EN
登录

双特异性抗体(ABL602 2+1)诱导急性髓系白血病双稳态动力学

Bispecific antibody (ABL602 2 + 1) induced bistable acute myeloid leukemia kinetics

Nature 等信源发布 2024-10-26 11:45

可切换为仅中文


AbstractABL602 2 + 1, a bispecific antibody with two distinct domains binding to CLL-1 on leukemias and CD3 on T cells, exhibits superior T cell activation and tumour lysing activity. Treatment outcomes of bispecific antibody rely on acute myeloid leukemia cell replication and antibody induced tumour lysing, but their quantitative relationship was unknown.

摘要ABL602 2+ 1是一种双特异性抗体,具有两个不同的结构域,与白血病上的CLL-1和T细胞上的CD3结合,具有优异的T细胞活化和肿瘤溶解活性。双特异性抗体的治疗结果依赖于急性髓细胞白血病细胞复制和抗体诱导的肿瘤溶解,但它们的定量关系尚不清楚。

Mathematical models are employed to quantitatively investigate HL-60 cell kinetics determined by bispecific antibody and tumour burden. First, we analysed cytotoxicity assay data testing HL-60 cell against bispecific antibody and T cells, and found efficiency of bispecific antibody induced tumour lysing increases but saturates with increase of HL-60 cell, T cell and bispecific antibody concentration.

数学模型用于定量研究由双特异性抗体和肿瘤负荷确定的HL-60细胞动力学。首先,我们分析了针对双特异性抗体和T细胞测试HL-60细胞的细胞毒性测定数据,发现双特异性抗体诱导的肿瘤裂解效率增加,但随着HL-60细胞,T细胞和双特异性抗体浓度的增加而饱和。

As a result, their interaction leads to bistable HL-60 cell kinetics; namely, at a given bispecific antibody and T cell concentration interval, HL-60 cell kinetics with small tumour burdens are inhibited but refractory to large tumour burdens. T cell concentration is strong negatively correlated with HL-60 cell concentration.

结果,它们的相互作用导致双稳态HL-60细胞动力学;即,在给定的双特异性抗体和T细胞浓度区间,具有小肿瘤负荷的HL-60细胞动力学被抑制,但对大肿瘤负荷是难治的。T细胞浓度与HL-60细胞浓度呈强负相关。

With bispecific antibody clearance, observed bistable HL-60 cell kinetics still exists. Our finding explains observed phenomenon that bispecific antibody was less efficacious at high tumour burden even with enough activated cytotoxic CD8 + T cells. Maintaining high antibody concentration and preventing T-cell exhaustion are equivalently important to sustain long-term control..

在双特异性抗体清除的情况下,观察到的双稳态HL-60细胞动力学仍然存在。我们的发现解释了观察到的现象,即即使有足够活化的细胞毒性CD8+T细胞,双特异性抗体在高肿瘤负荷下也不太有效。维持高抗体浓度和防止T细胞衰竭对于维持长期控制同样重要。。

IntroductionAcute myeloid leukemia (AML) is one of the most common and fatal haematological malignancies in adults, with most of them having a poor prognosis1,2. Chemotherapy, radiation therapy and stem cell transplant are used to treat AML, but relapse rate likely is still very high, for example approximately 60–70% for patients older than sixty years old3,4.

。化疗,放射治疗和干细胞移植被用于治疗AML,但复发率可能仍然很高,例如60岁以上患者的复发率约为60-70%3,4。

In hematologic malignancies, immunotherapies aim to lyse tumour cells using cytolytic T lymphocytes, for example, such as chimeric antigen receptor (CAR) T cells5,6, bispecific T-cell engager (BiTE)7,8 and bispecific antibody (BiAb)9,10. Bispecific antibodies have two distinct binding domains that can bind to leukemia surface proteins (including CD33 and CLL-1) on AML cells and CD3 subunits on T cells simultaneously, and trigger T-cell activation and target cell lysis11,12.

在血液系统恶性肿瘤中,免疫疗法旨在使用溶细胞性T淋巴细胞裂解肿瘤细胞,例如嵌合抗原受体(CAR)T细胞5,6,双特异性T细胞接合剂(BiTE)7,8和双特异性抗体(BiAb)9,10。双特异性抗体具有两个不同的结合结构域,可以同时与AML细胞上的白血病表面蛋白(包括CD33和CLL-1)和T细胞上的CD3亚基结合,并触发T细胞活化和靶细胞裂解11,12。

C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cell and becomes one of the target for immunotherapy, including CAR-T cell and bispecific antibody13. CD33 is a cell surface antigen that is present in more than 80% of patients with AML but is absent from pluripotent hematopoietic stem cells14.

