商务合作
动脉网APP
可切换为仅中文
AbstractTalin regulates crucial cellular functions, including cell adhesion and motility, and affects human diseases. Triggered by mechanical forces, talin plays crucial roles in facilitating the formation of focal adhesions and recruiting essential focal adhesion regulatory elements such as vinculin.
Abstractalin调节关键的细胞功能,包括细胞粘附和运动,并影响人类疾病。由机械力触发,塔林在促进粘着斑的形成和募集重要的粘着斑调节元件(如纽蛋白)方面起着至关重要的作用。
The structural flexibility allows talin to fine-tune its signaling responses. This study presents our 2.7 Å cryoEM structures of talin, which surprisingly uncovers several auto-inhibitory states. Contrary to previous suggestions, our structures reveal that (1) the first and last three domains are not involved in maintaining talin in its closed state and are mobile, (2) the talin F-actin and membrane binding domain are loosely attached and thus available for binding, and (3) the main force-sensing domain is oriented with its vinculin binding sites ready for release.
结构的灵活性允许talin微调其信号响应。这项研究介绍了我们的talin的2.7ÅcryoEM结构,令人惊讶地揭示了几种自抑制状态。与之前的建议相反,我们的结构显示(1)前三个结构域和后三个结构域不参与维持talin处于闭合状态并且是可移动的,(2)talin F-肌动蛋白和膜结合结构域松散连接,因此可用于结合,以及(3)主要的力感应结构域以其纽蛋白结合位点定向,准备释放。
These structural snapshots offer insights and advancements in understanding the dynamic talin activation mechanism, which is crucial for mediating cell adhesion..
。。
IntroductionTalin plays an indispensable role in cell motility and migration by modulating the dynamics of focal adhesions1. Talin facilitates cellular attachment to the extracellular matrix by activating the transmembrane integrin receptors. This binding induces a structural transformation in both integrin polypeptide chains, enhancing integrin in engaging with extracellular matrix ligands2.
引言Talin通过调节粘着斑的动力学在细胞运动和迁移中起着不可或缺的作用1。Talin通过激活跨膜整联蛋白受体促进细胞与细胞外基质的附着。这种结合诱导两条整联蛋白多肽链的结构转化,增强整联蛋白与细胞外基质配体的结合2。
This activation is critical for cell adhesion and downstream signaling processes that regulate cell growth, survival, and differentiation. Consequently, it is unsurprising that talin is essential for tissue morphogenesis and organogenesis.Moreover, talin contributes to immune responses by promoting the adhesion of immune cells, such as T cells and neutrophils, to blood vessel walls, thereby enabling their migration to sites of infection or inflammation3.
这种激活对于调节细胞生长,存活和分化的细胞粘附和下游信号传导过程至关重要。因此,毫不奇怪,塔林对于组织形态发生和器官发生至关重要。此外,talin通过促进免疫细胞(如T细胞和嗜中性粒细胞)与血管壁的粘附来促进免疫反应,从而使其能够迁移到感染或炎症部位3。
Dysregulation of talin function has been implicated in a spectrum of diseases4,5, including cancer4,5,6,7,8, cardiovascular disorders5,9,10, and autoimmune conditions. A deeper understanding of the involvement of talin in these diseases offers promising avenues for potential therapeutic interventions.The talin polypeptide chain, consisting of 2541 amino acids, is organized into an amino-terminal head and a carboxy-terminal tail domain connected by approximately eighty residues, which act as a flexible linker11,12,13 (Fig. 1a).
塔林功能失调与一系列疾病有关,包括癌症4,5,6,7,8,心血管疾病5,9,10和自身免疫性疾病。对塔林参与这些疾病的深入了解为潜在的治疗干预提供了有希望的途径。由2541个氨基酸组成的塔林多肽链被组织成一个氨基末端头部和一个羧基末端尾部结构域,该结构域由大约80个残基连接,充当柔性接头11,12,13(图1a)。
The head domain features a distinctive FERM (4.1 protein, ezrin, radixin, moesin) configuration that exhibits the classical FERM subdomains (F1-F3) arranged linearly instead of resembling a cloverleaf, with an additional insertion in F1 and a unique subdomain at the outset, F014 (PDB entries 3ivf15, 6mfs16).
