EN
登录

人脂肪和脐带间充质干细胞衍生的细胞外囊泡通过TIMP1/Notch1减轻光老化

Human adipose and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate photoaging via TIMP1/Notch1

Nature 等信源发布 2024-10-30 07:44

可切换为仅中文


AbstractUVB radiation induces oxidative stress, DNA damage, and inflammation, leading to skin wrinkling, compromised barrier function, and an increased risk of carcinogenesis. Addressing or preventing photoaging may offer a promising therapeutic avenue for these conditions. Recent research indicated that mesenchymal stem cells (MSCs) exhibit significant therapeutic potential for various skin diseases.

摘要UVB辐射诱导氧化应激,DNA损伤和炎症,导致皮肤起皱,屏障功能受损,致癌风险增加。解决或预防光老化可能为这些疾病提供有希望的治疗途径。最近的研究表明,间充质干细胞(MSCs)对各种皮肤疾病具有显着的治疗潜力。

Given that extracellular vesicles (EV) can deliver diverse cargo to recipient cells and elicit similar therapeutic effects, we investigated the roles and underlying mechanisms of both adipose-derived MSC-derived EV (AMSC-EV) and umbilical cord-derived MSC-derived EV (HUMSC-EV) in photoaging. Our findings indicated that in vivo, treatment with AMSC-EV and HUMSC-EV resulted in improvements in wrinkles and skin hydration while also mitigating skin inflammation and thickness alterations in both the epidermis and dermis.

鉴于细胞外囊泡(EV)可以向受体细胞递送多种货物并引发相似的治疗效果,我们研究了脂肪来源的MSC衍生的EV(AMSC-EV)和脐带来源的MSC衍生的EV(HUMSC-EV)在光老化中的作用和潜在机制。我们的研究结果表明,在体内,用AMSC-EV和HUMSC-EV治疗可改善皱纹和皮肤水合作用,同时减轻皮肤炎症和表皮和真皮厚度的改变。

Additionally, in vitro studies using human keratinocytes (HaCaTs), human dermal fibroblast cells (HDFs), and T-Skin models revealed that AMSC-EV and HUMSC-EV attenuated senescence, reduced levels of reactive oxygen species (ROS) and DNA damage, and alleviated inflammation induced by UVB. Furthermore, EV treatment enhanced cell viability and migration capacity in the epidermis and promoted extracellular matrix (ECM) remodeling in the dermis in photoaged cell models.

此外,使用人角质形成细胞(HaCaTs),人皮肤成纤维细胞(HDF)和T皮肤模型的体外研究表明,AMSC-EV和HUMSC-EV可减轻衰老,降低活性氧(ROS)水平和DNA损伤,并减轻UVB诱导的炎症。此外,EV处理增强了表皮中的细胞活力和迁移能力,并促进了光老化细胞模型中真皮中的细胞外基质(ECM)重塑。

Mechanistically, proteomics results showed that TIMP1 was highly expressed in both AMSC-EV and HUMSC-EV and could exert similar effects as MSC-EV. In addition, we found that EV and TIMP1 could inhibit Notch1 and downstream targets Hes1, P16, P21, and P53. Collectively, our data suggests that both AMSC-EV and HUMSC-EV attenuate skin photoaging through TIMP1/Notch1..

从机制上讲,蛋白质组学结果显示TIMP1在AMSC-EV和HUMSC-EV中均高表达,并且可以发挥与MSC-EV相似的作用。此外,我们发现EV和TIMP1可以抑制Notch1和下游靶标Hes1,P16,P21和P53。总的来说,我们的数据表明AMSC-EV和HUMSC-EV都通过TIMP1/Notch1减弱皮肤光老化。。

IntroductionHuman skin, the body’s largest organ, serves as the primary barrier against environmental factors, especially solar ultraviolet (UV) radiation.1 UV is divided into UVA (320–400 nm), UVB (280–20 nm), and UVC (280–100 nm) based on wavelength. UVC is absorbed by the stratospheric ozone layer and does not reach the earth.