C型凝集素样分子-1(CLL-1)在大多数AML细胞的整个胚细胞区室中具有高表达,并成为免疫治疗的靶标之一,包括CAR-T细胞和双特异性抗体13。CD33是一种细胞表面抗原,存在于80%以上的AML患者中,但多能造血干细胞中不存在14。

HL-60 cell line was isolated from a AML patient and used a model to study AML treatment and diagnosis since 197715, because it has a high expression of CLL-116 and CD3317. Bispecific antibody redirects T cells to lyse HL-60 cells by bringing them into physical contact and activating secretion of cytotoxic molecules18.ABL602 2 + 1, a bispecific antibody developed by ABL Bio Inc to treat patients with AML, has anti-CD3 Fab binding to T cells in one arm, and anti-CLL-1 Fab binding to tumour cell in each arm18.

自197715年以来,HL-60细胞系从AML患者中分离出来,并使用模型研究AML的治疗和诊断,因为它具有CLL-116和CD3317的高表达。双特异性抗体通过使T细胞与HL-60细胞发生物理接触并激活细胞毒性分子的分泌来重定向T细胞以裂解HL-60细胞18.ABL602 2 + 1是由ABL Bio Inc开发用于治疗AML患者的双特异性抗体,具有抗CD3 Fab与一只手臂中的T细胞结合,以及抗CLL-1 Fab与每只手臂中的肿瘤细胞结合18。

ABL602 2 + 1 exhibits strong tumour cytolytic activity against HL-60 cell, and lack of .

ABL602 2+ 1对HL-60细胞表现出强烈的肿瘤细胞溶解活性,并且缺乏。

(1)

(1)

\(T\left(t\right)\) represents tumour cell with respect to time \(t\). Parameter \(\rho\) represents per capita growth rate; \(\beta\) controls natural saturation of tumour cell replication at high tumour cell concentration.To establish quantitative relationship between bispecific antibody concentration and days post infusion, we fit cynomolgus monkey pharmacokinetic study assay data to clearance model Eq. (2) (shown in Fig.

\(T左(T右)代表肿瘤细胞相对于时间(T)。参数\(\ rho \)表示人均增长率\(\β\)在高肿瘤细胞浓度下控制肿瘤细胞复制的自然饱和。为了建立双特异性抗体浓度与输注后天数之间的定量关系,我们将食蟹猴药代动力学研究测定数据拟合到清除模型方程(2)(如图2所示)。

S2, Sect. 1.2, Supplementary Material). Clearance model is described as the one-dimensional ODE model43$$\frac{dA\left(t\right)}{dt}={-C}_{1}A\left(t\right){+C}_{0}$$.

。1.2,补充材料)。清除模型被描述为一维ODE模型43$$\frac{dA \ left(t \ right)}{dt}={-C}_{1}A\左(t \右){+C}{0}$$。

(2)

(2)

\(A(t)\) represents bispecific antibody concentration with respect to time t. Parameter \({C}_{1}\) represent the clearance rate and parameter \({C}_{0}\) represent mass generation rate.To establish quantitative relationship among HL-60 cell concentration, bispecific antibody concentration and T cell concentration, we developed following five models, including unsaturated lysing efficiency (modelled by law of mass action)$$\left\{ {\begin{array}{*{20}c} {\frac{dT}{{dt}} = rT\left( {1 - \frac{T}{\beta }} \right) - \kappa ATE} \\ {\frac{dA}{{dt}} = - \varphi ATE} \\ {\frac{dE}{{dt}} = - \sigma E} \\ \end{array} } \right.$$.

