (2012).Article

Gustafsson,J.K。等人。正确的粘蛋白分泌需要碳酸氢盐和功能性CFTR通道,并将囊性纤维化与其粘液表型联系起来。J、 实验医学2091263-1272(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, E. Y. T., Yang, N., Quinton, P. M. & Chin, W. C. A new role for bicarbonate in mucus formation. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L542 (2010).Article

Chen,E.Y.T.,Yang,N.,Quinton,P.M。和Chin,W.C。碳酸氢盐在粘液形成中的新作用。Am.J.Physiol。肺细胞。分子生理学。299,L542(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sala-Rabanal, M., Yurtsever, Z., Nichols, C. G. & Brett, T. J. Secreted CLCA1 modulates TMEM16A to activate ca(2+)-dependent chloride currents in human cells. Elife. 4, e05875 (2015).Article

Sala Rabanal,M.,Yurtsever,Z.,Nichols,C.G。&Brett,T.J。分泌的CLCA1调节TMEM16A以激活人细胞中ca(2+)依赖性氯电流。埃利夫。4,e05875(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nyström, E. E. L. et al. V. Calcium-activated chloride channel regulator 1 (CLCA1) controls mucus expansion in colon by proteolytic activity. EBioMedicine. 33, 134–143 (2018).Article

Nyström,E.E.L.等人V.钙激活的氯通道调节剂1(CLCA1)通过蛋白水解活性控制结肠粘液的扩张。EBioMedicine。33134-143(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Centeio, R., Ousingsawat, J., Schreiber, R. & Kunzelmann, K. CLCA1 regulates airway mucus production and ion secretion through TMEM16A. Int. J. Mol. Sci. 22 (10), 5133 (2021).Article

Centeio,R.,Ousingsawat,J.,Schreiber,R。&Kunzelmann,K。CLCA1通过TMEM16A调节气道粘液产生和离子分泌。Int.J.Mol.Sci。22(10),5133(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ousingsawat, J., Kongsuphol, P., Schreiber, R. & Kunzelmann, K. CFTR and TMEM16A are separate but functionally related Cl- channels. Cell. Physiol. Biochem. 28, 715–724 (2011).Article

Ousingsawat,J.,Kongsuplo,P.,Schreiber,R。&Kunzelmann,K。CFTR和TMEM16A是独立但功能相关的Cl通道。细胞。生理学。生物化学。28715-724(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Benedetto, R. et al. Epithelial chloride transport by CFTR requires TMEM16A. Sci. Rep. 7, 12397 (2017).Article

Benedetto,R。等人。CFTR对上皮氯化物的转运需要TMEM16A。。代表712397(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland Publishing Company, 1967).

Nieuwkoop,P.D。和Faber,J。非洲爪蟾(Daudin)的正常表(北荷兰出版公司,1967)。

Google Scholar

谷歌学者

Kim, S. H., Yamamoto, A., Bouwmeester, T., Agius, E. & Robertis, E. M. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development. 125, 4681–4690 (1998).Article

Kim,S.H.,Yamamoto,A.,Bouwmeester,T.,Agius,E。&Robertis,E.M。在非洲爪蟾原肠胚形成过程中,近轴原钙粘蛋白在中胚层选择性粘附和细胞运动中的作用。发展。1254681-4690(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell. Biol. 36, 685–695 (1991).Article

Harland,R.M。原位杂交:一种改进的非洲爪蟾胚胎整体安装方法。方法细胞。生物学36685-695(1991)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lea, R., Bonev, B., Dubaissi, E., Vize, P. D. & Papalopulu, N. Multicolor fluorescent in situ mRNA hybridization (FISH) on whole mounts and sections. Methods Mol. Biol. 917, 431–444 (2012).Article

Lea,R.,Bonev,B.,Dubaissi,E.,Vize,P.D。和Papalopulu,N。在整个坐骑和切片上进行多色荧光原位mRNA杂交(FISH)。方法分子生物学。917431-444(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gilchrist, M. J. et al. Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev. Biol. 271, 498–516 (2004).Article

Gilchrist,M.J.等人定义了来自热带非洲爪蟾EST项目的大量全长克隆。开发生物。271498-516(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dubaissi, E., Panagiotaki, N., Papalopulu, N. & Vize, P. D. Antibody development and use in chromogenic and fluorescent immunostaining. Methods Mol. Biol. 917, 411–429 (2012).Article