简介人体最大的器官皮肤是抵抗环境因素的主要屏障,特别是太阳紫外线(UV)辐射。紫外线根据波长分为UVA(320-400nm),UVB(280-20nm)和UVC(280-100nm)。UVC被平流层臭氧层吸收,不会到达地球。

Relative to UVA, UVB has less penetrating ability into the skin but a greater damaging effect.2 UVB exposure increases the risk of various skin disorders leading to tanning, and inflammatory reactions including redness and blistering in the short term.3 In the long term, it can lead to photoaging including wrinkles, decreased barrier capacity and resilience, and an increased risk of carcinogenesis such as keratinocyte carcinoma, basal cell carcinoma, cutaneous squamous cell carcinoma, and melanoma.4 It is reported that nearly 80% of adults aged 70 and above suffer from one or more skin diseases that require further treatment or follow-up, including UV-induced skin diseases such as Lentigo senilis (69.5%), actinic keratosis (22.3%), Basal cell carcinoma (5.07%), Melanoma (0.54%) and Squamous cell carcinoma (0.36%).5 Therefore, an in-depth understanding of UVB-induced skin damage, molecular mechanisms, and therapeutic options is of great scientific importance and clinical value.

Currently, there are several traditional treatments for photoaging, including the use of retinoids, antioxidant products, or optical therapies; however, some strategies are not always effective or can cause side effects, such as allergy or irritation.6,7 An effective treatment program with few side effects is therefore needed.Extracellular vesicles (EV) are lipid bilayer membrane-delimited particles with functional components such as proteins and microRNAs (miRNAs).8 They.

目前,有几种传统的光老化治疗方法,包括使用类维生素A,抗氧化产品或光学疗法;然而,一些策略并不总是有效的,或者可能会引起副作用,如过敏或刺激。因此,需要一种副作用少的有效治疗方案。细胞外囊泡(EV)是脂质双层膜界定的颗粒,具有蛋白质和microRNA(miRNA)等功能成分。

Data availability

数据可用性

All data supporting this paper are present within the paper and/or the Supplementary Materials. The original datasets are also available from the corresponding author upon request. The raw data of RNA-seq presented in this study have been deposited in the NCBI Web site (https://www.ncbi.nlm.nih.gov), under the project number PRJNA1164396.

支持本文的所有数据都包含在论文和/或补充材料中。原始数据集也可根据要求从通讯作者处获得。本研究中提供的RNA-seq的原始数据已保存在NCBI网站上(https://www.ncbi.nlm.nih.gov),项目编号为PRJNA1164396。

The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD056371..

蛋白质组学数据已通过PRIDE合作伙伴存储库保存到ProteomeXchange Consortium,数据集标识符为PXD056371。。

ReferencesHarris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).Article

参考文献Harris-Tryon,T.A。和Grice,E.A。微生物群和皮肤屏障功能的维持。科学376940-945(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Austin, E. et al. Visible light. Part I: properties and cutaneous effects of visible light. J. Am. Acad. Dermatol. 84, 1219–1231 (2021).Article

Austin,E.等人,《可见光》。第一部分:可见光的特性和皮肤效应。J、 美国科学院。皮肤病。841219-1231(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernard, J. J., Gallo, R. L. & Krutmann, J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 19, 688–701 (2019).Article

Bernard,J.J.,Gallo,R.L。和Krutmann,J。光免疫学:紫外线辐射如何影响免疫系统。国家免疫修订版。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mortaja, M. & Demehri, S. Skin cancer prevention—recent advances and unmet challenges. Cancer Lett. 575, 216406 (2023).Article

Mortaja,M。&Demehri,S。皮肤癌预防最新进展和未解决的挑战。癌症Lett。575216406(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sinikumpu, S. P. et al. The high prevalence of skin diseases in adults aged 70 and older. J. Am. Geriatr. Soc. 68, 2565–2571 (2020).Article

Sinikumpu,S.P.等人。70岁及以上成年人皮肤病的高患病率。J、 我是老年人。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Passeron, T. et al. Photoprotection according to skin phototype and dermatoses: practical recommendations from an expert panel. J. Eur. Acad. Dermatol. Venereol. 35, 1460–1469 (2021).Article

Passeron,T.等人。根据皮肤光型和皮肤病的光保护:专家小组的实用建议。J、 欧元Acad。皮肤病。维内里奥。351460-1469(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geisler, A. N. et al. Visible light. Part II: photoprotection against visible and ultraviolet light. J. Am. Acad. Dermatol. 84, 1233–1244 (2021).Article

