EN
登录

Hop2-Mnd1在Dmc1介导的DNA重组中起着DNA序列保真度开关的作用

Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination

Nature 等信源发布 2024-10-27 14:07

可切换为仅中文


AbstractHomologous recombination during meiosis is critical for chromosome segregation and also gives rise to genetic diversity. Genetic exchange between homologous chromosomes during meiosis is mediated by the recombinase Dmc1, which is capable of recombining DNA sequences with mismatches. The Hop2-Mnd1 complex mediates Dmc1 activity.

减数分裂过程中的同源重组对于染色体分离至关重要,也会产生遗传多样性。减数分裂过程中同源染色体之间的遗传交换是由重组酶Dmc1介导的,该酶能够重组错配的DNA序列。Hop2-Mnd1复合物介导Dmc1活性。

Here, we reveal a regulatory role for Hop2-Mnd1 in restricting substrate selection. Specifically, Hop2-Mnd1 upregulates Dmc1 activity with DNA substrates that are either fully homologous or contain DNA mismatches, and it also acts against DNA strand exchange between substrates solely harboring microhomology.

在这里,我们揭示了Hop2-Mnd1在限制底物选择中的调节作用。具体而言,Hop2-Mnd1用完全同源或含有DNA错配的DNA底物上调Dmc1活性,并且它还对抗仅具有微同源性的底物之间的DNA链交换。

By isolating and examining salient Hop2-Mnd1 separation-of-function variants, we show that suppressing illegitimate DNA recombination requires the Dmc1 filament interaction attributable to Hop2-Mnd1 but not its DNA binding activity. Our study provides mechanistic insights into how Hop2-Mnd1 helps maintain meiotic recombination fidelity..

通过分离和检查显着的Hop2-Mnd1功能分离变体,我们表明抑制非法DNA重组需要可归因于Hop2-Mnd1的Dmc1细丝相互作用,而不是其DNA结合活性。我们的研究提供了关于Hop2-Mnd1如何帮助维持减数分裂重组保真度的机制见解。。

IntroductionThe first meiotic division involves replication, synapsis, and segregation of homologous chromosomes. This process is dependent on the timely execution of homologous recombination (HR) events that occur between each pair of homologous chromosomes. Consequently, HR is a key contributor to generating genetic diversity in the resulting gametes1,2,3.

引言第一次减数分裂涉及同源染色体的复制,突触和分离。这个过程取决于每对同源染色体之间发生的同源重组(HR)事件的及时执行。因此,HR是产生配子遗传多样性的关键因素1,2,3。

Meiotic recombination is initiated via the formation of programmed DNA double-strand breaks (DSBs) introduced by the topoisomerase-like protein Spo114,5. Subsequently, nucleases resect the ends of these DSBs to create 3’ single-stranded DNA (ssDNA) tails6,7 to serve as a template for assembling nucleoprotein filaments by recombinases capable of searching for homology in donor chromosomes, invasion of these latter, and DNA strand exchange between the paired DNA molecules8,9.

减数分裂重组是通过形成由拓扑异构酶样蛋白Spo114,5引入的程序性DNA双链断裂(DSB)来启动的。随后,核酸酶切除这些DSB的末端以产生3'单链DNA(ssDNA)尾部6,7,作为通过重组酶组装核蛋白丝的模板,所述重组酶能够搜索供体染色体中的同源性,入侵这些供体染色体,以及配对DNA分子之间的DNA链交换8,9。

This process results in crossover products that enable cohesion-mediated connection of homologous chromosomes, preparing them for segregation during meiosis.Eukaryotic Rad51 and Dmc1, recombinases that are structurally and functionally related to Escherichia coli RecA protein, help mediate meiotic recombination.

该过程产生交叉产物,使同源染色体的内聚介导的连接成为可能,为减数分裂过程中的分离做好准备。真核生物Rad51和Dmc1是与大肠杆菌RecA蛋白在结构和功能上相关的重组酶,有助于介导减数分裂重组。

Dmc1 expression is restricted to meiosis, whereas Rad51 is also found in mitotic cells10. Studies on the budding yeast Saccharomyces cerevisiae have revealed that Rad51 plays a supporting role in Dmc1-catalyzed recombination during meiosis9,11. Importantly, genetic analysis has demonstrated that Dmc1 can catalyze recombination between highly polymorphic hybrid yeast strains, whereas Rad51 cannot12.