头部结构域具有独特的FERM(4.1蛋白,ezrin,radixin,moesin)构型,其表现出线性排列的经典FERM亚结构域(F1-F3),而不是类似于三叶草,在F1中有额外的插入,并且在一开始就有一个独特的亚结构域F014(PDB条目3ivf15,6mfs16)。
SAXS analyses supported the extended conformation of the FERM domain. However, SAXS also indicated add.
SAXS分析支持FERM域的扩展构象。但是,SAXS也表示添加。
Data availability
数据可用性
The final coordinates and the Coulomb potential maps generated in this study for the talin2.7 (PDB entry 8vdo; EMD-43152), talin3.4 (8vdp; EMD-43154), talin5.5 (8vdq; EMD-43155), and talin3.7 (8vdr; EMD-43156) structures have been deposited with the Protein Data Bank and Electron Microscopy Data Bank, respectively.
本研究中生成的talin2.7(PDB条目8vdo;EMD-43152),talin3.4(8vdp;EMD-43154),talin5.5(8vdq;EMD-43155)和talin3.7(8vdr;EMD-43156)结构的最终坐标和库仑电位图已分别存放在蛋白质数据库和电子显微镜数据库中。
The Coulomb potential map for talin3.39 was deposited with EMDB (accession code EMD-44931). The raw movies for both datasets are accessible through accession codes EMPIAR-11881 (talin5.5 and talin3.7 [https://www.ebi.ac.uk/empiar/EMPIAR-11881]) and EMPIAR-11882 (talin2.7, talin3.4, and talin3.39 [https://www.ebi.ac.uk/empiar/EMPIAR-11882]).
talin3.39的库仑电位图已保存在EMDB(登录号EMD-44931)中。这两个数据集的原始电影都可以通过登录号EMPIAR-11881(talin5.5和talin3.7)访问[https://www.ebi.ac.uk/empiar/EMPIAR-11881])和EMPIAR-11882(talin2.7、talin3.4和talin3.39[https://www.ebi.ac.uk/empiar/EMPIAR-11882])。
The expression plasmid is available with Addgene (ID #164838 [https://www.addgene.org/164838/]). Source data are provided with this paper..
表达质粒可与Addgene(ID#164838)一起获得[https://www.addgene.org/164838/])。本文提供了源数据。。
ReferencesCram, E. J., Clark, S. G. & Schwarzbauer, J. E. Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. J. Cell Sci. 116, 3871–3878 (2003).Article
参考文献Cram,E.J.,Clark,S.G。&Schwarzbauer,J.E.Talin功能丧失揭示了秀丽隐杆线虫在细胞收缩和迁移中的作用。J、 细胞科学。1163871-3878(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).Article
Tadokoro,S。等人。Talin与整合素β尾巴的结合:整合素激活的最后一个常见步骤。科学302103-106(2003)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Ye, F., Snider, A. K. & Ginsberg, M. H. Talin and kindlin: the one-two punch in integrin activation. Front Med 8, 6–16 (2014).Article
。《前沿医学》8,6-16(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Haining, A. W., Lieberthal, T. J. & Hernandez, DelRio A.Talin: a mechanosensitive molecule in health and disease. FASEB J. 30, 2073–2085 (2016).Article
Haining,A.W.,Lieberthal,T.J。&Hernandez,DelRio A.Talin:健康和疾病中的机械敏感分子。FASEB J.302073–2085(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Qi, L., Kolodziej, T., Rajfur, Z. & Huang, C. Roles of talin2 in traction force generation, tumor metastasis and cardiovascular integrity. Curr. Protein Pept. Sci. 19, 1071–1078 (2018).Article
Qi,L.,Kolodziej,T.,Rajfur,Z。&Huang,C。talin2在牵引力产生,肿瘤转移和心血管完整性中的作用。货币。蛋白质Pept。。191071-1078(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Desiniotis, A. & Kyprianou, N. Significance of talin in cancer progression and metastasis. Int Rev. Cell Mol. Biol. 289, 117–147 (2011).Article
Desiniotis,A。&Kyprianou,N。塔林在癌症进展和转移中的意义。Int Rev.Cell分子生物学。289117-147(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, L. et al. The role of talin2 in breast cancer tumorigenesis and metastasis. Oncotarget 8, 106876–106887 (2017).Article
Li,L。等人。talin2在乳腺癌肿瘤发生和转移中的作用。Oncotarget 8106876–106887(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beaty, B. T. & Condeelis, J. Digging a little deeper: the stages of invadopodium formation and maturation. Eur. J. Cell Biol. 93, 438–444 (2014).Article