Dubaissi,E.,Panagiotaki,N.,Papalopulu,N。&Vize,P.D。抗体开发和在显色和荧光免疫染色中的应用。方法分子生物学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article

。《自然方法》9676-682(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reyes, J. P. et al. Anion permeation in calcium-activated chloride channels formed by TMEM16A from Xenopus tropicalis. Pflugers Arch. 466, 1769–1777 (2014).Article

Reyes,J.P.等人,《由热带非洲爪蟾TMEM16A形成的钙激活氯离子通道中的阴离子渗透》。普卢格斯拱门。4661769-1777(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sheehan, J. K. et al. Physical characterization of the MUC5AC mucin: a highly oligomeric glycoprotein whether isolated from cell culture or in vivo from respiratory mucous secretions. Biochem. J. 347, 37 (2000).Article

。生物化学。J、 347,37(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kishimoto, H., Ridley, C. & Thornton, D. J. The lipophilic cyclic peptide cyclosporin A induces aggregation of gel-forming mucins. Sci. Rep. 12, 6153 (2022).Article

Kishimoto,H.,Ridley,C。&Thornton,D.J。亲脂性环肽环孢菌素A诱导凝胶形成粘蛋白的聚集。。代表126153(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by funding from the BBSRC (BB/W006456/1), BBSRC IAA (IAA 403) and NC3Rs (NC/S001034/1). We thank the University of Manchester Biological Service Facility for technical support in our Xenopus studies. We thank Karel Dorey, Raphael Thuret and Laura Campbell for constructive feedback on experimental design and interpretation.Author informationAuthor notesEamon Dubaissi and Emma N.

下载参考文献致谢这项工作得到了BBSRC(BB/W006456/1),BBSRC IAA(IAA 403)和NC3Rs(NC/S001034/1)的资助。我们感谢曼彻斯特大学生物服务设施在我们的非洲爪蟾研究中提供的技术支持。我们感谢Karel Dorey,Raphael Thuret和Laura Campbell对实验设计和解释的建设性反馈。作者信息作者notesEamon Dubaisi和Emma N。

Hilton have contributed equally to this research and should be considered joint first authors.Authors and AffiliationsSchool of Biological Sciences, University of Manchester, Manchester, M13 9PT, UKEamon Dubaissi, Emma N. Hilton, Richard Collins, Charlotte Holt, Peter March, Richard K Grencis, Ian S Roberts & David J ThorntonLydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UKEamon Dubaissi, Emma N.

希尔顿对这项研究做出了同样的贡献,应该被视为联合第一作者。作者和附属机构曼彻斯特大学生物科学学院,M13 9PT,UKEamon Dubaisi,Emma N.Hilton,Richard Collins,Charlotte Holt,Peter March,Richard K Grencis,Ian S Roberts&David J ThorntonLydia Becker免疫与炎症研究所,曼彻斯特大学,M13 9PT,UKEamon Dubaisi,Emma N。

Hilton, Richard K Grencis, Ian S Roberts & David J ThorntonWellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UKEamon Dubaissi, Emma N. Hilton, Richard K Grencis & David J ThorntonFaculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UKEamon Dubaissi, Emma N.

希尔顿,理查德·K·格伦西斯,伊恩·S·罗伯茨和大卫·J·桑顿·威康曼彻斯特大学细胞基质研究中心,M13 9PT,UKEamon Dubaisi,Emma N.希尔顿,理查德·K·格伦西斯和大卫·J·桑顿曼彻斯特大学生物,医学与健康学院,M13 9PT,UKEamon Dubaisi,Emma N。

Hilton, Richard Collins, Charlotte Holt, Peter March, Richard K Grencis, Ian S Roberts & David J ThorntonSussex Drug Discovery Centre, University of Sussex, Falmer, Brighton, BN1 9QJ, UKSarah Lilley & Martin GoslingEnterprise Therapeutics, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UKHenry Danahay & Martin GoslingAuthorsEamon DubaissiView author publicationsYou can also search for this author in.