\(A(t)\)表示相对于时间t的双特异性抗体浓度。参数\({C}_{1} \)表示清除率和参数\({C}_{0}\)表示质量生成率。为了建立HL-60细胞浓度,双特异性抗体浓度和T细胞浓度之间的定量关系,我们开发了以下五个模型,包括不饱和裂解效率(由质量作用定律建模)$$左{开始{阵列}{*{20}c}{\frac{dT}{dT}}=rT\left({1-\frac{T}{\beta}}\ right)-\kappa-ATE}\\\{\frac{dA}{dT}=-\varphi-ATE}\\\ \frac{dE}{dT}=-\sigma E}\\ \ end{array}}\ right.$$。

(3)

(3)

semi-saturated lysing efficiency (modelled by Hill function)$$\left\{\begin{array}{c}\frac{dT}{dt}=rT\left(1-\frac{T}{\beta }\right)-\frac{\kappa }{1+aA}\frac{1}{1+\eta T}ATE\\ \frac{dA}{dt}=-\frac{\varphi }{1+aA}\frac{1}{1+\eta T}ATE\\ \frac{dE}{dt}=-\sigma E\end{array}\right.$$

半饱和裂解效率frac{1}{1+\eta T}ATE \\\frac{dE}{dT}=-\sigma E \ end{array}\右$$

(4)

(4)

saturated lysing efficiency$$\left\{\begin{array}{c}\frac{dT}{dt}=rT\left(1-\frac{T}{\beta }\right)-\frac{\kappa }{1+aA}\frac{1}{1+\gamma E+\eta T}ATE\\ \frac{dA}{dt}=-\frac{\varphi }{1+aA}\frac{1}{1+\gamma E+\eta T}ATE\\ \frac{dE}{dt}=-\sigma E\end{array}\right.$$

饱和裂解效率1}{1+\gamma E+\eta T}ATE\\ frac{dE}{dT}=-\sigma E \ end{array}\右$$

(5)

(5)

saturated lysing efficiency with experiential function,$$\ \left\{ \begin{gathered} \frac{{dT}}{{dt}} = \left( {1 - \frac{T}{\beta }} \right) - \frac{k}{{1 + e^{{aA}} }}\frac{1}{{\gamma + E + \eta T}}ATE \hfill \\ \frac{{dA}}{{dt}} = - \frac{\varphi }{{1 + e^{{ aA}} }}\frac{1}{{1 + \gamma \,E + \eta A}}ATE \hfill \\ \frac{{dE}}{{dt}} = - \sigma E \hfill \\ \end{gathered} \right.$$.

具有经验函数的饱和裂解效率,$$$\\左{\开始{聚集}\分数{dT}}{dT}=\左({1-\分数{T}{\ beta}}\右)\ \分数{k}{{1+e ^{aA}}}\分数{1}{\γ+e+\ eta T}}ATE \ hfill分数{{dA}}{{dT}}=-\frac{\varphi}{{1+e^{aA}}}}\frac{1+\gamma,e+\eta A}}ATE\hfill \\ frac{{dE}}}{dT}=-\sigma e\hfill \\ end{collected}\ right.$$。

(6)

(6)

\(E\left(t\right)\) represents T cell concentration with respect to time \(t\). Parameter \(\kappa\) represents lysing rate by bispecific antibody binding and T cell; \(\varphi\) represents bispecific antibody consumption rate by binding to T cell and tumour cell; \(\eta\) controls the saturation in lysing rate as tumour cell concentration increases; \(\gamma\) controls the saturation in lysing rate as antibody-T-cell complex concentration increases; \(a\) controls the saturation in lysing rate as antibody concentration increases.

\(E \ left(t \ right)\)表示t细胞浓度相对于时间\(t \)。参数\(\ kappa \)表示双特异性抗体结合和T细胞的裂解率\(\ varphi \)通过与T细胞和肿瘤细胞结合代表双特异性抗体消耗率\随着肿瘤细胞浓度的增加,(\ eta \)控制裂解率的饱和度\随着抗体-T细胞复合物浓度的增加,(\γ\)控制裂解率的饱和度\(a)随着抗体浓度的增加,控制裂解率的饱和度。

Parameter σ represents natural death rate of T cells.To establish quantitative relationship among HL-60 cell concentration, bispecific antibody concentration and T cell concentration in presence of antibody clearance, we proposed a three-dimension ODE model$$\left\{ {\begin{array}{*{20}c} {\frac{{dT}}{{dt}} = rT\left( {1 - \frac{T}{\beta }} \right) - \frac{\kappa }{{1 + aA}}\frac{1}{{1 + \gamma E + \eta T}}ATE} \\ {\frac{{dA}}{{dt}} = - \frac{\varphi }{{1 + aA}}\frac{1}{{1 + \gamma E + \eta A}}ATE - C_{1} A\left( t \right) - C_{0} } \\ {\frac{{dE}}{{dt}} = - \sigma E} \\ \end{array} } \right.$$.