Dmc1表达仅限于减数分裂,而Rad51也存在于有丝分裂细胞中10。对发芽酵母酿酒酵母的研究表明,Rad51在减数分裂过程中在Dmc1催化的重组中起支持作用9,11。重要的是,遗传分析表明,Dmc1可以催化高度多态的杂交酵母菌株之间的重组,而Rad51不能12。

Previous studies using single-molecule and biochemical approaches have corroborated those genetic findings, revealing that Dmc1, but not Rad51, has the capacity to stabilize heteroduplex DNA joints with mismatch-containing base triplets13,14,15.

先前使用单分子和生化方法的研究证实了这些遗传学发现,揭示了Dmc1而非Rad51具有稳定异源双链DNA接头的能力,其中含有错配的碱基三联体13,14,15。

Data availability

数据可用性

All data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

本文及其补充信息中提供了支持本研究结果的所有数据。本文提供了源数据。

ReferencesHunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).PubMed

参考文献Hunter,N。减数分裂重组:遗传的本质。冷泉兔。透视图。生物学杂志7,a016618(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brown, M. S. & Bishop, D. K. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 7, a016659 (2014).PubMed

。冷泉兔。透视图。生物学杂志7,a016659(2014)。PubMed出版社

Google Scholar

谷歌学者

Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).PubMed

Zickler,D。&Kleckner,N。减数分裂过程中同源物的重组,配对和突触。冷泉兔。透视图。生物学杂志7,a016626(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).CAS

Keeney,S.,Giroux,C.N。&Kleckner,N。减数分裂特异性DNA双链断裂由Spo11催化,Spo11是一种广泛保守的蛋白质家族成员。细胞88375-384(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).CAS

Keeney,S。减数分裂重组起始的机制和控制。货币。顶部。开发生物。52,1-53(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).ADS

Neale,M.J.,Pan,J。&Keeney,S。共价蛋白质连接的DNA双链断裂的内切核酸加工。自然4361053-1057(2005)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garcia, V., Phelps, S. E. L., Gray, S. & Neale, M. J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011).ADS

Garcia,V.,Phelps,S.E.L.,Gray,S.&Neale,M.J。通过Mre11和Exo1双向切除DNA双链断裂。。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Crickard, J. B. & Greene, E. C. Biochemical attributes of mitotic and meiotic presynaptic complexes. DNA Repair (Amst.) 71, 148–157 (2018).CAS

Crickard,J.B。&Greene,E.C。有丝分裂和减数分裂突触前复合物的生化属性。DNA修复(Amst。)71148-157(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).CAS

San Filippo,J.,Sung,P。&Klein,H。真核同源重组的机制。年。。77229-257(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).CAS

Bishop,D.K.,Park,D.,Xu,L。&Kleckner,N。DMC1:重组,突触复合体形成和细胞周期进程所需的大肠杆菌recA的减数分裂特异性酵母同源物。细胞69439-456(1992)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cloud, V., Chan, Y.-L., Grubb, J., Budke, B. & Bishop, D. K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222–1225 (2012).ADS

Cloud,V.,Chan,Y.-L.,Grubb,J.,Budke,B。&Bishop,D.K。Rad51是减数分裂过程中Dmc1介导的关节分子形成的辅助因子。科学3371222-1225(2012)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Callender, T. L. et al. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLoS Genet. 12, e1006226 (2016).PubMed

Callender,T.L.等人,Mek1通过Hed1的磷酸化下调酵母减数分裂过程中Rad51的活性。PLoS Genet。12,e1006226(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, J. Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977–981 (2015).ADS

Lee,J.Y.等人,Rad51/RecA重组酶家族的碱基三联体步进。。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Borgogno, M. V. et al. Tolerance of DNA mismatches in Dmc1 recombinase-mediated DNA strand exchange. J. Biol. Chem. 291, 4928–4938 (2016).CAS

Borgogno,M.V.等人。Dmc1重组酶介导的DNA链交换中DNA错配的耐受性。J、 生物。化学。2914928-4938(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, J. Y. et al. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J. Biol. Chem. 292, 11125–11135 (2017).CAS