希尔顿(Hilton),理查德·柯林斯(Richard Collins),夏洛特·霍尔特(Charlotte Holt),彼得·马奇(Peter March),理查德·格伦西斯(Richard K Grencis),伊恩·S·罗伯茨(Ian S Roberts)和大卫·J·桑顿(David J ThorntonSussex)苏塞克斯大学(University of Sussex)药物发现中心(Sussex Drug Discovery Centre),法尔默(Falmer),布莱顿(Brighton),BN1 9QJ,UKSarah Lilley&Martin GoslingEnterprise Therapeutics),苏塞克斯创新中心(Sussex。

PubMed Google ScholarEmma N. HiltonView author publicationsYou can also search for this author in

PubMed Google ScholarEmma N.HiltonView作者出版物您也可以在

PubMed Google ScholarSarah LilleyView author publicationsYou can also search for this author in

PubMed Google ScholarSarah LilleyView作者出版物您也可以在

PubMed Google ScholarRichard CollinsView author publicationsYou can also search for this author in

PubMed Google ScholarRichard CollinsView作者出版物您也可以在

PubMed Google ScholarCharlotte HoltView author publicationsYou can also search for this author in

PubMed Google ScholarCharlotte HoltView作者出版物您也可以在

PubMed Google ScholarPeter MarchView author publicationsYou can also search for this author in

PubMed Google ScholarPeter MarchView作者出版物您也可以在

PubMed Google ScholarHenry DanahayView author publicationsYou can also search for this author in

PubMed谷歌学者Henry DanahayView作者出版物您也可以在

PubMed Google ScholarMartin GoslingView author publicationsYou can also search for this author in

PubMed Google ScholarMartin GoslingView作者出版物您也可以在

PubMed Google ScholarRichard K GrencisView author publicationsYou can also search for this author in

PubMed Google ScholarRichard K GrencisView作者出版物您也可以在

PubMed Google ScholarIan S RobertsView author publicationsYou can also search for this author in

PubMed谷歌学者RobertsView作者出版物您也可以在

PubMed Google ScholarDavid J ThorntonView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsED and ENH contributed equally to this research and produced the initial draft of this manuscript. ED, ENH and DJT designed the laboratory experiments. SL, ED, HD and MG produced and analysed the electrophysiology data. ENH and RC produced and interpreted the electron microscopy data.

PubMed Google Scholar为这项研究做出了同样的贡献,并产生了这份手稿的初稿。ED,ENH和DJT设计了实验室实验。SL,ED,HD和MG产生并分析了电生理数据。ENH和RC产生并解释了电子显微镜数据。

PM performed 3D modelling. CH produced and analysed the supplementary data in S2. RKG, ISR and DJT conceived the project, were responsible for securing funding for this research and for ongoing project management. All authors critically reviewed and contributed to writing the final manuscript.Corresponding authorCorrespondence to.

PM进行了3D建模。CH产生并分析了S2中的补充数据。RKG、ISR和DJT构思了这个项目,负责为这项研究和正在进行的项目管理获得资金。。对应作者对应。

David J Thornton.Ethics declarations

大卫·J·桑顿。道德宣言

Competing interests

相互竞争的利益

HD and MG are employees and stockholders of Enterprise Therapeutics, which has previously developed TMEM16A modulators. ED, ENH, SL, RC, Ch, PM, RKG, ISR and DJT declare no competing interests.

HD和MG是Enterprise Therapeutics的员工和股东,Enterprise Therapeutics先前开发了TMEM16A调制器。ED,ENH,SL,RC,Ch,PM,RKG,ISR和DJT声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleDubaissi, E., Hilton, E.N., Lilley, S. et al. The Tmem16a chloride channel is required for mucin maturation after secretion from goblet-like cells in the Xenopus tropicalis tadpole skin.

转载和许可本文引用本文Dubaissi,E.,Hilton,E.N.,Lilley,S。等人。热带爪蟾蝌蚪皮肤中杯状细胞分泌后,粘蛋白成熟需要Tmem16a氯通道。

Sci Rep 14, 25555 (2024). https://doi.org/10.1038/s41598-024-76482-yDownload citationReceived: 26 February 2024Accepted: 14 October 2024Published: 26 October 2024DOI: https://doi.org/10.1038/s41598-024-76482-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1425555(2024)。https://doi.org/10.1038/s41598-024-76482-yDownload引文接收日期:2024年2月26日接受日期:2024年10月14日发布日期:2024年10月26日OI:https://doi.org/10.1038/s41598-024-76482-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsMucinMucusTMEM16AIon channel

关键词穆辛穆库斯TMEM16A频道

Xenopus tropicalis

热带爪蟾