参数σ表示T细胞的自然死亡率。为了建立抗体清除存在时HL-60细胞浓度、双特异性抗体浓度和T细胞浓度之间的定量关系,我们提出了一个三维ODE模型{*{20}c}{\frac{{dT}}{dT}}=rT\left({1-\frac{T}{\beta}}\right)-\frac{\kappa}{{1+aA}}\frac{1}{{1+\gamma E+\eta T}}}ATE}\\\ frac{{dA}}{dT}}=-\frac{\varphi}{1+aA}}\frac{1}{1+\ gamma E+\ eta A}}ATE-C{1}A \左(T \右)-C{0}}\ \ frac{dE}{dT}=-\ sigma E}\ \ end{array}\ right.$$。

(7)

(7)

Parameter estimationTo estimate HL-60 cell parameters, the sum of squared error (SSE) is defined as \({SSE}_{1}={\sum }_{i=1}^{n}{\left({log}_{10}\left({T}_{A}\right)-{log}_{10}F\left({T}_{A}\right)\right)}^{2}\)φ, \({T}_{A}\) and \(F\left({T}_{A}\right)\) represent experiment tumour cell concentration at time (\(t\)) and estimated tumour cell concentration at time (\(t\)).

\({SSE}_{1} ={\总和}{i=1}^{n}{\左({log}_{10} \左({T}_{A} \正确)-{log}_{10}F\左({T}_{A} \右\右)}^{2}\)φ\({T}_{A} \)和\(左)({T}_{A} \右)\)代表时间(\(t)\)的实验肿瘤细胞浓度和时间(\(t)\)的估计肿瘤细胞浓度。

Initial guesses used for parameter estimation are \({\rho }_{0}={10}^{-1}\) and \({\beta }_{0}={10}^{5}\).To estimation of bispecific antibody clearance, all concentration data with microgram per milliliter units (μg/mL) were converted to equivalent nanomolar concentrations (nM) dividing concentrations in μg/mL by 1.5 × 105, because molecular weight of a typical antibody 150 kDa.

用于参数估计的初始猜测是\({\ rho}u0}={10}^{-1}\)和\({\ beta}u0}={10}^{5}\)。为了估计双特异性抗体清除率,将所有微克/毫升单位(μg/mL)的浓度数据转换为等效纳摩尔浓度(nM),将μg/mL的浓度除以1.5×105,因为典型抗体的分子量为150 kDa。

The sum of squared error (SSE) is defined as \({SSE}_{2}={\sum }_{i=1}^{n}{\left({log}_{10}\left(A(t)\right)-{log}_{10}G\left(A(t)\right)\right)}^{2}\), \(A(t)\) and \(G\left(A(t)\right)\) represent experiment bispecific antibody concentration at time (\(t\)) and estimated bispecific antibody concentration at time (\(t\)).

平方误差之和(SSE)定义为\({SSE}_{2} ={\总和}{i=1}^{n}{\左({log}_{10} \左(A(t)\右)-{log}_{10}G\左(A(t)\右)\ ^{2}\),\(A(t)\)和\(G \左(A(t)\右)\)表示时间(\(t)\)的实验双特异性抗体浓度和时间(\(t)\)的估计双特异性抗体浓度。

Initial guesses used for parameter estimation are \({C}_{{0}_{0}}={10}^{-1}\) and \({C}_{{1}_{0}}={10}^{-1}\).To estimation bispecific antibody induced lysing parameters, target tumour cell concentration is calculated using the formula, tumour cell = 5 × TN cells/mL, where TN represented the number of tumour cell in each well; T cell concentration is calculated using the formula, T cell = 5 × MN/mL, where TN represented the number of T cell in each well; Antibody concentration is calculated using the formula, antibody concentration = 5 × AN nm /mL, where AN represented antibody concentration the in each well.

用于参数估计的初始猜测是\({C}_(笑声){{0}_{0}}={10}^{-1}\)和\({C}_(笑声){{1}_{0}}={10}^{-1}\)。为了估计双特异性抗体诱导的裂解参数,使用以下公式计算靶肿瘤细胞浓度:肿瘤细胞=5×TN细胞/mL,其中TN代表每个孔中肿瘤细胞的数量;;使用以下公式计算抗体浓度:抗体浓度=5 nm/mL,其中每个孔中代表的抗体浓度。

The SSE is defined as \({SSE}_{3}={\sum }_{i=1}^{n}{\left({log}_{10}\left({T}_{B}\.

