EN
登录

原发性人类急性白血病、工程化人类白血病和白血病细胞系的小分子筛选比较

Comparative small molecule screening of primary human acute leukemias, engineered human leukemia and leukemia cell lines

Nature 等信源发布 2024-10-29 01:08

可切换为仅中文


AbstractTargeted therapeutics for high-risk cancers remain an unmet medical need. Here we report the results of a large-scale screen of over 11,000 molecules for their ability to inhibit the survival and growth in vitro of human leukemic cells from multiple sources including patient samples, de novo generated human leukemia models, and established human leukemic cell lines.

摘要针对高危癌症的靶向治疗仍然是未满足的医疗需求。在这里,我们报告了超过11000个分子的大规模筛选结果,这些分子能够抑制来自多种来源的人类白血病细胞的体外存活和生长,包括患者样品,从头生成的人类白血病模型和已建立的人类白血病细胞系。

The responses of cells from de novo models were most similar to those of patient samples, both of which showed striking differences from the cell-line responses. Analysis of differences in subtype-specific therapeutic vulnerabilities made possible by the scale of this screen enabled the identification of new specific modulators of apoptosis, while also highlighting the complex polypharmacology of anti-leukemic small molecules such as shikonin.

从头模型的细胞反应与患者样品的反应最相似,两者均显示出与细胞系反应的显着差异。通过该筛选的规模分析亚型特异性治疗脆弱性的差异,可以鉴定新的特异性细胞凋亡调节剂,同时也突出了抗白血病小分子如紫草素的复杂多药理学。

These findings introduce a new platform for uncovering new therapeutic options for high-risk human leukemia, in addition to reinforcing the importance of the test sample choice for effective drug discovery..

这些发现为揭示高危人类白血病的新治疗选择提供了一个新的平台,此外还加强了测试样本选择对有效药物发现的重要性。。

IntroductionThe development of targeted treatments for high-risk pediatric acute leukemias, including acute myeloid leukemia (AML) [1], and acute megakaryoblastic leukemia (AMKL) [2] remains an important unmet medical need. Interestingly, although the phenotypic classification of pediatric and adult leukemia is similar, recent large-scale sequencing studies have highlighted striking differences in the genetic drivers and cells of origin of the disease between the two age groups [3, 4].

引言针对高危儿童急性白血病(包括急性髓细胞白血病(AML)和急性巨核细胞白血病(AMKL))的靶向治疗的发展仍然是一个重要的未满足的医疗需求。有趣的是,尽管小儿和成人白血病的表型分类相似,但最近的大规模测序研究强调了两个年龄组之间疾病的遗传驱动因素和起源细胞的显着差异[3,4]。

Analysis of the genomes of adult AML samples, which were among the first cancer genomes to be fully sequenced [5], revealed recurrent mutations in a heterogeneous collection of genes including DNMT3a, IDH1/2, NPM1 and FLT3 [6]. In contrast, highly heterogeneous gene fusions created by chromosomal rearrangements, have been found to be more characteristic of pediatric leukemias [4].

成人AML样本的基因组分析是首批被完全测序的癌症基因组之一,揭示了DNMT3a、IDH1/2、NPM1和FLT3等异质基因集合中的复发突变。相比之下,由染色体重排产生的高度异质性基因融合已被发现是小儿白血病的更多特征(4)。

For, example, translocations of KMT2A seen in both AML and AMKL have been found to involve over 130 partner genes that have prognostic significance for patient survival [7], although most confer a poor prognosis similar to NUP98::KDM5A and CBFA2T3::GLIS2 fusion genes associated with AMKL [2]. This multiplicity of genetic alterations seen in leukemia has undermined efforts to develop effective genetically based drugs and has largely limited improvements in outcomes in AML/AMKL to more refined risk stratification and supportive care strategies.Although standard chemotherapeutic regimens can be effective in some patients, these non-targeted treatments also result in significant and life-long side effects.

例如,在AML和AMKL中发现的KMT2A易位涉及130多个对患者生存具有预后意义的伴侣基因(7),尽管大多数预后不佳,类似于NUP98::KDM5A和CBFA2T3::GLIS2与AMKL相关的融合基因(2)。白血病中出现的这种多样的基因改变破坏了开发有效的基于基因的药物的努力,并且在很大程度上限制了AML/AMKL结局的改善,从而限制了更精细的风险分层和支持性护理策略。尽管标准化疗方案对某些患者可能有效,但这些非靶向治疗也会导致显着的终身副作用。

This limitation has motivated efforts to identify alternative approaches for specifically eradicating leukemia cells. While detailed genetic and biochemical studies can be undertaken to identify leukemia-specific .

