商务合作
动脉网APP
可切换为仅中文
AbstractThe paternally inherited Y chromosome is highly informative of genetic ancestry, therefore making it useful in studies of population history. In Finland, two Y-chromosomal haplogroups reveal the major substructure of the population: N1a1 enriched in the northeast and I1a in the southwest, suggested to reflect eastern and western ancestry contributions to the population.
摘要父系遗传的Y染色体对遗传祖先具有很高的信息量,因此在人口史研究中很有用。在芬兰,两个Y染色体单倍群揭示了种群的主要亚结构:N1a1在东北部富集,I1a在西南部富集,这表明反映了东方和西方血统对种群的贡献。
Yet, beyond these major Y-chromosomal lineages, the distribution of finer-scale Y-chromosomal variation has not been assessed in Finland. Here, we provide the most comprehensive Y-chromosomal study among the Finns to date, exploiting sequences for 1802 geographically mapped Finnish Y chromosomes from the FINRISK project.
然而,除了这些主要的Y染色体谱系之外,芬兰尚未评估更精细的Y染色体变异的分布。在这里,我们提供了迄今为止芬兰人中最全面的Y染色体研究,利用FINRISK项目中1802条地理定位的芬兰Y染色体的序列。
We assessed the distribution of common Y-chromosomal haplogroups (frequency ≥1%) throughout 19 Finnish regions and compared the autosomal genetic backgrounds of the Y-chromosomal haplogroups. With such high-resolution data, we were able to find previously unreported sublineages and resolve phylogenetic relationships within haplogroups N1a1 (64%), I1a (25%), R1a (4.3%), and R1b (4.8%).
我们评估了19个芬兰地区常见Y染色体单倍群(频率≥1%)的分布,并比较了Y染色体单倍群的常染色体遗传背景。有了这样的高分辨率数据,我们能够找到以前未报告的亚系,并解决单倍群N1a1(64%),I1a(25%),R1a(4.3%)和R1b(4.8%)内的系统发育关系。
We further find novel geographical enrichment patterns among these Y-chromosomal haplogroups, most notably observed for haplogroup N1a1 dividing into two lineages with differing distributions. While sublineage N-Z1934 (42%) followed a northeastern enrichment pattern observed for all N1a1 carriers in general, sublineage N-VL29 (22%) displayed an enrichment in the southwest.
我们进一步在这些Y染色体单倍群中发现了新的地理富集模式,最值得注意的是单倍群N1a1分为两个具有不同分布的谱系。通常,对于所有N1a1携带者,子系N-Z1934(42%)遵循东北富集模式,而子系N-VL29(22%)在西南富集。
Further, the carriers of N-VL29 showed a higher proportion of southwestern autosomal ancestry compared to carriers of N-Z1934. Collectively, these results point to distinct demographics within haplogroup N1a1, possibly induced by two distinct arrival routes into Finland. Overall, our study suggests a more complex genetic populatio.
此外,与N-Z1934携带者相比,N-VL29携带者在西南常染色体血统中的比例更高。总的来说,这些结果表明单倍群N1a1中存在不同的人口统计学特征,这可能是由两条不同的到达芬兰的路线引起的。总体而言,我们的研究表明遗传群体更为复杂。
IntroductionData collected from the Finnish population has been widely used in many genetic studies, ranging from investigations of disease susceptibility to population genetics [1, 2]. Relative isolation within the Northeastern corner of Europe (Fig. 1A), together with small founder populations and several population bottlenecks, have shaped the genetic background of modern Finns distinct from that of other Europeans [3].
引言从芬兰人群中收集的数据已广泛用于许多遗传学研究,从疾病易感性调查到群体遗传学[1,2]。欧洲东北角的相对隔离(图1A),加上创始人人数少和几个人口瓶颈,塑造了现代芬兰人不同于其他欧洲人的遗传背景。
Additionally, the Finnish population has been shaped by cultural, political, and linguistic influences, which have led to genetic differences within the country, most notably observed between eastern and western Finland [4,5,6,7]. These genetic differences, in part illustrated by distribution of Y-chromosomal haplogroups, are suggested to reflect two separate influences from the eastern and western directions [4, 7, 8].Fig.