Lee,J.Y.等人。Rad51/RecA重组酶家族的序列缺陷和碱基三联体识别。J、 生物。化学。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Steinfeld, J. B. et al. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev. 33, 1191–1207 (2019).CAS

Steinfeld,J.B.等人定义了Rad51和Dmc1谱系特异性氨基酸对遗传重组的影响。基因发展331191-1207(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, W.-C. et al. Trichoderma reesei Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences. Proc. Natl Acad. Sci. USA 118, e2007192118 (2021).CAS

Li,W.-C.等人。里氏木霉Rad51耐受具有不同基因组序列的杂种减数分裂中的错配。程序。国家科学院。。美国118,e2007192118(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, S. C. et al. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat. Commun. 12, 115 (2021).ADS

Luo,S.C.等人。从低温电磁结构中鉴定人重组酶DMC1和RAD51中的保真度控制因子。国家公社。12115(2021)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, J. et al. Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Res. 49, 13135–13149 (2021).CAS

Xu,J.等人。同源重组中Rad51和Dmc1之间独特的错配耐受机制。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leu, J.-Y., Chua, P. R. & Roeder, G. S. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375–386 (1998).CAS

Leu,J.-Y.,Chua,P.R。&Roeder,G.S。酿酒酵母的减数分裂特异性Hop2蛋白确保同源染色体之间的突触。细胞94375-386(1998)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Petukhova, G. V., Romanienko, P. J. & Camerini-Otero, R. D. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927–936 (2003).CAS

Petukhova,G.V.,Romanienko,P.J。和Camerini Otero,R.D。Hop2蛋白在小鼠减数分裂过程中促进同源物间相互作用中具有直接作用。Dev.Cell 5927–936(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pezza, R. J., Voloshin, O. N., Vanevski, F. & Camerini-Otero, R. D. Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 21, 1758–1766 (2007).CAS

Pezza,R.J.,Voloshin,O.N.,Vanevski,F。&Camerini-Otero,R.D。Hop2/Mnd1在Dmc1促进同源配对的两个关键步骤中起作用。Genes Dev.211758-1766(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, W., Iwasaki, H., Tsubouchi, H. & Li, H. W. Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms. Nucleic Acids Res. 51, 8550–8562 (2023).CAS

Lee,W.,Iwasaki,H.,Tsubouchi,H。&Li,H。W。Hop2-Mnd1和Swi5-Sfr1使用不同的机制刺激Dmc1细丝组装。核酸研究518550-8562(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pezza, R. J., Petukhova, G. V., Ghirlando, R. & Camerini-Otero, R. D. Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J. Biol. Chem. 281, 18426–18434 (2006).CAS

Pezza,R.J.,Petukhova,G.V.,Ghirlando,R。和Camerini-Otero,R.D。减数分裂特异性蛋白Hop2,Mnd1和Hop2-Mnd1复合物的分子活性。J、 生物。化学。28118426-18434(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Petukhova, G. V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449–453 (2005).CAS

Petukhova,G.V。等人。Hop2和Mnd1蛋白在减数分裂重组中与Rad51和Dmc1协同作用。自然结构。分子生物学。12449-453(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Enomoto, R. et al. Stimulation of DNA strand exchange by the human TBPIP/Hop2-Mnd1 complex. J. Biol. Chem. 281, 5575–5581 (2006).CAS

Enomoto,R。等人。人TBPIP/Hop2-Mnd1复合物刺激DNA链交换。J、 生物。化学。2815575–5581(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chi, P., San Filippo, J., Sehorn, M. G., Petukhova, G. V. & Sung, P. Bipartite stimulatory action of the Hop2–Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747–1757 (2007).CAS

Chi,P.,San Filippo,J.,Sehorn,M.G.,Petukhova,G.V。&Sung,P。Hop2-Mnd1复合物对Rad51重组酶的二分刺激作用。Genes Dev.211747–1757(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ploquin, M. et al. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases. Nucleic Acids Res. 35, 2719–2733 (2007).CAS

Ploquin,M.等人。Dmc1和Rad51重组酶的裂变酵母和小鼠Hop2-Mnd1的刺激。核酸研究352719-2733(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y.-K. et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl Acad. Sci. USA 101, 10572–10577 (2004).ADS