Beaty,B.T。&Condeelis,J。深入挖掘:invadopodium形成和成熟的阶段。Eur.J.细胞生物学。93438-444(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Q. et al. Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J. 29, 4989–5005 (2015).Article
Wu,Q。等人。Talin1是斑马鱼心脏Z盘稳定和内皮完整性所必需的。FASEB J.294989–5005(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zemljic-Harpf, A., Manso, A. M. & Ross, R. S. Vinculin and talin: focus on the myocardium. J. Investig. Med 57, 849–855 (2009).Article
Zemljic-Harpf,A.,Manso,A.M.&Ross,R.S.Vinculin和talin:关注心肌。J、 调查。医学57849-855(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dedden, D. et al. The architecture of talin1 reveals an autoinhibition mechanism. Cell 179, 120–131.e113 (2019).Article
Dedden,D。等人。talin1的结构揭示了一种自抑制机制。细胞179120-131.e113(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature 347, 685–689 (1990).Article
Rees,D.J.,Ades,S.E.,Singer,S.J.&Hynes,R.O。塔林的序列和结构域。《自然》347685-689(1990)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med 14, 325–330 (2008).Article
Moser,M.,Nieswandt,B.,Ussar,S.,Pozgajova,M。&Fassler,R。Kindlin-3对于整合素活化和血小板聚集至关重要。《自然医学》14325-330(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goult, B. T. et al. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. EMBO J. 29, 1069–1080 (2010).Article
Goult,B.T.等人。塔林头部双泛素样结构域的结构:整合素激活中的作用。EMBO J.291069–1080(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Elliott, P. R. et al. The Structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 18, 1289–1299 (2010).Article
Elliott,P.R。等人。塔林头部的结构揭示了FERM结构域的新型扩展构象。结构181289-1299(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chinthalapudi, K., Rangarajan, E. S. & Izard, T. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Proc. Natl Acad. Sci. USA 115, 10339–10344 (2018).Article
Chinthalapudi,K.,Rangarajan,E.S。&Izard,T。塔林与细胞膜的相互作用对于整合素活化和粘着斑形成至关重要。程序。国家科学院。。美国11510339–10344(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, P. et al. Crystal structure of the FERM-folded talin head reveals the determinants for integrin binding. Proc. Natl Acad. Sci. USA 117, 32402–32412 (2020).Article
Zhang,P。等人。FERM折叠的塔林头部的晶体结构揭示了整合素结合的决定因素。程序。国家科学院。。美国1173402–32412(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Petrich, B. G. Talin-dependent integrin signalling in vivo. Thromb. Haemost. 101, 1020–1024 (2009).Article
Petrich,B.G。体内塔林依赖性整合素信号传导。。血友病。1011020–1024(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227 (2001).Article
Martel,V。等人。talin的构象,定位和整联蛋白结合取决于其与磷酸肌醇的相互作用。J、 生物。。27621217–21227(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gilmore, A. P. & Burridge, K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531–535 (1996).Article
Gilmore,A.P。&Burridge,K。通过磷脂酰肌醇-4-5-二磷酸调节纽蛋白与talin和肌动蛋白的结合。自然381531-535(1996)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. Nature 420, 85–89 (2002).Article
Di Paolo,G。等人。talin的FERM结构域对磷脂酰肌醇磷酸激酶1型γ的募集和调节。《自然》420,85-89(2002)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Goult, B. T. et al. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. J. Biol. Chem. 288, 8238–8249 (2013).Article
Goult,B.T。等人。RIAM和纽蛋白与talin的结合是相互排斥的,并调节粘附组装和周转。J、 生物。。2888238–8249(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gingras, A. R. et al. The structure of the C-terminal actin-binding domain of talin. EMBO J. 27, 458–469 (2008).Article
Gingras,A.R.等人。talin的C末端肌动蛋白结合结构域的结构。EMBO J.27458–469(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gingras, A. R. et al. Structural determinants of integrin binding to the talin rod. J. Biol. Chem. 284, 8866–8876 (2009).Article