SSE定义为\({SSE}_{3} ={\总和}{i=1}^{n}{\左({log}_{10} \左({T}_{B} \。

Data availability

数据可用性

All data analysed in this manuscript is deposited in https://github.com/ShlomoBergg/Bispecific-antibody-ABL602-2–1-induced-bistable-acute-myeloid-leukemia-kinetics.

本手稿中分析的所有数据均保存在https://github.com/ShlomoBergg/Bispecific-antibody-ABL602-2–1诱导的双稳态急性髓系白血病动力学。

ReferencesVago, L. & Gojo, I. Immune escape and immunotherapy of acute myeloid leukemia. J. Clin. Invest. 130(4), 1552–1564 (2020).Article

参考文献Vago,L。&Gojo,I。急性骨髓性白血病的免疫逃逸和免疫治疗。J、 临床。投资。130(4),1552-1564(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Greiner, J., Götz, M. & Wais, V. Increasing role of targeted immunotherapies in the treatment of AML. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23063304 (2022).Article

Greiner,J.,Götz,M。&Wais,V。增加靶向免疫疗法在AML治疗中的作用。Int.J.Mol.Sci。https://doi.org/10.3390/ijms23063304(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Döhner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute myeloid Leukemia. N. Engl. J. Med. 373(12), 1136–1152 (2015).Article

Döhner,H.,Weisdorf,D.J。和Bloomfield,C.D。急性骨髓性白血病。N、 英语。J、 医学373(12),1136-1152(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid Leukemia. N. Engl. J. Med. 374(23), 2209–2221 (2016).Article

Papaemmanuil,E.等。急性髓细胞白血病的基因组分类和预后。N、 英语。J、 医学杂志374(23),2209-2221(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holstein, S. A., Grant, S. J. & Wildes, T. M. Chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma: moving into the future. J. Clin. Oncol. 41(27), 4416–4429 (2023).Article

Holstein,S.A.,Grant,S.J。&Wildes,T.M。多发性骨髓瘤中的嵌合抗原受体T细胞和双特异性抗体治疗:走向未来。J、 临床。Oncol公司。41(27),4416–4429(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shao, R. et al. Biomarkers as targets for CAR-T/NK cell therapy in AML. Biomarker Res. 11(1), 65 (2023).Article

Shao,R。等人。生物标志物作为AML中CAR-T/NK细胞治疗的靶标。生物标志物研究11(1),65(2023)。文章

Google Scholar

谷歌学者

Rafae, A. et al. Recent updates on bispecific T-cell engager (BiTE) antibodies in relapsed and refractory multiple myeloma. J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.15_suppl.e20034 (2021).Article

Rafae,A.等人。复发性和难治性多发性骨髓瘤中双特异性T细胞接受者(BiTE)抗体的最新进展。J、 临床。Oncol公司。https://doi.org/10.1200/JCO.2021.39.15_suppl.e20034(2021年)。文章

Google Scholar

谷歌学者

Tian, Z. et al. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J. Hematol. Oncol. 14(1), 75 (2021).Article

Tian,Z.等。双特异性T细胞参与者:一种新兴的血液恶性肿瘤治疗方法。J、 血液学。Oncol公司。14(1),75(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Y. et al. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharmaceutica Sinica B 13(9), 3583–3597 (2023).Article

。药学学报B 13(9),3583-3597(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guy, D. G. & Uy, G. L. Bispecific antibodies for the treatment of acute myeloid leukemia. Curr. Hematol. Malig Rep. 13(6), 417–425 (2018).Article

Guy,D.G。&Uy,G.L。用于治疗急性髓性白血病的双特异性抗体。货币。血液学。Malig Rep.13(6),417–425(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clark, M. C. & Stein, A. CD33 directed bispecific antibodies in acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 33(4), 101224 (2020).Article

Clark,M.C。&Stein,A。CD33指导急性髓细胞白血病的双特异性抗体。最佳实践。临床研究。血液。33(4),101224(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, H. Emerging agents and regimens for AML. J. Hematol. Oncol. 14(1), 49 (2021).Article

Liu,H。AML的新兴药物和方案。J、 血液学。Oncol公司。14(1),49(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Rhenen, A. et al. The novel AML stem cell–associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110(7), 2659–2666 (2007).Article

van Rhenen,A。等人。新型AML干细胞相关抗原CLL-1有助于区分正常干细胞和白血病干细胞。血液110(7),2659-2666(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Faderl, S. & Kantarjian, H. M. Chapter 59-Clinical Manifestations and Treatment of Acute Myeloid Leukemia. In Hematology (Seventh Edition) (eds Hoffman, R. et al.) (Elsevie, 2018).