Chen,Y.-K.等人。Hop2和Mnd1的异二聚体复合物与Dmc1起作用,促进减数分裂同源物并置和链同化。程序。国家科学院。。美国10110572–10577(2004)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsubouchi, H. The Hop2-Mnd1 complex and its regulation of homologous recombination. Biomolecules 13, 662 (2023).CAS

Tsubouchi,H。Hop2-Mnd1复合物及其对同源重组的调节。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, W. & Sung, P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res. 43, 4055–4066 (2015).CAS

。核酸研究434055-4066(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, W. et al. Mechanistic insights into the role of Hop2–Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res. 42, 906–917 (2014).CAS

Zhao,W.等人,《Hop2–Mnd1在减数分裂同源DNA配对中的作用的机理见解》。核酸研究42906–917(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tsubouchi, H. & Roeder, G. S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev. Cell 5, 915–925 (2003).CAS

Tsubouchi,H。&Roeder,G.S。遗传重组对于减数分裂中染色体配对保真度的重要性。Dev.Cell 5915–925(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Henry, J. M. et al. Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol. Cell Biol. 26, 2913–2923 (2006).CAS

Henry,J.M.等人,Mnd1/Hop2促进发芽酵母减数分裂中Dmc1依赖性同源物间交叉的形成。分子细胞生物学。262913-2923(2006)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Farahani-Tafreshi, Y. et al. The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions. Chromosome Res. 30, 59–75 (2022).CAS

Farahani Tafreshi,Y。等人。拟南芥HOP2基因在防止非同源染色体区域之间的非法连接中起作用。染色体研究30,59-75(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ito, K., Argunhan, B., Tsubouchi, H. & Iwasaki, H. Real-time observation of the DNA strand exchange reaction mediated by Rad51. J. Vis. Exp., e59073 (2019).Qi, Z. et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160, 856–869 (2015).CAS

Ito,K.,Argunhan,B.,Tsubouchi,H。&Iwasaki,H。实时观察Rad51介导的DNA链交换反应。J、 。实验,e59073(2019)。Qi,Z.等人。同源重组过程中通过微同源取样进行DNA序列比对。细胞160856-869(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Greene, E. C. DNA sequence alignment during homologous recombination. J. Biol. Chem. 291, 11572–11580 (2016).CAS

Greene,E.C。同源重组过程中的DNA序列比对。J、 生物。化学。29111572-11580(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, M.-H. et al. Calcium ion promotes yeast dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 280, 40980–40984 (2005).CAS

Lee,M.-H.等人。钙离子通过与单链DNA形成长而细的螺旋丝来促进酵母dmc1的活性。J、 生物。化学。28040980-40984(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Busygina, V. et al. Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1. DNA Repair (Amst.) 12, 707–712 (2013).CAS

Busygina,V。等人。酿酒酵母减数分裂重组酶Dmc1的功能属性。DNA修复(Amst。)12707-712(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nimonkar, A. V. et al. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J. Biol. Chem. 287, 28727–28737 (2012).CAS

Nimonkar,A.V。等人酿酒酵母Dmc1和Rad51蛋白分别优先与Tid1和Rad54蛋白一起起作用,以促进基因重组过程中DNA链的侵袭。J、 生物。化学。28728727–28737(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A. & Mazin, A. V. Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J. Biol. Chem. 280, 26886–26895 (2005).CAS

Bugreev,D.V.,Golub,E.I.,Stasiak,A.Z.,Stasiak,A。&Mazin,A.V。Ca2+激活人减数分裂特异性重组酶Dmc1。J、 生物。化学。28026886-26895(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Altmannova, V. et al. The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 25, https://doi.org/10.1016/j.isci.2022.105439 (2022).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).ADS .

Altmannova,V。等人。二价离子在减数分裂重组过程中调节DMC1介导的D环延伸中的作用。iScience 25,https://doi.org/10.1016/j.isci.2022.105439(2022年)。Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。广告。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, H.-A. et al. Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res. 43, 3841–3856 (2015).CAS

Kang,H.-A.等人。Hop2–Mnd1的晶体结构及其在减数分裂重组中作用的机理见解。核酸研究433841-3856(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 15, 1829–1852 (2020).CAS

Yan,Y.,Tao,H.,He,J。&Huang,S.-Y。用于整合蛋白质-蛋白质对接的HDOCK服务器。自然协议。151829-1852(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).CAS