Geisler,A.N.等人,《可见光》。第二部分:可见光和紫外线的光保护。J、 美国科学院。皮肤病。841233-1244(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).Article

Welsh,J.A.等人,《细胞外囊泡研究的基本信息》(MISEV2023):从基本方法到高级方法。J、 细胞外。囊泡13,e12404(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kumar, M. A. et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target Ther. 9, 27 (2024).Article

Kumar,M.A.等人。细胞外囊泡作为疾病治疗的工具和靶标。信号传输管。目标Ther。9,27(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, J. et al. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J. Extracell. Vesicles 12, e12332 (2023).Article

Johnson,J.等人首次在人体内进行同种异体血小板衍生的细胞外囊泡作为延迟伤口愈合的潜在治疗剂的临床试验。J、 细胞外。囊泡12,e12332(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7, 887–900 (2023).Article

You,Y.等人皮内递送包裹细胞外囊泡的mRNA用于胶原蛋白替代疗法。自然生物医学。工程7887–900(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Levy, O. et al. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 6, eaba6884 (2020).Article

Levy,O.等人,打破了对临床有意义的MSC疗法的障碍。科学。第6期,eaba6884(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tan, F. et al. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target Ther. 9, 17 (2024).Article

Tan,F。等人。干细胞衍生的外泌体的临床应用。信号传输管。目标Ther。9,17(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dhoke, N. R., Kaushik, K. & Das, A. Cxcr6-based mesenchymal stem cell gene therapy potentiates skin regeneration in murine diabetic wounds. Mol. Ther. 28, 1314–1326 (2020).Article

Dhoke,N.R.,Kaushik,K。&Das,A。基于Cxcr6的间充质干细胞基因疗法增强了小鼠糖尿病伤口的皮肤再生。摩尔热。281314-1326(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lozito, T. P., Jackson, W. M., Nesti, L. J. & Tuan, R. S. Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs. Matrix Biol. 34, 132–143 (2014).Article

Lozito,T.P.,Jackson,W.M.,Nesti,L.J。&Tuan,R.S。人间充质干细胞通过MMP的结合和高水平TIMP的分泌产生MMP活性的独特细胞周围区域。矩阵生物学。34132-143(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oh, E. J. et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J. Control Release 279, 79–88 (2018).Article

Oh,E.J.等人。间充质干细胞向烧伤部位的体内迁移及其在活体小鼠模型中的治疗效果。J、 控制版本279,79-88(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

De Jesus, M. M. et al. Autologous adipose-derived mesenchymal stromal cells for the treatment of psoriasis vulgaris and psoriatic arthritis: a case report. Cell Transpl. 25, 2063–2069 (2016).Article

De Jesus,M.M.等。自体脂肪间充质基质细胞治疗寻常型银屑病和银屑病关节炎:病例报告。细胞运输。。文章

Google Scholar

谷歌学者

Wang, S. G., Hsu, N. C., Wang, S. M. & Wang, F. N. Successful treatment of plaque psoriasis with allogeneic gingival mesenchymal stem cells: a case study. Case Rep. Dermatol. Med. 2020, 4617520 (2020).PubMed

Wang,S.G.,Hsu,N.C.,Wang,S.M。和Wang,F.N。用同种异体牙龈间充质干细胞成功治疗斑块状银屑病:一个案例研究。。医学2020,4617520(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, H. et al. Treatment of psoriasis with mesenchymal stem cells. Am. J. Med. 129, e13–e14 (2016).Article

Chen,H.等。间充质干细胞治疗银屑病。《美国医学杂志》129,e13-e14(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, M. et al. Mesenchymal stem cells alleviate moderate-to-severe psoriasis by reducing the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Stem Cells Int. 2019, 6961052 (2019).Article

Chen,M.等人。间充质干细胞通过减少浆细胞样树突状细胞(pDC)产生的I型干扰素(IFN-I)来缓解中度至重度牛皮癣。干细胞国际20196961052(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, X. et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct. Target Ther. 6, 354 (2021).Article

Xiao,X。等人。间充质干细胞衍生的小细胞外囊泡通过调节miR-146a/Src减轻氧化应激诱导的内皮细胞衰老。信号传输管。目标Ther。6354(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 69, 562–573 (2006).Article