Gingras,A.R.等人。整合素与talin杆结合的结构决定因素。J、 生物。。2848866–8876(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ye, F., Lagarrigue, F. & Ginsberg, M. H. SnapShot: talin and the modular nature of the integrin adhesome. Cell 156, 1340–1340.e1341 (2014).Article
Ye,F.,Lagarrigue,F。&Ginsberg,M.H。快照:塔林和整合素粘附体的模块化性质。细胞1561340-1340.e1341(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burridge, K. & Mangeat, P. An interaction between vinculin and talin. Nature 308, 744–746 (1984).Article
Burridge,K。&Mangeat,P。纽蛋白和塔林之间的相互作用。《自然》308744-746(1984)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin–a transmembrane linkage. Nature 320, 531–533 (1986).Article
Horwitz,A.,Duggan,K.,Buck,C.,Beckerle,M.C。&Burridge,K。质膜纤连蛋白受体与跨膜连接的相互作用。《自然》320531-533(1986)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 10, 1062–1068 (2008).Article
Zhang,X。等人。Talin耗竭揭示了初始细胞扩散与整合素激活和牵引的独立性。自然细胞生物学。101062-1068(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).Article
Jiang,G.,Giannone,G.,Critchley,D.R.,Fukumoto,E。&Sheetz,M.P。纤连蛋白和细胞骨架之间的两个皮克牛顿滑移键取决于talin。自然424334-337(2003)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
O’Halloran, T., Beckerle, M. C. & Burridge, K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature 317, 449–451 (1985).Article
。自然317449-451(1985)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).Article
del Rio,A。等人。拉伸单个塔林杆分子激活纽蛋白结合。科学323638-641(2009)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).Article
Yao,M。等人。纽蛋白与talin结合的机械激活将talin锁定在未折叠的构象中。。代表44610(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, M. et al. Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).Article
Yao,M。等人。α-连环蛋白的力依赖性构象转换控制纽蛋白结合。国家公社。54525(2014)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).Article
Yao,M.等人。塔林的机械反应。国家公社。711966(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klapholz, B. & Brown, N. H. Talin - the master of integrin adhesions. J. Cell Sci. 130, 2435–2446 (2017).Article
Klapholz,B。&Brown,N。H。Talin-整合素粘附的大师。J、 细胞科学。1302435-2446(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Klapholz, B. et al. Alternative mechanisms for talin to mediate integrin function. Curr. Biol. 25, 847–857 (2015).Article
Klapholz,B。等人。talin介导整合素功能的替代机制。货币。生物学25847-857(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H., Chang, Y. C., Huang, Q., Brennan, M. L. & Wu, J. Structural and functional analysis of a talin triple-domain module suggests an alternative talin autoinhibitory configuration. Structure 24, 721–729 (2016).Article
Zhang,H.,Chang,Y.C.,Huang,Q.,Brennan,M.L。&Wu,J。talin三结构域模块的结构和功能分析表明了另一种talin自抑制构型。结构24721-729(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haage, A. et al. Talin autoinhibition regulates cell-ECM adhesion dynamics and wound healing in vivo. Cell Rep. 25, 2401–2416.e2405 (2018).Article
Haage,A。等人。塔林自抑制调节体内细胞-ECM粘附动力学和伤口愈合。Cell Rep.252401–2416.e2405(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ellis, S. J. et al. Talin autoinhibition is required for morphogenesis. Curr. Biol. 23, 1825–1833 (2013).Article
Ellis,S.J。等人。形态发生需要塔林自身抑制。货币。生物学231825-1833(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yan, J., Yao, M., Goult, B. T. & Sheetz, M. P. Talin dependent mechanosensitivity of cell focal adhesions. Cell Mol. Bioeng. 8, 151–159 (2015).Article