Sung,P。&Klein,H。同源重组的机制:介质和解旋酶具有调节功能。Nat。Rev。Mol。Cell Biol。7739-750(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tsubouchi, H., Argunhan, B., Ito, K., Takahashi, M. & Iwasaki, H. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. Proc. Natl Acad. Sci. USA 117, 12062–12070 (2020).ADS

。程序。国家科学院。。美国11712062-12070(2020)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsubouchi, H. & Roeder, G. S. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell Biol. 22, 3078–3088 (2002).CAS

Tsubouchi,H。&Roeder,G.S。Mnd1蛋白与hop2形成复合物,以促进同源染色体配对和减数分裂双链断裂修复。分子细胞生物学。223078-3088(2002)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uanschou, C. et al. Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25, 4924–4940 (2013).CAS

足够量的功能性HOP2/MND1复合物促进同源物间DNA修复,但对于拟南芥减数分裂过程中的ister间DNA修复是必不可少的。植物细胞254924-4940(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bugreev, D. V. et al. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat. Commun. 5, 4198 (2014).ADS

Bugreev,D.V。等人,HOP2-MND1调节RAD51与核苷酸和DNA的结合。国家公社。54198(2014)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shinohara, M. & Shinohara, A. Multiple pathways suppress non-allelic homologous recombination during meiosis in Saccharomyces cerevisiae. PLoS One 8, e63144 (2013).ADS

Shinohara,M。&Shinohara,A。多种途径抑制酿酒酵母减数分裂过程中的非等位基因同源重组。PLoS One 8,e63144(2013)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, Y.-L., Brown, M. S., Qin, D., Handa, N. & Bishop, D. K. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J. Biol. Chem. 289, 18076–18086 (2014).CAS .

Chan,Y.-L.,Brown,M.S.,Qin,D.,Handa,N。&Bishop,D.K。发芽酵母减数分裂重组基因HOP2的第三个外显子是钙依赖性和重组酶Dmc1特异性刺激同源链同化所必需的。J、 生物。化学。28918076–18086(2014)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, C. D. et al. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci. 17, 1241–1248 (2008).CAS

Lee,C.D.等人。一种改进的SUMO融合蛋白系统,用于有效生产天然蛋白。蛋白质科学。171241-1248(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hong, E. L., Shinohara, A. & Bishop, D. K. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J. Biol. Chem. 276, 41906–41912 (2001).CAS

Hong,E.L.,Shinohara,A。&Bishop,D.K。酿酒酵母Dmc1蛋白促进单链DNA(ssDNA)的复性和ssDNA同化为同源超螺旋双链DNA。J、 生物。化学。27641906–41912(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004).CAS

Hayase,A。等人。含有Mei5和Sae3的蛋白质复合物促进减数分裂特异性RecA同源物Dmc1的组装。细胞119927-940(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Raschle, M., Van Komen, S., Chi, P., Ellenberger, T. & Sung, P. Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54. J. Biol. Chem. 279, 51973–51980 (2004).CAS

Raschle,M.,Van Komen,S.,Chi,P.,Ellenberger,T。&Sung,P。与Rad51重组酶的多重相互作用决定了Rad54的同源重组功能。J、 生物。化学。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lan, W.-H. et al. Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase. Proc. Natl Acad. Sci. USA 117, 11257–11264 (2020).ADS

Lan,W.-H.等人Rad51促进减数分裂特异性Dmc1重组酶的细丝组装。程序。国家科学院。。美国11711257–11264(2020)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chi, P. et al. Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA. J. Biol. Chem. 281, 26268–26279 (2006).CAS

Chi,P。等人。酵母重组因子Rdh54在功能上与Rad51重组酶相互作用,并催化Rad51从DNA中去除。J、 生物。化学。28126268–26279(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Dr. Claudia Danilowicz (Harvard University) for valuable help and insightful conversations regarding this study. We extend our gratitude to the Core Facility of the Institute of Biochemical Sciences, National Taiwan University, for their invaluable services.