此外,芬兰人口受到文化,政治和语言影响的影响,导致了国内的遗传差异,最明显的是在芬兰东部和西部之间观察到[4,5,6,7]。这些遗传差异部分由Y染色体单倍群的分布所说明,被认为反映了来自东方和西方方向的两个独立影响[4,7,8]。图。
1: Geographical regions covered in this study.A Location of 19 regions used in this study. Red diamonds highlight 4 of the largest metropolitan areas in Finland. The metropolitan area of Helsinki also includes cities of Espoo and Vantaa. B Full names of the studied regions and sample sizes based on the assigned geographical locations.
1: 。本研究中使用的19个区域的位置。红色钻石突出了芬兰最大的4个大都市地区。赫尔辛基大都市区还包括埃斯波和万塔两个城市。B根据指定的地理位置,研究区域的全名和样本量。
Gray bars indicate the current population sizes within each region from Statistics Finland [21], while black bars indicate the FINRISK data distribution. Our data contains excess samples from eastern parts of Finland due to the sampling strategy of the FINRISK project.Full size imageThe majority of Finnish men carry Y-chromosomal haplogroup N1a1 (also known as N1c1 [9], N3 [7, 10]), having an estimated frequency of 58% in the country [7].
灰色条表示芬兰统计局(21)每个地区的当前人口规模,而黑色条表示FINRISK数据分布。由于FINRISK项目的抽样策略,我们的数据包含来自芬兰东部的过量样本。全尺寸图像大多数芬兰男性携带Y染色体单倍群N1a1(也称为N1c1[9],N3[7,10]),在该国的频率估计为58%[7]。
N1a1 represents one of Northeast Eurasia’s prominent patrilineages and is enriched among Finno-Ugric-speaking populations [10]. Within Finland, the highest frequenci.
N1a1代表了欧亚大陆东北部突出的父系血统之一,并在讲芬兰语和乌戈尔语的人群中富集(10)。在芬兰,频率最高。
Data availability
数据可用性
The data used in this study is available through the Finnish Institute for Health and Welfare (THL) Biobank (http://www.thl.fi/biobank). Online figures: results for Y-chromosomal regional enrichment maps for all common haplogroups are available at https://doi.org/10.5281/zenodo.13903322 and https://doi.org/10.5281/zenodo.13904061.
这项研究中使用的数据可以通过芬兰健康与福利研究所(THL)生物库获得(http://www.thl.fi/biobank)。在线数字:所有常见单倍群的Y染色体区域富集图的结果可在https://doi.org/10.5281/zenodo.13903322和https://doi.org/10.5281/zenodo.13904061.
Supplementary material includes Figures S1–S5 and Tables S1–S10. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited..
补充材料包括图S1-S5和表S1-S10。这是一篇开放获取的文章,根据知识共享署名4.0国际许可的条款分发(https://creativecommons.org/licenses/by/4.0/),允许在任何媒体上不受限制地使用,分发和复制,前提是正确引用了原著。。
ReferencesKääriäinen H, Muilu J, Perola M, Kristiansson K. Genetics in an isolated population like Finland: a different basis for genomic medicine? J Community Genet. 2017;8:319–26.Article
参考文献Käääriäinen H,Muilu J,Perola M,Kristiansson K.芬兰等孤立人群的遗传学:基因组医学的不同基础?J社区基因。2017年;8: 319-26.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.Article
Kurki MI,Karjalainen J,Palta P,SipiläTP,Kristiansson K,Donner KM等。FinnGen提供了来自表型良好的孤立人群的遗传见解。自然。2023年;613:508–18.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lim ET, Würtz P, Havulinna AS, Palta P, Tukiainen T, Rehnström K, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10:e1004494.Article
Lim等人,Würtz P,Havulina AS,Palta P,Tukiainen T,Rehnström K等人。芬兰创始人人群中功能丧失变异的分布和医学影响。。2014年;10: e1004494。条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Palo JU, Ulmanen I, Lukka M, Ellonen P, Sajantila A. Genetic markers and population history: Finland revisited. Eur J Hum Genet. 2009;17:1336–46.Article
Palo JU,Ulmanen I,Lukka M,Ellonen P,Sajantila A.遗传标记和人口历史:重新审视芬兰。Eur J Hum Genet。2009年;17: 1336-46.条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salmela E, Lappalainen T, Fransson I, Andersen PM, Dahlman-Wright K, Fiebig A, et al. Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in Northern Europe. PLoS ONE. 2008;3:e3519.Kerminen S, Havulinna AS, Hellenthal G, Martin AR, Sarin AP, Perola M, et al.