Faderl,S。&Kantarjian,H.M。第59章急性骨髓性白血病的临床表现和治疗。《血液学》(第七版)(eds Hoffman,R.等人)(Elsevie,2018)。

Google Scholar

谷歌学者

Birnie, G. D. The HL60 cell line: a model system for studying human myeloid cell differentiation. Br. J. Cancer Suppl. 9, 41–45 (1988).CAS

Birnie,G.D。HL60细胞系:研究人类骨髓细胞分化的模型系统。《英国癌症杂志》增刊9,41-45(1988)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, H. et al. Targeting CLL-1 for acute myeloid leukemia therapy. J. Hematol. Oncol. 12(1), 41 (2019).Article

Ma,H。等人。针对急性髓细胞白血病治疗的CLL-1。J、 血液学。Oncol公司。12(1),41(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Takamatsu, Y. et al. Mechanisms of discrepancy between CD33 expression and gemtuzumab ozogamicin-induced cytotoxicity in leukemia cells. Blood 114(22), 4812 (2009).Article

Takamatsu,Y。等人。CD33表达与吉妥珠单抗奥佐米星诱导的白血病细胞毒性之间差异的机制。血液114(22),4812(2009)。文章

Google Scholar

谷歌学者

Lee, E. et al. Asymmetric anti-CLL-1×CD3 bispecific antibody, ABL602 2+1, with attenuated CD3 affinity endows potent antitumor activity but limited cytokine release. J. Immun. Ther. Cancer 11(10), e007494 (2023).Article

具有减弱的CD3亲和力的不对称抗CLL-1×CD3双特异性抗体ABL602 2+1赋予有效的抗肿瘤活性,但细胞因子释放有限。J、 免疫。他们。癌症11(10),e007494(2023)。文章

Google Scholar

谷歌学者

Antonarelli, G. et al. Research and clinical landscape of bispecific antibodies for the treatment of solid malignancies. Pharmaceuticals 14(9), 884 (2021).Article

Antonarelli,G.等人。用于治疗实体恶性肿瘤的双特异性抗体的研究和临床前景。制药14(9),884(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, S. et al. The landscape of bispecific T cell Engager in cancer treatment. Biomarker Res. 9(1), 38 (2021).Article

Zhou,S.等人。双特异性T细胞参与者在癌症治疗中的前景。生物标志物研究9(1),38(2021)。文章

Google Scholar

谷歌学者

Meermeier, E. W. et al. Tumor burden limits bispecific antibody efficacy through T-cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov. 2(4), 354–369 (2021).Article

Meermeier,E.W。等人。肿瘤负荷通过同时进行细胞毒性治疗避免T细胞耗竭来限制双特异性抗体的功效。血癌Discov。2(4),354-369(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

GhaffariLaleh, N. et al. Classical mathematical models for prediction of response to chemotherapy and immunotherapy. PLoS Comput. Biol. 18(2), e1009822 (2022).Article

GhaffariLaleh,N.等人。用于预测化疗和免疫疗法反应的经典数学模型。PLoS计算机。生物学18(2),e1009822(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Sahoo, P. et al. Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. J. R. Soc. Interf. 17(162), 20190734 (2020).Article

Sahoo,P。等人。从实时杀伤测定数据对CAR T细胞增殖和耗竭进行数学反卷积。J、 R.Soc.Interf.17(162),20190734(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Santurio, D. S. & Barros, L. R. C. A Mathematical model for on-TARGET Off-tumor EFFECT of CAR-T cells on gliomas. Front. Syst. Biol. https://doi.org/10.3389/fsysb.2022.923085 (2022).Article

Santurio,D.S。&Barros,L.R.C。CAR-T细胞对神经胶质瘤的靶向非肿瘤效应的数学模型。正面。系统。生物。https://doi.org/10.3389/fsysb.2022.923085(2022年)。文章