这种限制促使人们努力确定特异性根除白血病细胞的替代方法。虽然可以进行详细的遗传和生化研究以鉴定白血病特异性。

Data availability

数据可用性

All sequencing data for this manuscript has been deposited to GEO and is accessible through the following accession numbers: GSE207798. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD040772 and 10.6019/PXD040772..

。质谱蛋白质组学数据已通过PRIDE合作伙伴存储库保存到ProteomeXchange Consortium,数据集标识符为PXD040772和10.6019/PXD040772。。

ReferencesShort NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606.Article

参考文献Short NJ,Rytting ME,Cortes JE。急性髓性白血病。柳叶刀。2018年;392:593–606.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V, Manara E, et al. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood. 2013;121:3469–72.Article

Masetti R,Pigazzi M,Togni M,Astolfi A,Indio V,Manara E等。CBFA2T3-GLIS2融合转录本是儿科细胞遗传学正常AML的一个新的共同特征,不限于FAB M7亚型。血。2013年;121:3469–72.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Umeda M, Ma J, Westover T, Ni Y, Song G, Maciaszek JL, et al. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat Genet. 2024;56:281–93.Article

Umeda M,Ma J,Westover T,Ni Y,Song G,Maciaszek JL等。小儿急性髓细胞白血病分类的新基因组框架。纳特·吉内特。2024年;56:281–93.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.Article

Bolouri H,Farrar JE,Triche T Jr,Ries RE,Lim EL,Alonzo TA等。小儿急性髓细胞白血病的分子景观揭示了复发性结构改变和年龄特异性突变相互作用。Nat Med。2018;24:103–12.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72.Article

。自然。2008年;456:66–72.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl J Med. 2013;368:2059–74.Article

癌症基因组图谱研究N,Ley TJ,Miller C,Ding L,Raphael BJ,Mungall AJ等。成人从头急性髓细胞白血病的基因组和表观基因组景观。N、 英国医学杂志2013;368:2059–74.文章

Google Scholar

谷歌学者

Meyer C, Burmeister T, Groger D, Tsaur G, Fechina L, Renneville A, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32:273–84.Article

Meyer C,Burmeister T,Groger D,Tsaur G,Fechina L,Renneville A等。2017年急性白血病的MLL重组。白血病。2018年;32:273–84.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spinner MA, Aleshin A, Santaguida MT, Schaffert SA, Zehnder JL, Patterson AS, et al. Ex vivo drug screening defines novel drug sensitivity patterns for informing personalized therapy in myeloid neoplasms. Blood Adv. 2020;4:2768–78.Article

Spinner MA,Aleshin A,Santaguida MT,Schaffert SA,Zehnder JL,Patterson AS等。体外药物筛选定义了新的药物敏感性模式,用于告知髓系肿瘤的个性化治疗。血液Adv.2020;4: 2768-78.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin L, Tong Y, Straube J, Zhao J, Gao Y, Bai P, et al. Ex-vivo drug testing predicts chemosensitivity in acute myeloid leukemia. J Leukoc Biol. 2020;107:859–70.Article

Lin L,Tong Y,Straube J,Zhao J,Gao Y,Bai P,et al。体外药物试验预测急性髓系白血病的化疗敏感性。J Leukoc Biol。;107:859–70.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mabrey FL, Chien SS, Martins TS, Annis J, Sekizaki TS, Dai J, et al. High throughput drug screening of leukemia stem cells reveals resistance to standard therapies and sensitivity to other agents in acute myeloid leukemia. Blood. 2018;132:180–180.Article

Mabrey FL,Chien SS,Martins TS,Annis J,Sekizaki TS,Dai J等。白血病干细胞的高通量药物筛选揭示了急性髓细胞白血病对标准疗法的耐药性和对其他药物的敏感性。血。2018年;132:180–180.文章

Google Scholar

谷歌学者

Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K, et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell. 2022;40:850–864.e859.Article