Salmela E,Lappalainen T,Fransson I,Andersen PM,Dahlman Wright K,Fiebig A等。单核苷酸多态性的全基因组分析揭示了北欧的人口结构。PLoS ONE。2008年;3: e3519.Kerminen S,Havulina AS,Hellenthal G,Martin AR,Sarin AP,Perola M等。
Fine-scale genetic structure in Finland. G3 (Bethesda). 2017;7:3459–68.Article .
芬兰的精细遗传结构。G3(贝塞斯达)。2017年;7: 3459-68条。
PubMed
PubMed
Google Scholar
谷歌学者
Lappalainen T, Koivumäki S, Salmela E, Huoponen K, Sistonen P, Savontaus ML, et al. Regional differences among the Finns: a Y-chromosomal perspective. Gene. 2006;376:207–15.Article
Lappalainen T,Koivumäki S,Salmela E,Huoponen K,Sistonen P,Savontaus ML等。芬兰人之间的区域差异:Y染色体观点。基因。2006年;376:207–15.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kittles RA, Perola M, Peltonen L, Bergen AW, Aragon RA, Virkkunen M, et al. Dual origins of Finns revealed by Y chromosome haplotype variation. Am J Hum Genet. 1998;62:1171–9.Article
Kittles RA,Perola M,Peltonen L,Bergen AW,Aragon RA,Virkkunen M等。通过Y染色体单倍型变异揭示了芬兰人的双重起源。我是J Hum Genet。1998年;62:1171-9.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neuvonen AM, Putkonen M, Översti S, Sundell T, Onkamo P, Sajantila A, et al. Vestiges of an ancient border in the contemporary genetic diversity of North-Eastern Europe. PLoS ONE. 2015;10:e0130331.Ilumäe AM, Reidla M, Chukhryaeva M, Järve M, Post H, Karmin M, et al. Human Y chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families.
Neuvonen AM,Putkonen M,Översti S,Sundell T,Onkamo P,Sajantila A等。古代边界在当代东北欧遗传多样性中的遗迹。PLoS ONE。2015年;10: e0130331。Ilumäe AM,Reidla M,Chukhryaeva M,Järve M,Post H,Karmin M等。人类Y染色体单倍群N:一种跨越语言家族的非平凡时间分辨系统地理学。
Am J Hum Genet. 2016;99:163–73.Article .
我是J Hum Genet。2016年;99:163-73。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zerjal T, Dashnyam B, Pandya A, Kayser M, Roewer L, Santos FR, et al. Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosomal DNA analysis. Am J Hum Genet. 1997;60:1174–83.CAS
Zerjal T,Dashnyam B,Pandya A,Kayser M,Roewer L,Santos FR等。通过Y染色体DNA分析揭示了亚洲人和北欧人的遗传关系。我是J Hum Genet。1997年;60:1174-83.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng TC, Vyazov LA, Kim A, Flegontov P, Sirak K, Maier R, et al. Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. 2023. https://doi.org/10.1101/2023.10.01.560332.Karlsson AO, Wallerström T, Götherström A, Holmlund G.