Yan,J.,Yao,M.,Goult,B.T。&Sheetz,M.P。Talin依赖性细胞粘着斑的机械敏感性。细胞分子Bioeng。8151-159(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).Article
Goult,B.T.,Yan,J。&Schwartz,M.A。Talin作为机械敏感信号枢纽。J、 细胞生物学。2173776-3784(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haining, A. W., von Essen, M., Attwood, S. J., Hytonen, V. P. & Del Rio Hernandez, A. All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano 10, 6648–6658 (2016).Article
Haining,A.W.,von Essen,M.,Attwood,S.J.,Hytonen,V.P。和Del Rio Hernandez,A。塔林杆的所有子域在机械上都很脆弱,可能有助于细胞机械传感。ACS Nano 106648–6658(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mykuliak, V. V., Haining, A. W. M., von Essen, M., Del Rio Hernandez, A. & Hytonen, V. P. Mechanical unfolding reveals stable 3-helix intermediates in talin and alpha-catenin. PLoS Comput Biol. 14, e1006126 (2018).Article
Mykuliak,V.V.,Haining,A.W.M.,von Essen,M.,Del Rio Hernandez,A。&Hytonen,V.P。机械展开揭示了talin和alpha-catenin中稳定的3-螺旋中间体。PLoS计算机生物学。14,e1006126(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baxter, N. J., Zacharchenko, T., Barsukov, I. L. & Williamson, M. P. Pressure-dependent chemical shifts in the R3 domain of talin show that it is thermodynamically poised for binding to either vinculin or RIAM. Structure 25, 1856–1866.e1852 (2017).Article
Baxter,N.J.,Zacharchenko,T.,Barsukov,I.L。和Williamson,M.P。塔林R3结构域的压力依赖性化学位移表明,它在热力学上准备与纽蛋白或RIAM结合。结构251856-1866.e1852(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Izard, T. et al. Vinculin activation by talin through helical bundle conversion. Nature 427, 171–175 (2004).Article
Izard,T。等人。塔林通过螺旋束转化激活纽蛋白。自然427171-175(2004)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Izard, T. & Vonrhein, C. Structural basis for amplifying vinculin activation by talin. J. Biol. Chem. 279, 27667–27678 (2004).Article
Izard,T。&Vonrhein,C。通过talin扩增纽蛋白活化的结构基础。J、 生物。。27927667–27678(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bois, P. R., O’Hara, B. P., Nietlispach, D., Kirkpatrick, J. & Izard, T. The vinculin binding sites of talin and α-actinin are sufficient to activate vinculin. J. Biol. Chem. 281, 7228–7236 (2006).Article
Bois,P.R.,O'Hara,B.P.,Nietlispach,D.,Kirkpatrick,J。&Izard,T。talin和α-肌动蛋白的纽蛋白结合位点足以激活纽蛋白。J、 生物。。2817228–7236(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rangarajan, E. S. et al. A distinct talin2 structure directs isoform specificity in cell adhesion. J. Biol. Chem. 295, 12885–12899 (2020).Article
Rangarajan,E.S。等人。独特的talin2结构指导细胞粘附的同工型特异性。J、 生物。。29512885–12899(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, X. et al. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion. Cell Res. 22, 1533–1545 (2012).Article
Song,X。等人。细胞粘附位点talin FERM结构域的新型膜依赖性开/关开关机制。Cell Res.221533–1545(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brown, D. T. & Izard, T. Vinculin-cell membrane interactions. OncoTarget 6, 34043–34044 (2015).Article
Brown,D.T。&Izard,T。Vinculin细胞膜相互作用。Oncotarget634043–34044(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Critchley, D. R. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. biophysics 38, 235–254 (2009).Article
Critchley,D.R。整合素相关细胞骨架蛋白talin的生化和结构特性。年。生物物理评论38235-254(2009)。文章
Google Scholar
谷歌学者
Saltel, F. et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J. Cell Biol. 187, 715–731 (2009).Article
Saltel,F.等人,《塔林头部控制β3整合素簇中新的PI(4,5)P2和膜近端整合素结合基序》。细胞生物学杂志。187715-731(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moore, D. T. et al. Affinity of talin-1 for the beta3-integrin cytosolic domain is modulated by its phospholipid bilayer environment. Proc. Natl Acad. Sci. USA 109, 793–798 (2012).Article