Nagase,H.,Visse,R。&Murphy,G。基质金属蛋白酶和TIMPs的结构和功能。Cardiovasc Res.69562–573(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Grunwald, B., Schoeps, B. & Kruger, A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol. 29, 6–19 (2019).Article

Grunwald,B.,Schoeps,B。&Kruger,A。认识到TIMP-1的分子多功能性和相互作用组。趋势细胞生物学。29,6-19(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Singh, K. et al. JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. Nat. Commun. 9, 3425 (2018).Article

Singh,K。等人JunB定义了皮肤表皮-毛皮脂腺单元的功能和结构完整性。。93425(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028–1042 (2006).Article

Nguyen,B.C.等人。Notch和p63在角质形成细胞分化中的交叉调节。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ezratty, E. J. et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011).Article

Ezratty,E.J.等人。皮肤发育过程中初级纤毛在Notch信号传导和表皮分化中的作用。细胞1451129-1141(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Almeida, L. G. N. et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharm. Rev. 74, 712–768 (2022).Article

基质金属蛋白酶:从分子机制到生理学、病理生理学和药理学。《药学》第74712-768版(2022年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-kappaB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e745 (2018).Article

Dunphy,G。等人。ATM和IFI16对DNA感应接头STING的非规范激活在核DNA损伤后介导NF-κB信号传导。分子细胞71745-760.e745(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gonzales, K. A. U. & Fuchs, E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev. Cell 43, 387–401 (2017).Article

Gonzales,K.A.U.&Fuchs,E.Skin及其再生能力:干细胞与其生态位之间的联盟。Dev.Cell 43387–401(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, S. et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano 13, 11273–11282 (2019).Article

Hu,S。等人。无针注射源自人真皮成纤维细胞球体的外来体可改善皮肤光老化。ACS Nano 1311273–11282(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arpino, V., Brock, M. & Gill, S. E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44-46, 247–254 (2015).Article

Arpino,V.,Brock,M。&Gill,S.E。TIMPs在调节细胞外基质蛋白水解中的作用。矩阵生物学。44-46247-254(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vats, K. et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biol. 47, 102143 (2021).Article

Vats,K。等人。铁浓化引起的角质形成细胞死亡在UVB暴露后引发皮肤炎症。氧化还原生物。47102143(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lachowski, D. et al. Substrate Stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano 16, 4322–4337 (2022).Article

。ACS Nano 164322–4337(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, B. et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct. Target Ther. 7, 95 (2022).Article

Zhou,B。等。Notch信号通路:结构,疾病和治疗。信号传输管。目标Ther。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fraga, M. F. et al. Epigenetic inactivation of the Groucho homologue gene TLE1 in hematologic malignancies. Cancer Res. 68, 4116–4122 (2008).Article

Fraga,M.F.等人。血液系统恶性肿瘤中Groucho同源基因TLE1的表观遗传失活。癌症研究684116-4122(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yoshioka-Kobayashi, K. et al. Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580, 119–123 (2020).Article

Yoshioka Kobayashi,K。等人。耦合延迟控制分段时钟中的同步振荡。自然580119-123(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duan, J. L. et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology 75, 584–599 (2022).Article

Duan,J.L。等人。剪切应力诱导的细胞衰老通过Notch-sirtuin 1-P21/P16轴钝化肝再生。肝病75584-599(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cao, H. et al. MYL3 protects chondrocytes from senescence by inhibiting clathrin-mediated endocytosis and activating of Notch signaling. Nat. Commun. 14, 6190 (2023).Article

Cao,H。等人。MYL3通过抑制网格蛋白介导的内吞作用和激活Notch信号传导来保护软骨细胞免于衰老。。146190(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

El Ghissassi, F. et al. A review of human carcinogens-part D: radiation. Lancet Oncol. 10, 751–752 (2009).Article

El Ghissassi,F.等人,《人类致癌物综述D部分:辐射》。柳叶刀Oncol。10751-752(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Narayanan, D. L., Saladi, R. N. & Fox, J. L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49, 978–986 (2010).Article

Narayanan,D.L.,Saladi,R.N。和Fox,J.L。紫外线辐射和皮肤癌。国际皮肤病杂志。49978-986(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Qiang, L. et al. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13, 2086–2103 (2017).Article