Zeng TC,Vyazov LA,Kim A,Flegontov P,Sirak K,Maier R等。来自欧亚大陆北部觅食者的冰川后基因组揭示了与乌拉尔语和叶尼塞语传播相关的史前流动性。2023https://doi.org/10.1101/2023.10.01.560332.KarlssonAO,Wallerström T,Götherström A,Holmlund G。
Y-chromosome diversity in Sweden – A long-time perspective. Eur J Hum Genet. 2006;14:963–70.Article .
瑞典的Y染色体多样性-长期观点。Eur J Hum Genet。2006年;14: 963-70条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rootsi S, Magri C, Kivisild T, Benuzzi G, Help H, Bermisheva M, et al. Phylogeography of Y-chromosome haplogroup I reveals distinct domains of prehistoric gene flow in Europe. Am J Hum Genet. 2004;75:128–37.Article
Rootsi S,Magri C,Kivisild T,Benuzzi G,Help H,Bermisheva M等。Y染色体单倍群I的系统地理学揭示了欧洲史前基因流的不同领域。我是J Hum Genet。2004年;75:128–37.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lappalainen T, Laitinen V, Salmela E, Andersen P, Huoponen K, Savontaus ML, et al. Migration waves to the Baltic Sea Region. Ann Hum Genet. 2008;72:337–48.Article
Lappalainen T,Laitinen V,Salmela E,Andersen P,Huoponen K,Savontaus ML等。向波罗的海地区的迁移波。安·亨吉内特。2008年;72:337–48.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Borodulin K, Tolonen H, Jousilahti P, Jula A, Juolevi A, Koskinen S, et al. Cohort profile: The National FINRISK Study. Int J Epidemiol. 2018;47:696–696i.Article
Borodulin K,Tolonen H,Jouslahti P,Jula A,Juolevi A,Koskinen S等。队列概况:国家金融风险研究。国际流行病学杂志。2018年;47:696-696i。文章
PubMed
PubMed
Google Scholar
谷歌学者
Poznik GD, Henn BM, Yee MC, Sliwerska E, Euskirchen GM, Lin AA, et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science. 2013;341:562–5.Article
Poznik GD,Henn BM,Yee MC,Sliwerska E,Euskirchen GM,Lin AA等。Y染色体测序解决了男性与女性共同祖先的时间差异。科学。2013年;341:562–5.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Köksal Z, Børsting C, Gusmão L, Pereira V. SNPtotree—resolving the phylogeny of SNPs on non-recombining DNA. Genes. 2023;14:1837.Article
Köksal Z,Børsting C,Gusmão L,Pereira V.SNPtotree解决了非重组DNA上SNP的系统发育。基因。2023年;14: 第1837条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forster P, Harding R, Torroni A, Bandelt HJ. Origin and evolution of native American mtDNA variation: a reappraisal. Am J Hum Genet. 1996;59:935–45.CAS
福斯特P,哈丁R,托罗尼A,班德尔HJ。美洲原住民mtDNA变异的起源和进化:重新评估。我是J Hum Genet。1996年;59:935–45.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
YFull v10.01. https://www.yfull.com/tree/. Accessed 1 May 2024.Statistics Finland. https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/. Accessed 2 May 2024.Chen H, Lu Y, Lu D, Xu S. Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data. BMC Bioinform.
YFull v10.01。https://www.yfull.com/tree/.2024年5月1日访问。芬兰统计局。https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/.。BMC生物信息。
2021;22:114.Article .
2021年;22:114。第条。
Google Scholar
谷歌学者
International Society of Genetic Genealogy (ISOGG) v15.73. https://isogg.org. Accessed 11 Jan 2022.Timmers PRHJ, Wilson JF. Limited effect of Y chromosome variation on coronary artery disease and mortality in UK Biobank-Brief report. Arterioscler Thromb Vasc Biol. 2022;42:1198–206.Article .