Moore,D.T。等人。talin-1对β3整合素胞质结构域的亲和力受其磷脂双层环境的调节。程序。国家科学院。。美国109793-798(2012)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Call, I. M., Bois, J. L. & Hansen, S. B. Super-resolution imaging of potassium channels with genetically encoded EGFP. Preprint at bioRxiv https://doi.org/10.1101/2023.10.13.561998 (2023).Petersen, E. N. et al. Mechanical activation of TWIK-related potassium channel by nanoscopic movement and rapid second messenger signaling.
Call,I.M.,Bois,J.L。&Hansen,S.B。用基因编码的EGFP对钾通道进行超分辨率成像。bioRxiv预印本https://doi.org/10.1101/2023.10.13.561998(2023年)。Petersen,E.N.等人。通过纳米级运动和快速第二信使信号传导机械激活TWIK相关钾通道。
Elife 12, https://doi.org/10.7554/eLife.89465 (2024).Petersen, E. N., Chung, H. W., Nayebosadri, A. & Hansen, S. B. Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D. Nat. Commun. 7, 13873 (2016).Article .
Elife 12,https://doi.org/10.7554/eLife.89465(2024年)。Petersen,E.N.,Chung,H.W.,Nayebosadri,A。&Hansen,S.B。脂质筏的动力学破坏是磷脂酶D.Nat.Commun的机械传感器。713873(2016)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. cell Biol. 14, 503–517 (2013).Article
Calderwood,D.A.,Campbell,I.D。和Critchley,D.R。Talins和kindlins:整合素介导的粘附的伙伴。Nat。Rev。Mol。cell Biol。14503-517(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil. 3, 405–417 (1983).Article
Burridge,K。&Connell,L。Talin:一种细胞骨架成分,集中在粘附斑块和肌动蛋白膜相互作用的其他位点。细胞运动。3405-417(1983)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goult, B. T. et al. Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation. J. Struct. Biol. 184, 21–32 (2013).Article
Goult,B.T.等人。全长talin1的结构研究揭示了一种紧凑的自抑制二聚体:对talin激活的影响。J、 结构。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl Acad. Sci. USA 117, 21346–21353 (2020).Article
。程序。国家科学院。。美国11721346–21353(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).Article
Mastronarde,D.N。使用样本运动的稳健预测进行自动电子显微镜断层扫描。J、 结构。生物学152,36-51(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article
Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).Article
Bepler,T.,Kelley,K.,Noble,A.J。&Berger,B。Topaz去噪:cryoEM和cryoET的一般深度去噪模型。国家公社。115208(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).Article
Tan,Y.Z.等人,通过倾斜解决单粒子低温电磁中的首选样品取向。自然方法14793-796(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).Article
Pettersen,E.F.等人,《UCSF Chimera——探索性研究和分析的可视化系统》。J、 计算机化学。251605-1612(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).Article
Meng,E.C.等人,《UCSF ChimeraX:结构构建和分析工具》。蛋白质科学。32,e4792(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D: Biol. Crystallogr. 60, 2126–2132 (2004).Article
Emsley,P。&Cowtan,K。Coot:分子图形的模型构建工具。晶体学报。第节。D: 生物。晶体学。602126-2132(2004)。文章
ADS
广告
Google Scholar
谷歌学者
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).Article
Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报D.Biol。Crystallogr 66213-221(2010)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsTI is grateful for the support from grants from the National Institutes of Health (R35 GM139604) and the National Science Foundation (2030119) and start-up funds provided to The Scripps Research Institute by the State of Florida. We are deeply indebted to Drs Ben Goult (University of Liverpool, United Kingdom) and Daniel Lietha (Biological Research Center Margarita Salas, CIB-CSIC, Spain) for countless insightful discussions.Author informationAuthors and AffiliationsCell Adhesion Laboratory, UF Scripps, Jupiter, FL, USAErumbi S.
