EN
登录

超连续谱裁剪多色成像揭示异质性肿瘤演化的时空动力学

Supercontinuum-tailoring multicolor imaging reveals spatiotemporal dynamics of heterogeneous tumor evolution

Nature 等信源发布 2024-10-29 15:05

可切换为仅中文


AbstractTumor heterogeneity and tumor evolution contribute to cancer treatment failure. To understand how selective pressures drive heterogeneous tumor evolution, it would be useful to image multiple important components and tumor subclones in vivo. We propose a supercontinuum-tailoring two-photon microscope (SCT-TPM) and realize simultaneous observation of nine fluorophores with a single light beam, breaking through the ‘color barrier’ of intravital two-photon fluorescence imaging.

摘要肿瘤异质性和肿瘤进化导致癌症治疗失败。为了了解选择性压力如何驱动异质性肿瘤进化,在体内成像多个重要成分和肿瘤亚克隆将是有用的。我们提出了一种超连续谱剪裁双光子显微镜(SCT-TPM),并实现了用单光束同时观察九个荧光团,突破了活体双光子荧光成像的“颜色屏障”。

It achieves excitation multiplexing only by modulating the phase of fiber supercontinuum (SC), allowing to capture rapid events of multiple targets with maintaining precise spatial alignment. We employ SCT-TPM to visualize the spatiotemporal dynamics of heterogeneous tumor evolution under host immune surveillance, particularly the behaviors and interactions of six tumor subclones, immune cells and vascular network, and thus infer the trajectories of tumor progression and clonal competition.

它仅通过调制光纤超连续谱(SC)的相位来实现激发多路复用,从而可以在保持精确空间对齐的情况下捕获多个目标的快速事件。我们使用SCT-TPM来可视化宿主免疫监视下异质性肿瘤进化的时空动态,特别是六个肿瘤亚克隆,免疫细胞和血管网络的行为和相互作用,从而推断肿瘤进展和克隆竞争的轨迹。

SCT-TPM opens up the possibility of tumor lineage tracking and mechanism exploration in living biological systems..

SCT-TPM为活体生物系统中的肿瘤谱系追踪和机制探索开辟了可能性。。

IntroductionCancer ecosystems are complex and consist of multiple tumor subclones with distinct genetic and phenotypic characteristics. The heterogeneous tumors continuously evolve and adapt to selective pressures from the tumor microenvironment (TME), such as immune surveillance and therapeutic interventions, resulting in cells with stronger resistant or metastatic capacity winning the clonal competition and leading to therapeutic failure1,2,3.

。异质性肿瘤不断进化并适应来自肿瘤微环境(TME)的选择性压力,例如免疫监视和治疗干预,导致具有更强抗性或转移能力的细胞赢得克隆竞争并导致治疗失败1,2,3。

Recent advances in single-cell and genomic techniques have enabled the dissection of the degree and spatial distribution of tumor heterogeneity with greater precision4,5,6. However, our understanding of the temporal course of heterogeneous tumor evolution and associated biological events has lagged, mainly due to the difficulties in performing multi-target longitudinal observations in vivo.To investigate how multiple elements such as heterogeneous tumor cells, immune cells, vascular network, and stromal components interact to shape TME and regulate tumor development and cell fate7,8,9,10, new multicolor imaging techniques are needed to visualize dynamic biological processes in real time.

单细胞和基因组技术的最新进展使得能够更精确地解剖肿瘤异质性的程度和空间分布4,5,6。然而,我们对异质性肿瘤进化和相关生物事件的时间过程的理解已经滞后,主要是由于在体内进行多靶点纵向观察的困难。为了研究异质性肿瘤细胞,免疫细胞,血管网络和基质成分等多种元素如何相互作用以形成TME并调节肿瘤发展和细胞命运7,8,9,10,需要新的多色成像技术来实时可视化动态生物过程。

Techniques such as flow cytometry11, immunofluorescence imaging12, and Stimulated Raman Scattering13,14 perform well for multi-target observations of cells and molecules, but they are not suitable for imaging in live biological systems. Two-photon microscopy has long been the predominant intravital imaging technique.

流式细胞术11,免疫荧光成像12和受激拉曼散射13,14等技术在细胞和分子的多靶点观察中表现良好,但不适用于活体生物系统的成像。长期以来,双光子显微镜一直是主要的活体成像技术。

But conventional two-photon microscopy can only image 3-4 targets simultaneously, which is known as the ‘color barrier’13. Two strategies have been developed to overcome the ‘color barrier’: detection multiplexing and excitation multiplexing. Spectral imaging is a prime example of detection multiplexing, which enables multicolor ima.