Bottomly D,Long N,Schultz AR,Kurtz SE,Tognon CE,Johnson K等。急性髓系白血病药物反应和临床结果的综合分析。癌细胞。2022年;40:850–864.e859.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.Article

Tyner JW,Tognon CE,Bottomly D,Wilmot B,Kurtz SE,Savage SL等。急性髓细胞白血病的功能基因组景观。自然。2018年;562:526–31.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Drenberg CD, Shelat A, Dang J, Cotton A, Orwick SJ, Li M, et al. A high-throughput screen indicates gemcitabine and JAK inhibitors may be useful for treating pediatric AML. Nat Commun. 2019;10:2189.Article

Drenberg CD,Shelat A,Dang J,Cotton A,Orwick SJ,Li M等。高通量筛选表明吉西他滨和JAK抑制剂可能用于治疗小儿AML。纳特公社。2019年;10: 第2189条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lefort S, El-Naggar A, Tan S, Colborne S, Negri GL, Pellacani D, et al. De novo and cell line models of human mammary cell transformation reveal an essential role for Yb-1 in multiple stages of human breast cancer. Cell Death Differ. 2022;29:54–64.Article

Lefort S,El Naggar A,Tan S,Colborne S,Negri GL,Pellacani D等。人乳腺细胞转化的从头和细胞系模型揭示了Yb-1在人乳腺癌多个阶段中的重要作用。细胞死亡不同。2022年;29:54–64.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A, et al. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood. 2020;136:2764–73.Article

Bulaeva E,Pellacani D,Nakamichi N,Hammond CA,Beer PA,Lorzadeh A等。MYC诱导的人急性髓性白血病需要持续的IL-3/GM-CSF共刺激。血。;136:2764–73.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91–95.Article

Park JW,Lee JK,Sheu KM,Wang L,Balanis NG,Nguyen K等。将正常人上皮组织重编程为常见的致命神经内分泌癌谱系。科学。2018年;362:91-95.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T, Makarem M, et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature. 2015;528:267–71.Article

Nguyen LV,Pellacani D,Lefort S,Kannan N,Osako T,Makarem M等。条形码揭示了从头转化的人乳腺细胞的复杂克隆动力学。自然。2015年;528:267–71.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–4.Article

Barabe F,Kennedy JA,Hope KJ,Dick JE。在小鼠中模拟人类急性白血病的发生和发展。科学。2007年;316:600–4.条款

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barabe F, Gil L, Celton M, Bergeron A, Lamontagne V, Roques E, et al. Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target. Leukemia. 2017;31:1166–76.Article

Barabe F,Gil L,Celton M,Bergeron A,Lamontagne V,Roques E等。对来自单个供体的人MLL-AF9易位急性髓细胞白血病进行建模显示RET是潜在的治疗靶标。白血病。2017年;31:1166–76.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baccelli I, Krosl J, Boucher G, Boivin I, Lavallee VP, Hebert J, et al. A novel approach for the identification of efficient combination therapies in primary human acute myeloid leukemia specimens. Blood Cancer J. 2017;7:e529.Article

。血癌J.2017;7: e529条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, Fonseca AMND, Stutterheim J, Pieters R, et al. Distinct responses to menin inhibition and synergy with DOT1L inhibition in KMT2A-rearranged acute lymphoblastic and myeloid leukemia. Int J Mol Sci. 2024;25:6020.Laverdiere I, Boileau M, Neumann AL, Frison H, Mitchell A, Ng SWK, et al.

Adriaanse FRS,Schneider P,Arentsen-Peters STCJM,Fonseca AMND,Stutterheim J,Pieters R等。在KMT2A重排的急性淋巴细胞白血病和髓性白血病中,对menin抑制的不同反应以及与DOT1L抑制的协同作用。国际分子科学杂志。2024年;25:6020.Laverdiere I,Boileau M,Neumann AL,Frison H,Mitchell A,Ng SWK等。

Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer J. 2018;8:52.Article .