国际遗传谱系学会(ISOGG)v15.73。https://isogg.org.2022年1月11日访问。Timmers PRHJ,Wilson JF。英国生物库简要报告中Y染色体变异对冠状动脉疾病和死亡率的有限影响。动脉硬化血栓血管生物学。2022年;42:1198-206。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, et al. The fine-scale genetic structure of the British population. Nature. 2015;519:309–14.Article
Leslie S,Winney B,Hellenthal G,Davidon D,Boumertit A,Day T等。英国人口的精细遗传结构。自然。2015年;519:309–14.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kerminen S, Cerioli N, Pacauskas D, Havulinna AS, Perola M, Jousilahti P, et al. Changes in the fine-scale genetic structure of Finland through the 20th century. PLoS Genet. 2021;17:e1009347.Tambets K, Yunusbayev B, Hudjashov G, Ilumäe AM, Rootsi S, Honkola T, et al. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations.
Kerminen S,Cerioli N,Pacauskas D,Havulina AS,Perola M,Jousilahti P等。20世纪芬兰精细遗传结构的变化。。2021年;17: e1009347。Tambets K,Yunusbayev B,Hudjashov G,Ilumäe AM,Rootsi S,Honkola T等。基因揭示了大多数讲乌拉尔语的人群的近期共同人口统计学历史的痕迹。
Genome Biol. 2018;19:139.Article .
基因组生物学。2018年;19: 第139条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neparáczki E, Maróti Z, Kalmár T, Maár K, Nagy I, Latinovics D, et al. Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin. Sci Rep. 2019;9:16569.Article
Neparáczki E,Maróti Z,Kalmár T,Maár K,Nagy I,Latinovics D等。来自匈奴,阿瓦尔和征服匈牙利时期喀尔巴阡盆地游牧民族的Y染色体单倍群。Sci代表2019;9: 16569条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Post H, Németh E, Klima L, Flores R, Fehér T, Türk A, et al. Y-chromosomal connection between Hungarians and geographically distant populations of the Ural Mountain region and West Siberia. Sci Rep. 2019;9:7786.Article
Post H,Németh E,Klima L,Flores R,FehéR T,Türk A等。匈牙利人与乌拉尔山区和西西伯利亚地理上遥远的人群之间的Y染色体联系。Sci Rep.2019;9:
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lamnidis TC, Majander K, Jeong C, Salmela E, Wessman A, Moiseyev V, et al. Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat Commun. 2018;9:5018.Article
Lamnidis TC,Majander K,Jeong C,Salmela E,Wessman A,Moiseyev V等。古老的芬诺斯卡迪亚基因组揭示了西伯利亚血统在欧洲的起源和传播。纳特公社。2018年;9: 第5018条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nevanlinna HR. The Finnish population structure A genetic and genealogical study. Hereditas. 2009;71:195–235.Article
Nevanlinna HR。芬兰人口结构的遗传和家谱研究。遗传。2009年;71:195–235.文章
Google Scholar
谷歌学者
Keränen, J Kainuun asuttaminen. 1984. http://urn.fi/URN:ISBN:978-951-39-8424-3.Syrjänen K, Honkola T, Lehtinen J, Leino A, Vesakoski O. Applying population genetic approaches within languages: Finnish dialects as linguistic populations. Lang Dyn Change. 2016;6:235–83.Article
Keränen,J Kainuun asuttaminen。1984http://urn.fi/URN:ISBN:978-951-39-8424-3。Syrjänen K,Honkola T,Lehtinen J,Leino A,Vesakoski O。在语言中应用种群遗传学方法:芬兰方言作为语言种群。Lang Dyn改变。2016年;6: 235-83.文章
Google Scholar
谷歌学者
Kivisild T, Saag L, Hui R, Biagini SA, Pankratov V, D’Atanasio E, et al. Patterns of genetic connectedness between modern and medieval Estonian genomes reveal the origins of a major ancestry component of the Finnish population. Am J Hum Genet. 2021;108:1792–806.Article