但是传统的双光子显微镜只能同时成像3-4个目标,这被称为“色障”。已经开发了两种策略来克服“色障”:检测多路复用和激发多路复用。光谱成像是检测多路复用的一个主要例子,它可以实现多色ima。

(1)

(1)

where\(|E(\omega )|\) and \(|\varphi (\omega )|\) were the spectral amplitude and phase of the femtosecond laser pulse, respectively. Equation 1 reflected the fact that two-photon transitions occur for all pairs of photons between frequencies ω + Ω and ω – Ω.Phase design for SC-tailoringSince the participation of frequency components symmetric about the transition frequencies was required in the MII effect, and the transition frequencies at which the two-photon absorption process is enhanced will be expanded into bands, they could not be set so far apart as to close to the two ends of the SC.

其中,(| E(\ omega)\)和(| \ varphi(\ omega)\)分别是飞秒激光脉冲的光谱幅度和相位。等式1反映了这样一个事实,即频率ω+ Ω和ω– Ω之间的所有光子对都会发生双光子跃迁。SC尾随的相位设计由于MII效应需要参与与跃迁频率对称的频率分量,并且增强双光子吸收过程的跃迁频率将扩展到频带中,因此它们不能相距很远,以至于接近SC的两端。

To achieve a pronounced excitation multiplexing, we kept the FWHM at about 40 nm and finally set the transition frequencies at 770 nm, 810 nm, and 850 nm, respectively (Supplementary Note 1).The sinusoidal function is the most commonly chosen in phase modulation41,42, which can easily change the transition frequency by changing parameters such as amplitude, period, or horizontal shift of the function (Supplementary Figs. 24, 25 and Supplementary Movies 10, 11).

为了实现明显的激发多路复用,我们将FWHM保持在约40 nm,最后将跃迁频率分别设置为770 nm,810 nm和850 nm(补充说明1)。正弦函数是相位调制中最常选择的函数41,42,它可以通过改变函数的幅度,周期或水平偏移等参数来轻松改变过渡频率(补充图24,25和补充电影10,11)。

However, due to the periodicity and symmetry of the sinusoidal function, sub-transition frequencies are easily generated when the transition frequency is set at the two ends of SC, and thus the binarization function is used at both ends of the SC. It modulated phase by setting the spectral phase to 0 or π, with which the TL pulse could be maintained according to Eq. 1.

然而,由于正弦函数的周期性和对称性,当在SC的两端设置跃迁频率时,容易产生亚跃迁频率,因此在SC的两端使用二值化函数。它通过将光谱相位设置为0或π来调制相位,从而可以根据等式1保持TL脉冲。

The specific distribution of 0 and π is determined by the genetic algorithm (GA)43 through continuous iteration. When the transition frequency is located at the two ends of SC, it is more difficult to form pairs of frequencies, and the total number of photon pairs that can participate in two-photon absorption will be less.

0和π的具体分布由遗传算法(GA)43通过连续迭代确定。当跃迁频率位于SC的两端时,形成频率对更加困难,并且可以参与双光子吸收的光子对总数将更少。

Therefore, when deter.

因此,当威慑。

(2)

(2)

where I was the light intensity of excitation light, squared because of absorption of two photons, and \({\delta }_{i}\) denoted the two-photon absorption cross-section of i. The light source used in this system was an SC spectrum, which was a superposition of light with different frequency components, then Eq. 2 could be written:$${N}_{i,abs}\propto {\sum}_{\lambda }{\delta }_{i}(\omega )\cdot {I}^{2}(\omega )$$.

其中I是激发光的光强度,由于两个光子的吸收而平方,并且\({\ delta}{I}\)表示I的双光子吸收截面。该系统中使用的光源是SC光谱,它是具有不同频率分量的光的叠加,那么可以写出等式2:$${N}_{i,abs}\ propto{\ sum}{\ lambda}{\ delta}{i}(\ omega)\cdot{i}^{2}(\ omega)$$。

(3)

(3)

where\({\delta }_{i}(\omega )\) was the two-photon excitation spectrum of i, and \(I(\omega )\) was the spectrum of the excitation light after objective. Assuming that there was no excited emission and self-bleaching in an excitation window, the average signal of fluorescence that could be collected by the channel be expressed as$$\langle {F}_{i}(t)\rangle \propto \frac{1}{2}\phi {\eta }_{2}{\sum}_{\lambda }{\delta }_{i}(\omega )\cdot \big\langle {I}^{2}(\omega,t)\big\rangle$$.

其中\({\ delta}\{i}(\ omega)\)是i的双光子激发光谱,而\(i(\ omega)\)是物镜后激发光的光谱。假设在激发窗口中没有激发发射和自漂白,则通道可以收集的平均荧光信号可以表示为$$\langle{F}_{i} (t)\rangle\propto\frac{1}{2}\phi{\eta}\u2}{\sum}\uλ}{\delta}\ui}(\omega)\cdot\big\langle{i}^{2}(\omega,t)\big\rangle$$。

(4)

(4)

\({\eta }_{2}\) denoted the fluorescence quantum yield, and \(\phi\) denoted the fluorescence collection efficiency of the channel, which could be constants at the same imaging condition. \(I(\omega,t)={|{E}^{(2)}(\omega,t)|}^{2}\) substituting the formula derived in the previous section here$$\left\langle {F}_{i}(t)\right\rangle \propto \frac{1}{2}g\phi {\eta }_{2}{\sum}_{\lambda }{\delta }_{i}(\omega )\cdot \\ \left\langle {\left|{\left|\int d\varOmega \left|E(\omega+\varOmega,t)||E(\omega -\varOmega,t)\right|\exp \{i[\varphi (\omega+\varOmega,t)+\varphi (\omega -\varOmega,t)]\}\right|}^{2}\right|}^{2}\right\rangle$$.