白血病干细胞特征识别针对急性髓细胞白血病的新型治疗剂。血癌J.2018;8: 第52条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.Article

Subramanian A,Tamayo P,Mootha VK,Mukherjee S,Ebert BL,Gillette MA等。基因组富集分析:基于知识的全基因组表达谱解释方法。美国国家科学院院刊2005;102:15545–50.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O’Byrne KJ, et al. Nucleophosmin: from structure and function to disease development. BMC Mol Biol. 2016;17:19.Article

Box JK,Paquet N,Adams MN,Boucher D,Bolderson E,O'Byrne KJ等。核磷蛋白:从结构和功能到疾病发展。BMC摩尔生物学。2016年;17: 19、条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl J Med. 2005;352:254–66.Article

Falini B,Mecucci C,Tiacci E,Alcalay M,Rosati R,Pasqualucci L等。核型正常的急性骨髓性白血病中的细胞质核磷蛋白。N、 英国医学杂志2005;352:254–66.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Swaminathan V, Kishore AH, Febitha KK, Kundu TK. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol. 2005;25:7534–45.Article

Swaminathan V,Kishore AH,Febitha KK,Kundu TK。人组蛋白伴侣核磷蛋白增强乙酰化依赖性染色质转录。摩尔细胞生物学。2005年;25:7534–45.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK. Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol. 2009;29:5115–27.Article

Shandilya J,Swaminathan V,Gadad SS,Choudhari R,Kodaganur GS,Kundu TK。乙酰化NPM1定位于核质中,并调节与口腔癌表现有关的基因的转录激活。摩尔细胞生物学。2009年;29:5115–27.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharm Ther. 2014;143:323–36.Article

Bose P,Dai Y,Grant S.组蛋白脱乙酰酶抑制剂(HDACI)作用机制:新兴见解。药剂师。2014年;143:323–36.文章

CAS

中科院

Google Scholar

谷歌学者

Gionfriddo I, Mezzasoma F, Cecchetti F, Rossi R, Strozzini F, Di Raimondo F, et al. Histone Deacetylase inhibitors induce cell growth inhibition and Apoptosis in NPM1-mutated AML Cells: A possible role for epigenetic therapies in AML carrying NPM1 gene mutations. Blood. 2011;118:2621.Article .

Gionfriddo I,Mezzasoma F,Cecchetti F,Rossi R,Strozzini F,Di Raimondo F等。组蛋白脱乙酰酶抑制剂诱导NPM1突变的AML细胞中的细胞生长抑制和凋亡:表观遗传疗法在携带NPM1基因突变的AML中的可能作用。血。2011年;118:2621。条款。

Google Scholar

谷歌学者

Liao M, Liao W, Xu N, Li B, Liu F, Zhang S, et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 2019;41:200–13.Article

Liao M,Liao W,Xu N,Li B,Liu F,Zhang S等。LncRNA EPB41L4A-AS1通过介导HDAC2的核仁易位来调节糖酵解和谷氨酰胺分解。EBioMedicine。2019年;41:200–13.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC inhibitors on protein quality control systems: consequences for precision medicine in malignant disease. Front Cell Dev Biol. 2020;8:425.Article

Kulka LAM,Fangmann PV,Panfilova D,Olzscha H.HDAC抑制剂对蛋白质质量控制系统的影响:精准医学在恶性疾病中的后果。前细胞开发生物学。;8: 第425条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res. 2019;47:4911–26.Article

Rahhal R,Seto E.组蛋白修饰和HDAC在RNA剪接中的新兴作用。核酸研究2019;47:4911–26.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gautrey HL, Tyson-Capper AJ. Regulation of Mcl-1 by SRSF1 and SRSF5 in cancer cells. PLoS One. 2012;7:e51497.Article

Gautrey HL,Tyson Capper AJ。SRSF1和SRSF5在癌细胞中对Mcl-1的调节。PLoS One。2012年;7: e51497。条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, et al. CBFA2T3::GLIS2 pediatric acute Megakaryoblastic leukemia is sensitive to BCL-XL inhibition by Navitoclax and DT2216. Blood Adv. 2024;8:112–29.Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al.

Gress V,Roussy M,Boulianne L,Bilodeau M,Cardin S,El Hachem N等。CBFA2T3::GLIS2小儿急性巨核细胞白血病对Navitoclax和DT2216抑制BCL-XL敏感。血液Adv.2024;8: 112-29.Ramsey HE,Fischer MA,Lee T,Gorska AE,Arrate MP,Fuller L等。

A novel MCL1 inhibitor combined with Venetoclax rescues Venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.Article .