Kivisild T,Saag L,Hui R,Biagini SA,Pankratov V,D'Atanasio E等。现代和中世纪爱沙尼亚基因组之间的遗传连接模式揭示了芬兰人口主要祖先组成部分的起源。我是J Hum Genet。2021年;108:1792-806.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ameur A, Dahlberg J, Olason P, Vezzi F, Karlsson R, Martin M, et al. SweGen: a whole-genome data resource of genetic variability in a cross-section of the Swedish population. Eur J Hum Genet. 2017;25:1253–60.Article
Ameur A,Dahlberg J,Olason P,Vezzi F,Karlsson R,Martin M等。SweGen:瑞典人群横断面遗传变异的全基因组数据资源。Eur J Hum Genet。2017年;25:1253–60.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krzewińska M, Kjellström A, Günther T, Hedenstierna-Jonson C, Zachrisson T, Omrak A, et al. Genomic and strontium isotope variation reveal immigration patterns in a Viking Age Town. Curr Biol. 2018;28:2730–2738.e10.Article
Krzewińska M,KjellströM A,Günther T,Hedenstierna Jonson C,Zachrisson T,Omrak A等。基因组和锶同位素变异揭示了维京人时代城镇的移民模式。货币生物学。2018年;28:2730–2738.e10.文章
PubMed
PubMed
Google Scholar
谷歌学者
The universal Y-SNP database. https://ysnp.erasmusmc.nl/. Accessed 2 May 2024.Underhill PA, Poznik GD, Rootsi S, Järve M, Lin AA, Wang J, et al. The phylogenetic and geographic structure of Y-chromosome haplogroup R1a. Eur J Hum Genet. 2015;23:124–31.Article
通用Y-SNP数据库。https://ysnp.erasmusmc.nl/.2024年5月2日访问。Underhill PA,Poznik GD,Rootsi S,Järve M,Lin AA,Wang J等。Y染色体单倍群R1a的系统发育和地理结构。Eur J Hum Genet。2015年;
PubMed
PubMed
Google Scholar
谷歌学者
Myres NM, Rootsi S, Lin AA, Järve M, King RJ, Kutuev I, et al. A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe. Eur J Hum Genet. 2011;19:95–101.Article
Myres NM,Rootsi S,Lin AA,Järve M,King RJ,Kutuev I等。中欧和西欧主要的Y染色体单倍群R1b全新世创始人效应。Eur J Hum Genet。;19: 95-101.文章
PubMed
PubMed
Google Scholar
谷歌学者
Lall GM, Larmuseau MHD, Wetton JH, Batini C, Hallast P, Huszar TI, et al. Subdividing Y-chromosome haplogroup R1a1 reveals Norse Viking dispersal lineages in Britain. Eur J Hum Genet. 2021;29:512–23.Article
Lall GM,Larmuseau MHD,Wetton JH,Batini C,Hallast P,Huszar TI等。细分Y染色体单倍群R1a1揭示了挪威维京人在英国的扩散谱系。Eur J Hum Genet。2021年;29:512–23.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe data used for the research was obtained from THL Biobank (study numbers: BB2019_44, THLBB2022_28). We thank all study participants for their generous participation in biobank research. We thank Priit Palta and Shuang Luo for providing the SISu reference data for the Y chromosome.
下载参考文献致谢用于研究的数据来自THL Biobank(研究编号:BB2019\u 44,THLBB2022\u 28)。我们感谢所有研究参与者慷慨参与生物库研究。我们感谢Priit Palta和Shuang Luo提供了Y染色体的SISu参考数据。
We thank Elina Salmela for insightful discussions and comments on the manuscript.FundingThis work was financially supported by the Research Council of Finland (grant nos. 315589 and 345867 to T.T.; 338507 and 352795 to M.P.), Sigrid Jusélius foundation (T.T. and M.P.), HiLIFE Fellow funding (T.T.), and research funding in the Doctoral Programme of Population Health from the University of Helsinki (A.P.).