\({\ eta}{2}\)表示荧光量子产率,\(\ phi \)表示通道的荧光收集效率,在相同的成像条件下可以是常数\(I(\ omega,t)={{E}^{(2)}(\ omega,t)}^{2}\)替换上一节推导的公式{F}_{i} (t)\right\rangle\propto\frac{1}{2}g\phi{eta}u2}{sum}{lambda}{delta}ui}(\omega)\cdot\\ left\langle{\ left{\ left | \ int d \ varOmega \ left | E(\ omega+\ varOmega,t)| | E(\ omega-\ varOmega,t)\ right | \ exp{i[\ varphi(\ omega+\ varOmega,t)]+\varphi(\omega-\varOmega,t)]\}\右|}^{2}\右|}^{2}\右\rangle$$。

(5)

(5)

We could directly see the factors influencing fluorescent intensity in Eq. 5. Since the SC contains many frequency components when it was used as an excitation source, the fluorescence intensity produced by the excited fluorophore could be regarded as the sum of each frequency. The fluoresce intensity of excited fluorophore was closely related to both the fluorophore’s two-photon excitation spectra and the light source’s spectra (Supplementary Fig. 3).

我们可以直接在等式5中看到影响荧光强度的因素。由于SC用作激发源时包含许多频率成分,因此激发荧光团产生的荧光强度可以视为每个频率的总和。激发荧光团的荧光强度与荧光团的双光子激发光谱和光源光谱密切相关(补充图3)。

Obviously when modulating the phase of the SC, the fluorescence emitted by the fluorophore would be a function of its two-photon absorption spectrum.To simulate the nonlinear effects, we used SHG spectra mentioned in the last session as the excitation source\(I(\omega,t)\) to calculate the fluorescence intensity of different fluorophores under different phase patterns.

显然,当调节SC的相位时,荧光团发出的荧光将是其双光子吸收光谱的函数。为了模拟非线性效应,我们使用上一节中提到的SHG光谱作为激发源(I(\ω,t))来计算不同相模式下不同荧光团的荧光强度。

This was the index for us to choose fluorophores to carry out multi-labeling. The value measured by spectrometer was the average value\(\langle I(\omega,t)\rangle\), then Eq. 4 transformed to:$$\langle {F}_{i}(t)\rangle \propto \frac{1}{2}g\phi {\eta }_{2}{{\sum}_{\lambda }{\delta }_{i}(\omega )\cdot \left\langle I(\omega,t)\right\rangle }^{2}$$.

这是我们选择荧光团进行多重标记的指标。光谱仪测量的值是平均值\(\ langle I(\ omega,t \ \ rangle \),然后将等式4转换为:$$\ langle{F}_{i} (t)\rangle\propto\frac{1}{2}g\phi{\eta}\u2}{\sum}\u2{\lambda}{\delta}\ui}(\omega)\cdot\left\langle i(\omega,t)\right\rangle}^{2}$$。

(6)

(6)

where \(g=\langle {I}^{2}(t)\rangle /{\langle I(t)\rangle }^{2}\) was related to the shape of the excitation light pulse, here we considered the excitation light as a Gaussian shape, g = 0.664. When we loaded phase1-phase3 to excite samples in sequence, we could estimate the fluorescence intensity of each fluorophore under three phase patterns with their reference two-photon absorption spectra by Eq. 6.

其中\(g=\ langle{I}^{2}(t)\ langle/{\ langle I(t)\ langle}^{2}\)与激发光脉冲的形状有关,在这里我们认为激发光是高斯形状,g=0.664。当我们加载phase1-phase3以顺序激发样品时,我们可以通过方程式6用它们的参考双光子吸收光谱估计三相模式下每个荧光团的荧光强度。

We wrote this, \({F}_{i,phase1},{F}_{i,phase2},{F}_{i,phase3}\) and then define the excitation specificity of fluorophores under each phase pattern as$$specif\!icit{y}_{i,{\!.} phase}=\frac{{F}_{i,phase}}{\max ({F}_{i,phase1},{F}_{i,phase2},{F}_{i,phase3})}$$.

我们写了这个\({F}_{i,第1阶段},{F}_,{F}_{i,phase3}\),然后将每个相模式下荧光团的激发特异性定义为$$特异性\!icit公司{y}_{i,{\!.}阶段}=\frac{{F}_{i,相}}{\max({F}_{i,第1阶段},{F}_{i,第2阶段},{F}_{i,第3阶段}}$$。

(7)

(7)

The maximum value of specificity was 1, under the phase pattern best suited to excite a particular fluorophore. When the emission spectra were similar, the fluorophores could be used simultaneously in SCT-TPM as long as their specificity values were maximized under different phase patterns (Supplementary Fig. 3d).