一种新型MCL1抑制剂联合Venetoclax可挽救Venetoclax耐药的急性骨髓性白血病。癌症发现。2018年;8: 1566-81条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin KH, Winter PS, Xie A, Roth C, Martz CA, Stein EM, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696.Article

Lin KH,Winter PS,Xie A,Roth C,Martz CA,Stein EM等。靶向MCL-1/BCL-XL可预防急性髓性白血病对ABT-199的耐药性。Sci代表2016;6:

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–88.Article

Konopleva M,Contractor R,Tsao T,Samudio I,Ruvolo PP,Kitada S等。急性髓细胞白血病细胞凋亡敏感性和对BH3模拟ABT-737耐药的机制。癌细胞。2006年;10: 375-88.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang W, Wu Y, Chen S, Liu X, He J, Wang S, et al. Shikonin is a novel and selective IMPDH2 inhibitor that target triple-negative breast cancer. Phytother Res. 2021;35:463–76.Article

紫草素是一种靶向三阴性乳腺癌的新型选择性IMPDH2抑制剂。Phytother Res.2021;35:463–76.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang W, Liu J, Hou L, Chen Q, Liu Y. Shikonin differentially regulates glucose metabolism via PKM2 and HIF1alpha to overcome apoptosis in a refractory HCC cell line. Life Sci. 2021;265:118796.Article

Yang W,Liu J,Hou L,Chen Q,Liu Y.紫草素通过PKM2和HIF1alpha差异调节葡萄糖代谢,以克服难治性HCC细胞系中的细胞凋亡。生命科学。2021年;265:118796.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S, et al. Shikonin inhibits tumor growth in mice by suppressing Pyruvate Kinase M2-mediated aerobic glycolysis. Sci Rep. 2018;8:14517.Article

Zhao X,Zhu Y,Hu J,Jiang L,Li L,Jia S等。紫草素通过抑制丙酮酸激酶M2介导的有氧糖酵解来抑制小鼠肿瘤生长。Sci代表2018;8: 第14517条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ning X, Qi H, Li R, Li Y, Jin Y, McNutt MA, et al. Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase. Eur J Med Chem. 2017;138:343–52.Article

宁X,齐H,李R,李Y,金Y,McNutt MA,等。新型萘醌衍生物作为丙酮酸激酶肿瘤细胞特异性M2亚型抑制剂的发现。欧洲医学化学杂志。2017年;138:343-52.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest. 2010;120:593–606.Article

Jin S,Zhao H,Yi Y,Nakata Y,Kalota A,Gewirtz AM。c-Myb通过menin在人白血病细胞中结合MLL,并且是MLL相关白血病发生的重要驱动因素。J临床投资。2010年;120:593–606.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A, et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood. 2006;108:297–304.Article

Hess JL,Bittner CB,Zeisig DT,Bach C,Fuchs U,Borkhardt A等。C-Myb是同源盒介导的造血细胞转化的重要下游靶标。血。2006年;

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roma A, Tcheng M, Ahmed N, Walker S, Jayanth P, Minden MD, et al. Shikonin impairs mitochondrial activity to selectively target leukemia cells. Phytomedicine. 2022;2:100300.Article

Roma A,Tcheng M,Ahmed N,Walker S,Jayanth P,Minden MD等。紫草素损害线粒体活性以选择性靶向白血病细胞。植物医学。2022年;2: 100300条

Google Scholar

谷歌学者

Wiench B, Eichhorn T, Paulsen M, Efferth T. Shikonin directly targets mitochondria and causes mitochondrial dysfunction in cancer cells. Evid Based Complement Altern Med. 2012;2012:726025.Article

Wiench B,Eichhorn T,Paulsen M,Efferth T.紫草素直接靶向线粒体并导致癌细胞中的线粒体功能障碍。基于Evid的补体替代医学2012;2012:726025.文章

Google Scholar

谷歌学者

Roma A, Tcheng M, Ahmed N, Walker S, Jayanth P, Minden MD, et al. Glutamine metabolism mediates sensitivity to respiratory complex II inhibition in acute myeloid leukemia. Mol Cancer Res. 2022;20:1659–73.Quevedo R, Smirnov P, Tkachuk D, Ho C, El-Hachem N, Safikhani Z, et al. Assessment of genetic drift in large pharmacogenomic studies.