我们感谢Elina Salmela对稿件的深入讨论和评论。资助这项工作得到了芬兰研究委员会(T.T.拨款315589和345867;M.P.拨款338507和352795),Sigrid Jusélius基金会(T.T.和M.P.),HiLIFE研究员资助(T.T.)和赫尔辛基大学人口健康博士生项目(A.P.)的研究资助。
Open Access funding provided by University of Helsinki (including Helsinki University Central Hospital).Author informationAuthors and AffiliationsInstitute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, FinlandAnnina Preussner, Jaakko Leinonen, Juha Riikonen, Matti Pirinen & Taru TukiainenDepartment of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, FinlandMatti PirinenDepartment of Mathematics and Statistics, University of Helsinki, Helsinki, FinlandMatti PirinenAuthorsAnnina PreussnerView author publicationsYou can also search for this author in.
。作者信息作者和附属机构芬兰分子医学研究所(FIMM),HiLIFE,赫尔辛基大学,赫尔辛基,FinlandAnnina Preussner,Jaakko Leinonen,Juha Riikonen,Matti Pirinen&Taru Tukiain赫尔辛基大学医学院公共卫生系,赫尔辛基,FinlandMatti Pirinen赫尔辛基大学数学与统计系,FinlandMatti Pirinenauthorsanna PreussnerView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarJaakko LeinonenView author publicationsYou can also search for this author in
PubMed Google ScholarJaakko LeinonenView作者出版物您也可以在
PubMed Google ScholarJuha RiikonenView author publicationsYou can also search for this author in
PubMed Google ScholarJuha RiikonenView作者出版物您也可以在
PubMed Google ScholarMatti PirinenView author publicationsYou can also search for this author in
PubMed Google ScholarMatti PirineView作者出版物您也可以在
PubMed Google ScholarTaru TukiainenView author publicationsYou can also search for this author in
PubMed Google ScholarTaru TukiainView作者出版物您也可以在
PubMed Google ScholarContributionsTT, JL, AP, and MP designed the study. AP conducted the analyses, and JR provided assistance and computational methods in the analyses of autosomal data. MP provided materials and statistical assistance. AP, JL, and TT wrote the manuscript. All authors interpreted the results and reviewed the manuscript.Corresponding authorCorrespondence to.
PubMed Google ScholarContributionsTT,JL,AP和MP设计了这项研究。AP进行了分析,JR在常染色体数据分析中提供了帮助和计算方法。议员提供了材料和统计援助。AP,JL和TT撰写了手稿。所有作者都解释了结果并审阅了手稿。对应作者对应。
Taru Tukiainen.Ethics declarations
塔鲁·图基艾宁。伦理声明
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Ethical approval and consent to participate
道德认可和参与同意
The data used in this study originated from previous data collection of the FINRISK study, for which ethical approval had been obtained at the time of each survey according to the Finnish legislation and common ethical requirements [16].
本研究中使用的数据来自FINRISK研究之前的数据收集,根据芬兰立法和共同道德要求,在每次调查时都获得了道德批准。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary Methods and MaterialsSupplementary Table S1Supplementary Table S2Supplementary Table S3Supplementary Table S4Supplementary Table S5Supplementary Table S6Supplementary Table S7Supplementary Table S8Supplementary Table S9Supplementary Table S10Rights and permissions.
。补充信息补充方法和材料补充表S1补充表S2补充表S3补充表S4补充表S5补充表S6补充表S7补充表S8补充表S9补充表S1权利和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articlePreussner, A., Leinonen, J., Riikonen, J. et al. Y chromosome sequencing data suggest dual paths of haplogroup N1a1 into Finland.
转载和许可本文引用本文Preussner,A.,Leinonen,J.,Riikonen,J。等人的Y染色体测序数据表明单倍群N1a1进入芬兰的双重途径。
Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01707-7Download citationReceived: 27 February 2024Revised: 09 August 2024Accepted: 25 September 2024Published: 28 October 2024DOI: https://doi.org/10.1038/s41431-024-01707-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Eur J Hum Genet(2024)。https://doi.org/10.1038/s41431-024-01707-7Download引文收到日期:2024年2月27日修订日期:2024年8月9日接受日期:2024年9月25日发布日期:2024年10月28日OI:https://doi.org/10.1038/s41431-024-01707-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供