下载参考文献致谢我们感谢Claudia Danilowicz博士(哈佛大学)对这项研究的宝贵帮助和有见地的对话。我们感谢国立台湾大学生化科学研究所的核心设施,感谢他们提供的宝贵服务。

We appreciate Douglas K. Bishop of The University of Chicago, USA, and Akira Shinohara of Osaka University, Japan, for their generous contributions of the Hop2-Mnd1 and Mei5-Sae3 expression plasmids, respectively. This work was supported by Academia Sinica (P.C.), National Taiwan University (P.C. and H.-W.L.), and the National Science and Technology Council (111-2311-B-002-006-MY3 to P.C., 110-2113-M-002-020 to H.-W.L.).Author informationAuthors and AffiliationsInstitute of Biochemical Sciences, National Taiwan University, Taipei, TaiwanJo-Ching Peng, Hao-Yen Chang & Peter ChiDepartment of Chemistry, National Taiwan University, Taipei, TaiwanHao-Yen Chang, Yuting Liang Sun & Hung-Wen LiDepartment of Physics, Harvard University, Cambridge, MA, 02138, USAMara PrentissInstitute of Biological Chemistry, Academia Sinica, Taipei, TaiwanPeter ChiAuthorsJo-Ching PengView author publicationsYou can also search for this author in.

我们感谢美国芝加哥大学的Douglas K.Bishop和日本大阪大学的Akira Shinohara分别对Hop2-Mnd1和Mei5-Sae3表达质粒的慷慨贡献。这项工作得到了中央研究院(P.C.),国立台湾大学(P.C.和H.-W.L.)和国家科学技术委员会(111-2311-B-002-006-MY3至P.C.,110-2113-M-002-020至H.-W.L.)的支持。作者信息作者和附属机构国立台湾大学生化科学研究所,台北,台湾大学化学系,台北,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾,台湾。

PubMed Google ScholarHao-Yen ChangView author publicationsYou can also search for this author in

PubMed Google ScholarHao Yen ChangView作者出版物您也可以在

PubMed Google ScholarYuting Liang SunView author publicationsYou can also search for this author in

PubMed Google ScholarYuting Liang SunView作者出版物您也可以在

PubMed Google ScholarMara PrentissView author publicationsYou can also search for this author in

PubMed Google ScholarMara PrentissView作者出版物您也可以在

PubMed Google ScholarHung-Wen LiView author publicationsYou can also search for this author in

PubMed Google ScholarPeter ChiView author publicationsYou can also search for this author in

PubMed Google ScholarPeter ChiView作者出版物您也可以在

PubMed Google ScholarContributionsJ.-C.P. and P.C. conceived the study. J.-C.P., H.-W.L., and P.C. designed the experiments. J.-C.P. performed the majority of protein purifications and biochemical assays. H.-Y.C. and Y.L.S. helped with protein purification and some of the biochemical assays.

PubMed谷歌学术贡献-C、 。J、 -C.P.,H.W.L。和P.C.设计了实验。J、 -C.P.进行了大多数蛋白质纯化和生化分析。H、 -Y.C.和Y.L.S.帮助蛋白质纯化和一些生化测定。

J.-C.P. conducted statistical analyses. J.-C.P. and P.C. wrote the paper with contributions from M.P. All authors engaged in discussions about the results and contributed to the manuscript.Corresponding authorCorrespondence to.

J、 -C.P.进行了统计分析。J、 -C.P.和P.C.在M.P.的贡献下撰写了这篇论文。所有作者都参与了对结果的讨论,并为稿件做出了贡献。对应作者对应。

Peter Chi.Ethics declarations

彼得·奇。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Hengyao Niu, Patrick Sung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢牛恒尧,宋帕特里克和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要透明的同行评审文件源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articlePeng, JC., Chang, HY., Sun, Y.L. et al. Hop2-Mnd1 functions as a DNA sequence fidelity switch in Dmc1-mediated DNA recombination.

转载和许可本文引用本文Peng,JC。,Chang,HY.,Sun,Y.L.等人,Hop2-Mnd1在Dmc1介导的DNA重组中起着DNA序列保真度开关的作用。

Nat Commun 15, 9266 (2024). https://doi.org/10.1038/s41467-024-53641-3Download citationReceived: 22 May 2024Accepted: 17 October 2024Published: 27 October 2024DOI: https://doi.org/10.1038/s41467-024-53641-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159266(2024)。https://doi.org/10.1038/s41467-024-53641-3Download引文接收日期:2024年5月22日接受日期:2024年10月17日发布日期:2024年10月27日OI:https://doi.org/10.1038/s41467-024-53641-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供