在最适合激发特定荧光团的相模式下,特异性的最大值为1。当发射光谱相似时,荧光团可以同时用于SCT-TPM,只要它们的特异性值在不同的相模式下最大化(补充图3d)。

We calculated excitation specificity of various fluorophores, and finally use it as the criteria for selecting fluorophores.NMF unmixingBecause the fluorescence energies emitted by the fluorophores during multicolor imaging were insufficient to trigger nonlinear effects, it can be assumed that the signal acquired in each channel is a linear combination of all fluorophores, and the weights correspond to the contribution of each fluorophore in the sample:$$\left[\begin{array}{c}IM{G}_{1}\\ IM{G}_{2}\\ \vdots \\ IM{G}_{m}\end{array}\right]=\left[\begin{array}{cccc}{\alpha }_{1,1} & {\alpha }_{1,2} & \cdots & {\alpha }_{1,n}\\ {\alpha }_{2,1} & {\alpha }_{2,2} & \ddots & {\alpha }_{2,n}\\ \vdots & \ddots & \ddots & \vdots \\ {\alpha }_{m,1} & {\alpha }_{m,2} & \cdots & {\alpha }_{m,n}\end{array}\right]\left[\begin{array}{c}Flu{o}_{1}\\ Flu{o}_{2}\\ \vdots \\ Flu{o}_{n}\end{array}\right]$$.

我们计算了各种荧光团的激发特异性,最后将其用作选择荧光团的标准。NMF分解由于多色成像过程中荧光团发出的荧光能量不足以触发非线性效应,因此可以假设每个通道中采集的信号是所有荧光团的线性组合,权重对应于样品中每个荧光团的贡献:$$\左[\开始{阵列}{c}IM{G}_{1} \\即时消息{G}_{2} \\\vdots\\IM{G}_{m} \end{array}\right]=\left[\begin{array}{cccc}{\alpha}{1,1}&{\alpha}}{1,2}&\cdots&{\alpha}{1,n}\\\\{\alpha}{2,1}&{\alpha}}{2,2}&\ddots&{\alpha}{2,n}\\\ vdots&\ddots D点和V点\\{\alpha}\uM,1}&{\alpha}\uM,2}&\cdots&{\alpha}\uM,n}\end{array}\right]\left[\begin{array}{c}Flu{o}_{1} {o}_{2} \\\V点\\流感{o}_{n} \结束{数组}\右]$$。

(8)

(8)

Where, \(IM{G}_{1}\cdots IM{G}_{m}\) were images acquired from m channels, \(Flu{o}_{1}\cdots Flu{o}_{n}\) were the n fluorophores in the sample, \({\alpha }_{i,j}\) denoted the ratio of the jth fluorophore’s fluorescence collected in the ith channel to its total energy, \({\alpha }_{j}\) could be referred to the fingerprint of fluorophore j, determined by the channel settings of SCT-TPM and the fluorophores.For NMF unmixing, we performed non-negative matrix factorization to unmix bleed-through signals.

其中,\(IM{G}_{1} {G}_{m} \)是从m通道获得的图像{o}_{1} \c点流感{o}_{n} \)是样品中的n个荧光团,\({\ alpha}ui,j})表示在第i个通道中收集的第j个荧光团的荧光与其总能量的比率,\({\ alpha}uj})可以指荧光团j的指纹,由SCT-TPM的通道设置和荧光团确定。对于NMF分解,我们执行了非负矩阵分解来分解穿透信号。

The preprocessed multi-channel data cube was flattened to an image matrix \(V\in {{{\rm{R}}}}^{p\times m}\) and normalized it. \(V=W\cdot H(W\in {{{\rm{R}}}}^{p\times n},H\in {{{\rm{R}}}}^{n\times m})\) directly factorizes the image matrix22. Corresponding to Eq. 8, W was the abundance matrix, which represented the decomposed fluorophore, and H was the feature matrix, which was the fingerprint of different fluorophores.

将预处理的多通道数据立方体平坦化为图像矩阵\(V \ in{{rm{R}}}^{p \ times m}\),并对其进行归一化。\(V=W \ cdot H(W \ in{{{rm{R}}}^{p \ times n},H \ in{{rm{R}}}}^{n \ times m})直接分解图像矩阵22。对应于等式8,W是表示分解的荧光团的丰度矩阵,H是特征矩阵,它是不同荧光团的指纹。

The elements in W and H were restricted to be nonnegative during matrix decomposition. Using optimization theory through an iterative approach to find W and H, and using a great likelihood estimated to accurately represent the original image.The objective function of matrix decomposition was set to \(f(W,H)={\Vert V-WH\Vert }_{F}^{2}+\mu {J}_{1}(H)\), where \({\Vert V-WH\Vert }_{F}^{2}\) denoted the Euclidean distance between the image matrix V and the product of W and H obtained from the decomposition, indicating the residual of the decomposition, and\({J}_{1}(H)=|sparseness(H)-spH|\) was the penalty term in the objective function, reflecting the sparsity constraint for the abundance matrix in the decomposition process, aiming to reduce the crosstalk between the unmixed images.