。Mol Cancer Res.2022;20: 1659–73.Quevedo R,Smirnov P,Tkachuk D,Ho C,El Hachem N,Safikhani Z等。大型药物基因组学研究中遗传漂移的评估。

Cell Syst. 2020;11:393–401.e392.Article .

细胞系统。;11: 393–401。e392。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Dowling MR, et al. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med. 2011;208:2017–31.Article

Josefsson EC,James C,Henley KJ,Debrincat MA,Rogers KL,Dowling MR等。巨核细胞具有功能性内在凋亡途径,必须受到抑制才能存活和产生血小板。J Exp Med。2011;208:2017–31.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.Article

Mason KD,Carpinelli MR,Fletcher JI,Collinge JE,Hilton AA,Ellis S等。程序性无核细胞死亡决定了血小板的寿命。细胞。2007年;128:1173–86.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kuusanmaki H, Dufva O, Vaha-Koskela M, Leppa AM, Huuhtanen J, Vanttinen IM, et al. Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia. Blood. 2023;141:1610–25.Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate.

Kuusanmaki H,Dufva O,Vaha Koskela M,Leppa AM,Huuhtanen J,Vantinen IM等。红细胞/巨核细胞分化赋予急性髓细胞白血病BCL-XL依赖性和venetoclax抗性。血。2023年;。MCL1在调节细胞命运中的多种机制。

Commun Biol. 2021;4:1029.Article .

普通生物。2021年;4:1029.文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555:321–7.Article

Grobner SN,Worst BC,Weischenfeldt J,Buchhalter I,Kleinheinz K,Rudneva VA等。儿童癌症基因组改变的前景。自然。2018年;555:321–7.文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by grants from the Cole Foundation (V.G. fellowship), Oncopole (EMC2 grant through the Fonds de recherche du Québec – Santé (FRQS), Génome Québec, the Cancer Research Society, and IRICoR (B.T.W., F.B., S.C., A.M., J.H., K.E., G.S.), the Canadian Cancer Society Impact grant #705047 in collaboration with The Cole Foundation, Molson Foundation, R.

下载参考文献致谢这项工作得到了科尔基金会(V.G.fellowship),Oncopole(通过魁北克-桑特研究基金会(FRQS)的EMC2资助),魁北克省基因组学,癌症研究协会和IRICoR(B.T.W.,F.B.,S.C.,A.M.,J.H.,K.E.,G.S。),加拿大癌症协会影响基金会(705047)与科尔基金会,莫尔森基金会,R。

Howard Webster Foundation, Mirella and Lino Saputo Foundation, Fonds de recherche du Quebec - Santé, Faculté de médicine, Université de Montréal, Letko Brosseau, Birks Family Foundation, Maryse and William Brock, CHU Sainte-Justine Foundation, Montreal Children’s Hospital Foundation, Morris and Rosalind Goodman Family Foundation, Zeller Family Foundation, David H.

霍华德·韦伯斯特基金会、米雷拉和利诺·萨普托基金会、魁北克圣徒研究基金会、医学院、蒙特利尔大学、莱特科·布罗索、伯克斯家庭基金会、玛丽·丝和威廉·布罗克、朱圣·贾斯汀基金会、蒙特利尔儿童医院基金会、莫里斯和罗莎琳德·古德曼家庭基金会、泽勒家庭基金会、大卫·H。

Laidley Foundation, Drummond Foundation, and the Henry and Berenice Kaufmann Foundation (grant 705047-IMP-17; B.T.W., F.B., S.C.), the Leukemia & Lymphoma Society of Canada (to F.B.), Terry Fox Foundation Program Project grant (TFF#1074) funding to CE, a FRSQ J1 salary award (G.D.), an operating grant from the Cancer Research Society (G.D.), the Canadian Institutes of Health Research (grant FRN 178326; S.C.), the CHU Sainte-Justine Foundation (Fonds d’Innovation Thérapeutique; S.C.), and the Charles-Bruneau Foundation (supporting humanized mouse core and flow cytometry facilities at CHU Sainte-Justine).