Google Scholar

谷歌学者

Liu, L. et al. Computational model of CAR T-cell immunotherapy dissects and predicts leukemia patient responses at remission, resistance, and relapse. J. ImmunoTher. Cancer 10(12), e005360 (2022).Article

Liu,L。等人。CAR T细胞免疫疗法的计算模型解剖并预测白血病患者在缓解,耐药和复发时的反应。J、 免疫疗法。癌症10(12),e005360(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dillman, R. O. & Koziol, J. A. A mathematical model of monoclonal antibody therapy in leukemia. Math. Model. 9(1), 29–35 (1987).Article

Dillman,R.O。&Koziol,J.A。白血病单克隆抗体治疗的数学模型。数学。型号。9(1),29-35(1987)。文章

Google Scholar

谷歌学者

Pérez-García, V. M. et al. CAR T cells for T-cell leukemias: Insights from mathematical models. Commun. Nonl. Sci. Num. Simul. 96, 105684 (2021).Article

Pérez-García,V.M.等人。用于T细胞白血病的CAR T细胞:来自数学模型的见解。Commun公司。诺尔。。模拟数量。96105684(2021)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Martínez-Rubio, Á. et al. A mathematical description of the bone marrow dynamics during CAR T-cell therapy in B-cell childhood acute lymphoblastic Leukemia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22126371 (2021).Article

马丁内斯·卢比奥,Á。等。儿童B细胞急性淋巴细胞白血病CAR T细胞治疗期间骨髓动力学的数学描述。Int.J.Mol.Sci。https://doi.org/10.3390/ijms22126371(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malka, R. et al. Evidence for bistable bacteria-neutrophil interaction and its clinical implications. J. Clin. Investig. 122(8), 3002–3011 (2012).Article

Malka,R.等人。双稳态细菌-中性粒细胞相互作用的证据及其临床意义。J、 临床。调查。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frenkel, N. et al. Bistable bacterial growth dynamics in the presence of antimicrobial agents. Antibiotics 10(1), 87 (2021).Article

Frenkel,N。等人。抗菌剂存在下的双稳态细菌生长动力学。抗生素10(1),87(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, S. Modelling role of protective and Nonprotective HLA Allele inducing different HIV infection outcomes. Bull. Math. Biol. 86(9), 107 (2024).Article

Xu,S。保护性和非保护性HLA等位基因诱导不同HIV感染结果的建模作用。公牛。数学。生物学86(9),107(2024)。文章

MathSciNet

MathSciNet

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, S., Modelling the interaction of influenza virus and its antibody. 2022, Monash University.Brook, I. Inoculum effect. Rev. Infect. Dis. 11(3), 361–368 (1989).Article

Xu,S.,模拟流感病毒及其抗体的相互作用。2022年,莫纳什大学。Brook,I。接种物效应。Rev.感染。Dis。11(3),361-368(1989)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Loffredo, M. R. et al. Inoculum effect of antimicrobial peptides. Proc. Natl. Acad. Sci. 118(21), e2014364118 (2021).Article

Loffredo,M.R.等人。抗菌肽的接种效果。程序。纳特尔。阿卡德。。118(21),e2014364118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ligthart, G. J., Schuit, H. R. & Hijmans, W. Subpopulations of mononuclear cells in ageing: expansion of the null cell compartment and decrease in the number of T and B cells in human blood. Immunology 55(1), 15–21 (1985).CAS

Ligthart,G.J.,Schuit,H.R。&Hijmans,W。衰老中的单核细胞亚群:人类血液中无效细胞区室的扩张和T细胞和B细胞数量的减少。免疫学55(1),15-21(1985)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murray, J. D. Mathematical Biology: I. An Introduction (Springer, 2007).

Murray,J.D.《数学生物学:I.简介》(Springer,2007)。

Google Scholar

谷歌学者

Elemans, M., N.K. Seich Al Basatena, and B. Asquith, The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput. Biol., 8(2): p. e1002381, (2012).Goutelle, S. et al. The Hill equation: a review of its capabilities in pharmacological modelling.

Elemans,M.,N.K.Seich Al-Basatena和B.Asquith,人类CD8+T细胞反应的效率:我们应该如何量化它,决定它的因素是什么,它有什么关系?PLoS计算机。。Goutelle,S.等人,《希尔方程:药理学建模能力综述》。

Fundament. Clin. Pharmacol. 22(6), 633–648 (2008).Article .