在矩阵分解过程中,W和H中的元素被限制为非负。。矩阵分解的目标函数设置为\(f(W,H)={\ Vert V-WH \ Vert}{f}^{2}+\ mu{J}_{1} (H)\),其中\({\ Vert V-WH \ Vert}{F}^{2}\)表示图像矩阵V与从分解中获得的W和H的乘积之间的欧几里得距离,表示分解的残差,以及\({J}_{1} (H)=|稀疏(H)-spH | \)是目标函数中的惩罚项,反映了分解过程中丰度矩阵的稀疏性约束,旨在减少未混合图像之间的串扰。

\(sparseness(H)=\frac{\sqrt{n}-{L}_{1}/{L}_{2}}{\sqrt{n}-1}\).

(稀疏(H)=frac{n}-{L}_1.{L}_{2} }{\sqrt{n}-1}).

Data availability

数据可用性

Data generated in the study are included in the manuscript and its Supplementary Information. Source data are provided in this paper.

研究中产生的数据包含在手稿及其补充信息中。本文提供了源数据。

Code availability

代码可用性

The unmixing code written in MATLAB is contained in Supplementary Software along with a demo image and instruction (Supplementary Software 1).

用MATLAB编写的分解代码与演示图像和指令(补充软件1)一起包含在补充软件中。

ReferencesVitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).Article

参考文献Vitale,I.,Shema,E.,Loi,S。&Galluzzi,L。癌症进展中的肿瘤内异质性和对免疫疗法的反应。《自然医学》27212-224(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nguyen, P. H. et al. Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nat. Commun. 12, 227 (2021).Article

Nguyen,P.H.等人。肿瘤内免疫异质性是肝细胞癌肿瘤进化和进展的标志。国家公社。12227(2021年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gutierrez, C. et al. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nat. Cancer 2, 758–772 (2021).Article

Gutierrez,C。等人。使用ClonMapper的多功能条形码可以对肿瘤进化和治疗过程中的克隆动力学进行高分辨率研究。《自然癌症》2758-772(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463 (2024).Article

Mathur,R。等人。从3D全肿瘤角度来看胶质母细胞瘤的进化和异质性。细胞187446-463(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tavernari, D. et al. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discov. 11, 1490–1507 (2021).Article

Tavernari,D。等人。非遗传进化驱动肺腺癌的空间异质性和进展。癌症发现。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).Article

Ma,L.等。肝细胞癌和肝内胆管癌治疗后肿瘤细胞进化的单细胞图谱。J、 肝病。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 168, 613–628 (2017).Article

McGranahan,N。&Swanton,C。克隆异质性和肿瘤进化:过去,现在和未来。细胞168613-628(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).Article

Binnewies,M.等人。了解有效治疗的肿瘤免疫微环境(TIME)。《自然医学》24541-550(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, X. et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol. Cancer 20, 7 (2021).Article

Wei,X。等。低氧肿瘤微环境中血管生成拟态的机制。分子癌症20,7(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).Article

Turley,S.J.,Cremasco,V。和Astarita,J.L。肿瘤微环境中基质细胞的免疫学标志。国家免疫修订版。15669-682(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brandi, J., Wiethe, C., Riehn, M. & Jacobs, T. OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice. Cytom. Part A 103, 624–630 (2023).Article

Brandi,J.,Wiethe,C.,Riehn,M。&Jacobs,T。OMIP-93:一种41色高参数面板,用于表征小鼠淋巴和髓样区室中的各种共抑制分子及其配体。Cytom公司。A部分103624–630(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Seo, J. et al. PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements. Nat. Commun. 13, 2475 (2022).Article

Seo,J.等人,毕加索允许对空间重叠的蛋白质进行超多重荧光成像,而无需参考光谱测量。国家公社。132475(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).Article

Wei,L。等人。超多重振动成像。自然544465-470(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shi, L. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 40, 364–373 (2022).Article

Shi,L.等人。拉曼染料成像和组织清除的高度多重体积映射。Nat。Biotechnol。40364-373(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bares, A. J. et al. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. Optica 7, 1587–1601 (2020).Article

Bares,A.J.等人。用于体内可视化多个光谱重叠荧光标记的高光谱多光子显微镜。Optica 71587–1601(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cutrale, F. et al. Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14, 149–152 (2017).Article

Cutrale,F。等人。高光谱相量分析可实现多路5D体内成像。自然方法14149-152(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mahou, P. et al. Multicolor two-photon tissue imaging by wavelength mixing. Nat. Methods 9, 815–818 (2012).Article