莱德利基金会、德拉蒙德基金会、亨利和贝雷妮斯·考夫曼基金会(grant 705047-IMP-17;B.T.W.,F.B.,S.C.)、加拿大白血病和淋巴瘤协会(F.B.)、特里·福克斯基金会项目资助(TFF#1074)CE、FRSQ J1工资奖(G.D.)、癌症研究学会(G.D.)的运营资助、加拿大卫生研究院(grant FRN 178326;S.C.)、朱圣·贾斯汀基金会(Fonds D'Innovation Thérapeutique;S.C.)和查尔斯布鲁诺基金会(支持CHU Sainte Justine的人性化小鼠核心和流式细胞仪设施)。

S.C. is the recipient of a Clinician Scientist senior award from the FRQS. We are grateful to the patients who provided biospecimens for these studies to the OSU Comprehensive Cancer Center Hematology Tissue Bank Shared Resource (supported by NIH NCI P30 CA016058). Human leukemia specimens were collected and analyzed by the Banque de cellules leucémiques du Québec (BCLQ), supported by the Cancer R.

S、 C.是FRQS颁发的临床医生-科学家高级奖的获得者。我们感谢向OSU综合癌症中心血液学组织库共享资源(由NIH NCI P30 CA016058支持)提供这些研究的生物样本的患者。人类白血病标本由魁北克细胞白血病研究所(BCLQ)收集和分析,由癌症研究所支持。

PubMed Google ScholarKarla Páez MartinezView author publicationsYou can also search for this author in

PubMed Google ScholarKarla Páez MartinezView作者出版物您也可以在

PubMed Google ScholarVerena GressView author publicationsYou can also search for this author in

PubMed Google ScholarVerena GressView作者出版物您也可以在

PubMed Google ScholarNayeli EsparzaView author publicationsYou can also search for this author in

PubMed Google ScholarNayeli EsparzaView作者出版物您也可以在

PubMed Google ScholarÉlodie RoquesView author publicationsYou can also search for this author in

PubMed Google ScholarÉlodie RoquesView作者出版物您也可以在

PubMed Google ScholarFlorence Bonnet-MagnavalView author publicationsYou can also search for this author in

PubMed Google ScholarFlorence Bonnet MagnavalView作者出版物您也可以在

PubMed Google ScholarMélanie BilodeauView author publicationsYou can also search for this author in

PubMed Google Scholarmanélanie BilodeauView作者出版物您也可以在

PubMed Google ScholarValérie GagnéView author publicationsYou can also search for this author in

PubMed Google ScholarValérie GagnéView作者出版物您也可以在

PubMed Google ScholarEva BressonView author publicationsYou can also search for this author in

PubMed Google ScholarEva BressonView作者出版物您也可以在

PubMed Google ScholarSophie CardinView author publicationsYou can also search for this author in

PubMed Google ScholarNehme El-HachemView author publicationsYou can also search for this author in

PubMed Google ScholarNehme El HachemView作者出版物您也可以在

PubMed Google ScholarIsabella IasenzaView author publicationsYou can also search for this author in

PubMed Google ScholarIsabella IasenzaView作者出版物您也可以在

PubMed Google ScholarGabriel AlzialView author publicationsYou can also search for this author in

PubMed Google ScholarGabriel AlzialView作者出版物您也可以在

PubMed Google ScholarIsabel BoivinView author publicationsYou can also search for this author in

PubMed Google ScholarIsabel BoivinView作者出版物您也可以在

PubMed Google ScholarNaoto NakamichiView author publicationsYou can also search for this author in

PubMed Google ScholarNaoto NakamichiView作者出版物您也可以在

PubMed Google ScholarAnne-Cécile SouffletView author publicationsYou can also search for this author in

PubMed Google ScholarAnne-Cécile SouffletView作者出版物您也可以在

PubMed Google ScholarCristina Mirela PascariuView author publicationsYou can also search for this author in

PubMed谷歌学术评论Mirela PascariuView作者出版物您也可以在

PubMed Google ScholarJean DuchaineView author publicationsYou can also search for this author in

PubMed谷歌学者Jean DuchaineView作者出版物您也可以在

PubMed Google ScholarSimon MathienView author publicationsYou can also search for this author in

PubMed Google ScholarSimon MathienView作者出版物您也可以在

PubMed Google ScholarÉric BonneilView author publicationsYou can also search for this author in

PubMed Google ScholarÉric BonneilView作者出版物您也可以在

PubMed Google ScholarKolja EppertView author publicationsYou can also search for this author in

PubMed Google ScholarKolja Epperview作者出版物您也可以在

PubMed Google ScholarAnne MarinierView author publicationsYou can also search for this author in