Qiang,L。等人。自噬基因ATG7调节紫外线辐射诱导的炎症和皮肤肿瘤发生。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Amable, P. R. et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther. 5, 53 (2014).Article

来自骨髓、脂肪组织和沃顿果冻的人间充质细胞中蛋白质的合成和分泌。干细胞研究。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benny, M. et al. Comparative effects of bone marrow-derived versus umbilical cord tissue mesenchymal stem cells in an experimental model of bronchopulmonary dysplasia. Stem Cells Transl. Med. 11, 189–199 (2022).Article

Benny,M.等人。骨髓间充质干细胞与脐带组织间充质干细胞在支气管肺发育不良实验模型中的比较作用。干细胞翻译。医学杂志11189-199(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lambert, E., Dasse, E., Haye, B. & Petitfrere, E. TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol. 49, 187–198 (2004).Article

Lambert,E.,Dasse,E.,Haye,B。&Petitfrere,E。TIMPs作为多基因蛋白。暴击。修订版Oncol。血液学。49187-198(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mandinova, A. et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J. 27, 1243–1254 (2008).Article

Mandinova,A。等人。FoxO3a基因是角质形成细胞UVB反应中经典Notch信号传导的关键负靶标。EMBO J.271243–1254(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, L. et al. The inhibition of NOTCH2 reduces UVB-induced damage in retinal pigment epithelium cells. Mol. Med Rep. 16, 730–736 (2017).Article

。Mol.Med Rep.16730–736(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, Y. et al. Macrophage-derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment. Clin. Transl. Med. 12, e1071 (2022).Article

Xiao,Y。等人。巨噬细胞衍生的细胞外囊泡通过调节局部环境来调节老年小鼠的卵泡活化并改善卵巢功能。临床。翻译。医学12,e1071(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, L. et al. Involvement of miR-199a-3p/DDR1 in vascular endothelial cell senescence in diabetes. Eur. J. Pharm. 908, 174317 (2021).Article

Yan,L。等人。miR-199a-3p/DDR1参与糖尿病血管内皮细胞衰老。《欧洲药典》908174317(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).Article

Kaur,A。等人。老化皮肤中胶原基质的重塑促进黑色素瘤转移并影响免疫细胞运动。癌症发现。9,64-81(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Raote, I. et al. TANGO1 inhibitors reduce collagen secretion and limit tissue scarring. Nat. Commun. 15, 3302 (2024).Article

Raote,I。等人。TANGO1抑制剂减少胶原蛋白分泌并限制组织瘢痕形成。Nat。Commun。153302(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, T. et al. ATG5-mediated keratinocyte ferroptosis promotes M1 polarization of macrophages to aggravate UVB-induced skin inflammation. J. Photochem. Photobio. B 257, 112948 (2024).Article

Xiao,T。等人。ATG5介导的角质形成细胞铁浓化促进巨噬细胞的M1极化以加重UVB诱导的皮肤炎症。J、 光化学。Photobio.B 257112948(2024)。文章

CAS

中科院

Google Scholar

谷歌学者

Liu, J. et al. Oncostatin M sensitizes keratinocytes to UVB-induced inflammation via GSDME-mediated pyroptosis. J. Dermatol. Sci. 104, 95–103 (2021).Article

Liu,J。等人。抑瘤素M通过GSDME介导的pyroptosis使角质形成细胞对UVB诱导的炎症敏感。J、 皮肤病。科学。104,95-103(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, H. et al. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. J. Nanobiotechnol. 22, 307 (2024).Article

。22307(2024)。文章

CAS

中科院

Google Scholar

谷歌学者

Sreedhar, A., Aguilera-Aguirre, L. & Singh, K. K. Mitochondria in skin health, aging, and disease. Cell Death Dis. 11, 444 (2020).Article

Sreedhar,A.,Aguilera-Aguirre,L。&Singh,K.K。线粒体在皮肤健康,衰老和疾病中的作用。细胞死亡Dis。11444(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, B. et al. Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer’s disease. Neural Regen. Res. 19, 1593–1601 (2024).Article