下载参考文献致谢感谢美国国立卫生研究院(R35 GM139604)和国家科学基金会(2030119)的资助以及佛罗里达州向斯克里普斯研究所提供的启动资金。我们非常感谢Ben Goult博士(英国利物浦大学)和Daniel Lietha(西班牙CIB-CSIC玛格丽塔萨拉斯生物研究中心)进行了无数有见地的讨论。作者信息作者和附属机构细胞粘附实验室,UF Scripps,Jupiter,FL,USAErumbi S。
Rangarajan & Tina IzardDepartment of Molecular Medicine, UF Scripps, Jupiter, FL, USAErumbi S. Rangarajan, Julian L. Bois, Scott B. Hansen & Tina IzardThe Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USAScott B. Hansen & Tina IzardAuthorsErumbi S. RangarajanView author publicationsYou can also search for this author in.
Rangarajan&Tina IzardDepartment of Molecular Medicine,UF Scripps,Jupiter,FL,USAErumbi S.Rangarajan,Julian L.Bois,Scott B.Hansen&Tina IzardThe Skaggs Graduate School,The Scripps Research Institute,La Jolla,CA,USAScott B.Hansen&Tina IzardAuthorsErumbi S.RangarajanView author Publications你也可以在中搜索这位作者。
PubMed Google ScholarJulian L. BoisView author publicationsYou can also search for this author in
PubMed谷歌学者Julian L.BoisView作者出版物您也可以在
PubMed Google ScholarScott B. HansenView author publicationsYou can also search for this author in
PubMed Google ScholarScott B.HansenView作者出版物您也可以在
PubMed Google ScholarTina IzardView author publicationsYou can also search for this author in
PubMed Google ScholarTina IzardView作者出版物您也可以在
PubMed Google ScholarContributionsE.S.R. and T.I. contributed to all stages of the manuscript. S.B.H. designed the dSTORM experiments with mechanical force, analyzed the data, and helped write the manuscript. J.B. performed the talin-GFP expression, fluorescent labeling, and acquisition of the dSTORM data.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。S、 R.和T.I.为稿件的所有阶段做出了贡献。S、 B.H.用机械力设计了dSTORM实验,分析了数据,并帮助撰写了手稿。J、 B.进行了talin-GFP表达,荧光标记和dSTORM数据的获取。对应作者对应。
Tina Izard.Ethics declarations
。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions
。补充信息补充信息同行评审文件报告摘要源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleRangarajan, E.S., Bois, J.L., Hansen, S.B. et al. High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling.
转载和许可本文引用本文Rangarajan,E.S.,Bois,J.L.,Hansen,S.B.等人。talin自抑制状态的高分辨率快照表明在细胞粘附和信号传导中的作用。
Nat Commun 15, 9270 (2024). https://doi.org/10.1038/s41467-024-52581-2Download citationReceived: 23 January 2024Accepted: 12 September 2024Published: 28 October 2024DOI: https://doi.org/10.1038/s41467-024-52581-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》159270(2024)。https://doi.org/10.1038/s41467-024-52581-2Download引文接收日期:2024年1月23日接受日期:2024年9月12日发布日期:2024年10月28日OI:https://doi.org/10.1038/s41467-024-52581-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供