。临床。药理学。22(6),633-648(2008)。文章。

CAS

中科院

Google Scholar

谷歌学者

Roohullah, A. et al. First-in-human phase 1 dose escalation study of HX009, a novel recombinant humanized anti-PD-1 and CD47 bispecific antibody, in patients with advanced malignancies. J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.15_suppl.2517 (2021).Article

Roohullah,A.等人首次在晚期恶性肿瘤患者中进行HX009(一种新型重组人源化抗PD-1和CD47双特异性抗体)的人类1期剂量递增研究。J、 临床。Oncol公司。https://doi.org/10.1200/JCO.2021.39.15_suppl.2517(2021年)。文章

Google Scholar

谷歌学者

Selli, M. E. et al. Costimulatory domains direct distinct fates of CAR-driven T-cell dysfunction. Blood 141(26), 3153–3165 (2023).CAS

Selli,M.E。等人。共刺激结构域指导CAR驱动的T细胞功能障碍的不同命运。血液141(26),3153-3165(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uy, G. L. et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 137(6), 751–762 (2021).Article

Uy,G.L.等人。氟替珠单抗作为难治性急性髓细胞白血病的挽救性免疫疗法。血液137(6),751-762(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ravandi, F. et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 7(21), 6492–6505 (2023).Article

vibecotamab的Ravandi,F。等人的第一阶段研究确定了治疗复发/难治性急性髓细胞白血病的最佳剂量。血液杂志7(21),6492-6505(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wright’s, S. Samson Wright’s Applied Physiology (Oxford University Press, 1962).

s.Samson Wright的《应用生理学》(牛津大学出版社,1962年)。

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Dr. Eunhee Lee and Dr. Jonghwa Won from ABL Bio Inc, Seongnam, Korea (the Republic of) for cytotoxicity assay data testing HL-60 cells against ABL602 2+1 bispecific antibody and purified human T cell. Without Dr. Eunhee Lee and Dr. Jonghwa Won’s kindly help, we count not perform any analysis on bispecific antibody (ABL602 2+1).Author informationAuthors and AffiliationsDepartment of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, AustraliaShilian XuDepartment of Mathematical and Physical Science, La Trobe University, Bundoora, AustraliaShilian XuAuthorsShilian XuView author publicationsYou can also search for this author in.

下载参考文献致谢我们感谢韩国城南ABL Bio Inc.的Eunhee Lee博士和Jonghwa Won博士针对ABL602 2+1双特异性抗体和纯化的人T细胞测试HL-60细胞的细胞毒性测定数据。如果没有Eunhee Lee博士和Jonghwa博士的善意帮助,我们将不会对双特异性抗体(ABL602 2+1)进行任何分析。作者信息作者和附属机构拉筹伯大学农业、生物医学与环境学院环境与遗传学系,澳大利亚,澳大利亚,拉筹伯大学数学与物理科学系,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚,澳大利亚。

PubMed Google ScholarContributionsShilian Xu: Conceptualization; Methodology; Software; Formal analysis; Writing—Original Draft; Visualization.Corresponding authorCorrespondence to

PubMed Google ScholarContributionsShilian Xu:概念化;方法论;软件;形式分析;撰写初稿;。对应作者对应

Shilian Xu.Ethics declarations

徐世莲。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleXu, S. Bispecific antibody (ABL602 2 + 1) induced bistable acute myeloid leukemia kinetics.

转载和许可本文引用本文,S.双特异性抗体(ABL602 2 + 1)诱导双稳态急性髓细胞白血病动力学。

Sci Rep 14, 25557 (2024). https://doi.org/10.1038/s41598-024-75971-4Download citationReceived: 15 May 2024Accepted: 09 October 2024Published: 26 October 2024DOI: https://doi.org/10.1038/s41598-024-75971-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《科学报告》1425557(2024)。https://doi.org/10.1038/s41598-024-75971-4Download引文接收日期:2024年5月15日接受日期:2024年10月9日发布日期:2024年10月26日OI:https://doi.org/10.1038/s41598-024-75971-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsBispecific antibodyABL602 2 + 1BistabilityAcute myeloid leukemiaImmunotherapyTumour burden

Subjects

主题

Applied mathematicsCancerCancer immunotherapyComputational biology and bioinformaticsHaematological cancerImmunologyMathematics and computing

应用数学癌症免疫治疗计算生物学和生物信息学血液学癌症免疫数学和计算