Mahou,P。等人。通过波长混合的多色双光子组织成像。《自然方法》9815-818(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rakhymzhan, A. et al. Synergistic strategy for multicolor two-photon microscopy: Application to the analysis of germinal center reactions in. Vivo. Sci. Rep. 7, 7101 (2017).Article

Rakhymzhan,A。等人。多色双光子显微镜的协同策略:在体内生发中心反应分析中的应用。科学。代表77101(2017)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phy. 78, 1135–1184 (2006).Article

。修订版。物理物理。781135-1184(2006)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Tu, H. & Boppart, S. A. Coherent fiber supercontinuum for biophotonics. Laser Photon. Rev. 7, 628–645 (2013).Article

Tu,H。&Boppart,S.A。用于生物光子学的相干光纤超连续谱。激光光子。第7628–645版(2013年)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

McConnell, G. Confocal laser scanning fluorescence microscopy with a visible continuum source. Opt. Express 12, 2844–2850 (2004).Article

McConnell,G。具有可见连续光源的共聚焦激光扫描荧光显微镜。选择。Express 122844–2850(2004)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).Article

。自然401788-791(1999)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hoyer, P. O. Modeling receptive fields with non-negative sparse coding. Neurocomputing 52-54, 547–552 (2003).Article

Hoyer,P.O。用非负稀疏编码对感受野进行建模。神经计算52-54547-552(2003)。文章

Google Scholar

谷歌学者

Zimmermann, T., Marrison, J., Hogg, K. & O’Toole, P. in Confocal Microscopy: Methods and Protocols (ed Stephen W. Paddock) 129–148 (Springer New York, 2014).Keshava, N. & Mustard, J. F. Spectral unmixing. IEEE Signal Process. Mag. 19, 44–57 (2002).Article

Zimmermann,T.,Marrison,J.,Hogg,K。&O'Toole,P。共聚焦显微镜:方法和协议(ed Stephen W.Paddock)129-148(Springer New York,2014)。Keshava,N。和Mustard,J.F。光谱分解。IEEE信号处理。Mag.19,44–57(2002)。文章

ADS

广告

Google Scholar

谷歌学者

Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166, 555–566 (2016).Article

Vyas,S.,Zaganjor,E。和Haigis,M.C。线粒体和癌症。细胞166555-566(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).Article

Fletcher,D.A。&Mullins,R.D。细胞力学和细胞骨架。《自然》463485-492(2010)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lappalainen, P., Kotila, T., Jégou, A. & Romet-Lemonne, G. Biochemical and mechanical regulation of actin dynamics. Nat. Rev. Mol. Cell Biol. 23, 836–852 (2022).Article

Lappalainen,P.,Kotila,T.,Jégou,A。&Romet Lemonne,G。肌动蛋白动力学的生化和机械调节。Nat。Rev。Mol。Cell Biol。23836-852(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tang, D. & Wang, Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol. 23, 296–304 (2013).Article

Tang,D。&Wang,Y。高尔基体膜动力学的细胞周期调控。趋势细胞生物学。23296-304(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).Article

Valm,A.M.等人应用系统级光谱成像和分析揭示细胞器相互作用组。自然546162-167(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Matheu, M. P., Cahalan, M. D. & Parker, I. Immunoimaging: studying immune system dynamics using two-photon microscopy. Cold Spring Harb. Protoc. 2011, pdb.top99 (2011).Article

Matheu,M.P.,Cahalan,M.D。和Parker,I。免疫成像:使用双光子显微镜研究免疫系统动力学。冷泉兔。普罗托克。2011,pdb.top99(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ruocco, M. G. et al. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J. Clin. Invest. 122, 3718–3730 (2012).Article

Ruocco,M.G.等人抑制抗CTLA-4单一疗法诱导的T细胞运动可改善抗肿瘤作用。J、 临床。投资。1223718-3730(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cahalan, M. D. & Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Ann. Rev. Immunol. 26, 585–626 (2008).Article

Cahalan,M.D。&Parker,I。通过双光子显微镜在淋巴器官中成像的细胞运动和相互作用动力学的编排。Ann.Rev.Immunol。26585-626(2008)。文章

CAS

中科院

Google Scholar

谷歌学者

Qi, S. et al. Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy. ELife 5, https://doi.org/10.7554/elife.14756 (2016).Rios, A. C. et al. Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging.

Qi,S.等人。联合免疫治疗期间多色编码肿瘤微环境的长期活体成像。ELife 5,https://doi.org/10.7554/elife.14756(2016年)。Rios,A.C.等人。通过大规模单细胞分辨率3D成像揭示乳腺肿瘤的克隆内可塑性。

Cancer Cell 35, 618–632 (2019).Article .