PubMed Google ScholarAnne MarinierView作者出版物您也可以在

PubMed Google ScholarGuy SauvageauView author publicationsYou can also search for this author in

PubMed Google ScholarGuy SauvageauView作者出版物您也可以在

PubMed Google ScholarGeneviève DebloisView author publicationsYou can also search for this author in

PubMed Google ScholarGeneviève DebloisView作者出版物您也可以在

PubMed Google ScholarPierre ThibaultView author publicationsYou can also search for this author in

PubMed Google ScholarPierre ThibaultView作者出版物您也可以在

PubMed Google ScholarJosée HébertView author publicationsYou can also search for this author in

PubMed Google ScholarJosée HébertView作者出版物您也可以在

PubMed Google ScholarConnie J. EavesView author publicationsYou can also search for this author in

PubMed Google ScholarConnie J.EavesView作者出版物您也可以在

PubMed Google ScholarSonia CellotView author publicationsYou can also search for this author in

PubMed Google ScholarSonia CellotView作者出版物您也可以在

PubMed Google ScholarFrédéric BarabéView author publicationsYou can also search for this author in

PubMed Google ScholarFrédéricBarabéView作者出版物您也可以在

PubMed Google ScholarBrian T. WilhelmView author publicationsYou can also search for this author in

PubMed谷歌学者T.WilhelmView作者出版物您也可以在

PubMed Google ScholarContributionsSC, FB and BTW conceptualized the study with input from GS and AM Small molecule screening was performed by ER, FBM, VG, KPM, IB, JD, and SM and screening data analysis was performed by SSTH with assistance from BTW. Validation studies for individual compounds were performed by VG, KPM, with assistance from MB and FBM and NH for additional analysis.

PubMed Google ScholarContributionsSC,FB和BTW概念化了来自GS和AM的输入的研究小分子筛选由ER,FBM,VG,KPM,IB,JD和SM进行,筛选数据分析由SSTH在BTW的帮助下进行。单个化合物的验证研究由VG,KPM进行,MB和FBM以及NH协助进行额外分析。

Proteomic studies and analysis were performed by CMP and EB with assistance from FBM, and supervised by PT. Metabolomics studies were performed by GA and KPM, and supervised by GD. Leukemic stem cell studies were performed by IL with supervision by KE. Model leukemia samples were generated by ACS, EB, ES, VG, SCa, MB, and PDX generation was performed by SCa, NN and supervised by CJE and patient samples were characterized by JH.

蛋白质组学研究和分析由CMP和EB在FBM的协助下进行,由PT监督。代谢组学研究由GA和KPM进行,由GD监督。白血病干细胞研究由IL进行,由KE监督。模型白血病样品由ACS,EB,ES,VG,SCa,MB产生,PDX产生由SCa,NN进行,由CJE监督,患者样品由JH表征。

The original draft was written by SSTH, and all co-authors reviewed and edited the manuscript.Corresponding authorsCorrespondence to.

原稿由SSTH撰写,所有合著者均审阅并编辑了手稿。通讯作者通讯。

Sonia Cellot, Frédéric Barabé or Brian T. Wilhelm.Ethics declarations

索尼娅·塞洛特(SoniaCellot)、弗里德里克·巴拉贝(FrédéricBarabé)或布莱恩·威廉(BrianT.Wilhelm)。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplemental figuresSupplemental tablesRights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充图补充表权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleSafa-Tahar-Henni, S., Páez Martinez, K., Gress, V. et al. Comparative small molecule screening of primary human acute leukemias, engineered human leukemia and leukemia cell lines.

转载和许可本文引用本文Safa Tahar Henni,S.,Páez Martinez,K.,Gress,V。等人。原发性人类急性白血病,工程化人类白血病和白血病细胞系的比较小分子筛选。

Leukemia (2024). https://doi.org/10.1038/s41375-024-02400-wDownload citationReceived: 12 December 2023Revised: 14 July 2024Accepted: 28 August 2024Published: 29 October 2024DOI: https://doi.org/10.1038/s41375-024-02400-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

白血病(2024)。https://doi.org/10.1038/s41375-024-02400-wDownload引文接收日期:2023年12月12日修订日期:2024年7月14日接受日期:2024年8月28日发布日期:2024年10月29日OI:https://doi.org/10.1038/s41375-024-02400-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供