癌细胞35618-632(2019)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laughney, A. M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl. Med. 6, 261ra152 (2014).Article

单细胞药代动力学成像揭示了一种克服对微管抑制剂埃里布林耐药性的治疗策略。科学。翻译。医学杂志6261RA152(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).Article

Livet,J.等人。神经系统中荧光蛋白组合表达的转基因策略。《自然》450,56-62(2007)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Momoh, J. et al. Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv. Drug Deliv. Rev. 189, 114528 (2022).Article

Momoh,J.等人。用于实时监测药物输送和纳米生物过程的活体显微镜。高级药物输送。第189114528版(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liang, X. B. & Fu, L. Enhanced self-phase modulation enables a 700-900 nm linear compressible continuum for multicolor two-photon microscopy. IEEE J. Sel. Top. Quantum Electron. 20, https://doi.org/10.1109/JSTQE.2013.2253449 (2014).Lozovoy, V. V., Pastirk, I. & Dantus, M. Multiphoton intrapulse interference.IV.Ultrashort laser pulse spectral phase characterization and compensation.

Liang,X.B。&Fu,L。增强的自相位调制为多色双光子显微镜提供了700-900 nm线性可压缩连续体。IEEE J.Sel。顶部。量子电子。20年,https://doi.org/10.1109/JSTQE.2013.2253449(2014年)。。四、 超短激光脉冲光谱相位表征和补偿。

Opt. Lett. 29, 775–777 (2004).Article .

八。信件29, 775-777 (2004).第[UNK]条。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Pastirk, I., Cruz, J. M. D., Walowicz, K. A., Lozovoy, V. V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express 11, 1695–1701 (2003).Article

Pastirk,I.,Cruz,J.M.D.,Walowicz,K.A.,Lozovoy,V.V。&Dantus,M。具有成形飞秒脉冲的选择性双光子显微镜。选择。Express 111695–1701(2003)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).Article

Meshulach,D。&Silberg,Y。飞秒激光脉冲对双光子跃迁的相干量子控制。自然396239-242(1998)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Isobe, K. et al. Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses. Opt. Express 17, 13737–13746 (2009).Article

Isobe,K.等人。通过超宽带激光脉冲的相位调制实现对多个荧光团的双光子激发的多种控制。选择。快报1713737–13746(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Am. B 13, 481–491 (1996).Article

Xu,C。&Webb,W。W。测量分子荧光团的双光子激发截面,数据范围为690至1050 nm。J、 选择。Am.B 13481–491(1996)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Zhou, Z. et al. Adaptive optical microscopy via virtual-imaging-assisted wavefront sensing for high-resolution tissue imaging. PhotonX 3, 3 (2022).

Zhou,Z.等人。通过虚拟成像辅助波前传感进行高分辨率组织成像的自适应光学显微镜。PhotonX 3,3(2022)。

Google Scholar

谷歌学者

Shen, Z., Lu, Z., Chhatbar, P. Y., O’Herron, P. & Kara, P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat. Methods 9, 273–276 (2012).Article

Shen,Z.,Lu,Z.,Chhatbar,P.Y.,O'Herron,P。&Kara,P。一种用于研究神经血管耦合的动脉特异性荧光染料。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China No.62475063 (L.Fu), Collaborative Innovation Center Fund XTCX2022JKB12 (L.Fu), National Key Research and Development Program of China No.2022YFC2404401 (L.Fu, Q.Liu, X.Gao), and Open Project Program of Wuhan National Laboratory for Optoelectronics No.

2023WNLOKF013 (L.Fu, X.Gao). The authors thank the Optical Bioimaging Core Facility of WNLO-HUST for the support in data acquisition.Author informationAuthor notesThese authors contributed equally: Xiujuan Gao, Xinyuan Huang, Zhongyun Chen.Authors and AffiliationsBritton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, ChinaXiujuan Gao, Xinyuan Huang, Zhongyun Chen, Liu Yang, Yifu Zhou, Zhenxuan Hou, Jie Yang, Shuhong Qi, Zhihong Zhang & Ling FuMoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, ChinaXiujuan Gao, Xinyuan Huang, Zhongyun Chen, Liu Yang, Yifu Zhou, Zhenxuan Hou, Jie Yang, Shuhong Qi, Zhihong Zhang & Ling FuSchool of Biomedical Engineering, Hainan University, Sanya, Hainan, ChinaZheng Liu, Zhihong Zhang, Qian Liu, Qingming Luo & Ling FuState Key Laboratory of Digital Medical Engineering, Sanya, Hainan, ChinaZhihong Zhang, Qian Liu, Qingming Luo & Ling FuSchool of Physics and Optoelectronics Engineering, Hainan University, Haikou, Hainan, ChinaLing FuAdvanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, ChinaLing FuAuthorsXiujuan GaoView author publicationsYou can also search for this author in.

2023WNLOKF013(L.Fu,X.Gao)。作者感谢WNLO-HUST的光学生物成像核心设施在数据采集方面的支持。作者信息作者注意到这些作者做出了同样的贡献:高秀娟,黄新元,陈忠云。作者和附属机构华中科技大学武汉光电国家实验室生物医学光子学利顿机会中心,湖北武汉,中国高秀娟,黄新元,陈忠云,刘洋,周逸夫,侯振轩,杨洁红,齐树红,张志红和凌福美华中科技大学生物医学光子学重点实验室,湖北武汉,中国高秀娟,黄新元,陈忠云,刘洋,周逸夫,侯振轩,杨洁红,齐树红,张志红和凌福海南大学生物医学工程学院,海南三亚,刘正红,张志红,刘谦海南省三亚市数字医学工程国家重点实验室张志宏,刘倩,海南大学物理与光电工程学院罗庆明,海南省海口市,华中科技大学先进生物医学成像设施,湖北武汉,ChinaLing FuAuthorShuijuan GaoView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarXinyuan HuangView author publicationsYou can also search for this author in

PubMed谷歌学者黄新元查看作者出版物您也可以在

PubMed Google ScholarZhongyun ChenView author publicationsYou can also search for this author in

PubMed谷歌学者陈中云查看作者出版物您也可以在

PubMed Google ScholarLiu YangView author publicationsYou can also search for this author in

PubMed Google ScholarLiu YangView作者出版物您也可以在

PubMed Google ScholarYifu ZhouView author publicationsYou can also search for this author in

PubMed Google ScholarYifu ZhouView作者出版物您也可以在

PubMed Google ScholarZhenxuan HouView author publicationsYou can also search for this author in

PubMed Google ScholarZhenxuan HouView作者出版物您也可以在

PubMed Google ScholarJie YangView author publicationsYou can also search for this author in

PubMed Google ScholarJie YangView作者出版物您也可以在

PubMed Google ScholarShuhong QiView author publicationsYou can also search for this author in

PubMed Google ScholarShuhong QiView作者出版物您也可以在

PubMed Google ScholarZheng LiuView author publicationsYou can also search for this author in

PubMed Google ScholarZheng LiuView作者出版物您也可以在

PubMed Google ScholarZhihong ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张志宏查看作者出版物您也可以在

PubMed Google ScholarQian LiuView author publicationsYou can also search for this author in

PubMed Google ScholarQian LiuView作者出版物您也可以在

PubMed Google ScholarQingming LuoView author publicationsYou can also search for this author in

PubMed谷歌学者Qingming LuoView作者出版物您也可以在

PubMed Google ScholarLing FuView author publicationsYou can also search for this author in

PubMed谷歌学术FuView作者出版物您也可以在

PubMed Google ScholarContributionsL.Fu designed the study. X.Gao, X.Huang, and Z.Chen designed the experiments. X.Gao, X.Huang, Z.Chen, Y.Zhou, L.Yang, and Z.Hou finished the experiments and analyzed the results. S.Qi, Z.Zhang, and J.Yang helped in the experimental design and provided cell and mouse samples.

PubMed谷歌学术贡献l。傅设计了这项研究。十、 高,X。黄和Z。陈设计了实验。十、 高,黄,陈,周,杨和侯完成了实验并分析了结果。S、 Qi,Z。Zhang和J。Yang帮助了实验设计,并提供了细胞和小鼠样本。

Q.Luo, Z.Zhang, Q.Liu, S.Qi, and Z.Liu provided supervision and support review. X.Gao, X.Huang, Z.Chen, L.Fu, and Q.Luo wrote and edited the paper.Corresponding authorsCorrespondence to.

Q、 罗,Z。张,Q。刘,S。齐和Z。刘提供了监督和支持审查。十、 高,X。黄,Z。陈,L。傅和Q。罗撰写并编辑了这篇论文。通讯作者通讯。

Qingming Luo or Ling Fu.Ethics declarations

罗清明或凌福。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Brad Amos, Wei Min, and Frank Winkler for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Brad Amos,Wei Min和Frank Winkler对这项工作的同行评审所做的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryDescription of Additional Supplementary FilesSupplementary Movie 1Supplementary Movie 2Supplementary Movie 3Supplementary Movie 4Supplementary Movie 5Supplementary Movie 6Supplementary Movie 7Supplementary Movie 8Supplementary Movie 9Supplementary Movie 10Supplementary Movie 11Peer Review FileSupplementary Software 1Source dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要其他补充文件的描述补充电影1补充电影2补充电影3补充电影4补充电影5补充电影6补充电影7补充电影8补充电影9补充电影10补充电影11同行评审文件补充软件1源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleGao, X., Huang, X., Chen, Z. et al. Supercontinuum-tailoring multicolor imaging reveals spatiotemporal dynamics of heterogeneous tumor evolution.

转载和许可本文引用本文Gao,X.,Huang,X.,Chen,Z。等人。超连续谱裁剪多色成像揭示了异质性肿瘤进化的时空动态。

Nat Commun 15, 9313 (2024). https://doi.org/10.1038/s41467-024-53697-1Download citationReceived: 10 July 2024Accepted: 21 October 2024Published: 29 October 2024DOI: https://doi.org/10.1038/s41467-024-53697-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159313(2024)。https://doi.org/10.1038/s41467-024-53697-1Download引文收到日期:2024年7月10日接受日期:2024年10月21日发布日期:2024年10月29日OI:https://doi.org/10.1038/s41467-024-53697-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供