Li,B。等人。神经干细胞衍生的外泌体在阿尔茨海默病小鼠模型中促进线粒体生物发生并恢复异常的蛋白质分布。神经再生。第191593-1601号决议(2024年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiao, W. et al. TIMP-1 dependent modulation of metabolic profiles impacts chemoresistance in NSCLC. Cells 11, 3036 (2022).Download referencesAcknowledgementsThis study was supported by the CAMS Initiative for Innovative Medicine (2022-I2M-1-012), the 111 Project (B18007), National Key R&D Program of China (2020YFA0113000), Key-Area Research and Development Program of Guangdong Province (2021B0909060001), 2021 General Research Institute for Nonferrous Metals ‘Unveiling and Commanding’ Project (2021JC0103).Author informationAuthor notesThese authors contributed equally: Huan Zhang, Xian XiaoAuthors and AffiliationsInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, ChinaHuan Zhang, Xian Xiao, Liping Wang, Xianhao Shi, Nan Fu, Shihua Wang & Robert Chunhua ZhaoDepartment of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, ChinaRobert Chunhua ZhaoAuthorsHuan ZhangView author publicationsYou can also search for this author in.

Xiao,W。等人。TIMP-1依赖性代谢谱调节影响NSCLC的化学耐药性。细胞113036(2022)。下载参考文献致谢本研究得到了CAMS创新医学倡议(2022-I2M-1-012),111项目(B18007),国家重点研发计划(2020YFA0113000),广东省重点领域研究与发展计划(2021B090906001),2021有色金属总研究所“揭幕与指挥”项目(2021JC0103)的支持。作者信息作者注意到这些作者做出了同样的贡献:张欢,冼晓作者和附属机构中国医学科学院基础医学研究所,北京协和医科大学基础医学院,北京,中国张欢,冼晓,王丽萍,史先浩,傅楠,王世华和赵春华上海大学生命科学学院细胞生物学系赵春华作者张欢观点作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarXian XiaoView author publicationsYou can also search for this author in

PubMed Google ScholarXian XiaoView作者出版物您也可以在

PubMed Google ScholarLiping WangView author publicationsYou can also search for this author in

PubMed Google ScholarLiping WangView作者出版物您也可以在

PubMed Google ScholarXianhao ShiView author publicationsYou can also search for this author in

PubMed Google ScholarXianhao ShiView作者出版物您也可以在

PubMed Google ScholarNan FuView author publicationsYou can also search for this author in

PubMed Google ScholarNan FuView作者出版物您也可以在

PubMed Google ScholarShihua WangView author publicationsYou can also search for this author in

PubMed Google ScholarShihua WangView作者出版物您也可以在

PubMed Google ScholarRobert Chunhua ZhaoView author publicationsYou can also search for this author in

PubMed Google Scholarrorbert Chunhua ZhaoView作者出版物您也可以在

PubMed Google ScholarContributionsH.Z. and X.X. performed and analyzed experiments, prepared the figures, and wrote the manuscript. S.W. designed and analyzed experiments and wrote the manuscript. L.W., X.S., and N.F. performed the experiments. R.C.Z. designed the experiment.

PubMed谷歌学术贡献。Z、 和X.X.进行并分析了实验,准备了数字并撰写了手稿。S、 W.设计并分析了实验并撰写了手稿。五十、 W.,X.S。和N.F.进行了实验。R、 C.Z.设计了这个实验。

All authors have read and approved the final manuscript.Corresponding authorsCorrespondence to.

所有作者都阅读并批准了最终稿件。通讯作者通讯。

Shihua Wang or Robert Chunhua Zhao.Ethics declarations

王世华或赵春华。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Supplementary informationClean Supplementary MaterialsRights and permissions

补充信息清洁补充材料权利和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, H., Xiao, X., Wang, L. et al. Human adipose and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate photoaging via TIMP1/Notch1.

转载和许可本文引用本文Zhang,H.,Xiao,X.,Wang,L。等人。人脂肪和脐带间充质干细胞衍生的细胞外囊泡通过TIMP1/Notch1减轻光老化。

Sig Transduct Target Ther 9, 294 (2024). https://doi.org/10.1038/s41392-024-01993-zDownload citationReceived: 23 April 2024Revised: 13 September 2024Accepted: 26 September 2024Published: 30 October 2024DOI: https://doi.org/10.1038/s41392-024-01993-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sig Transduct Target Ther 9294(2024)。https://doi.org/10.1038/s41392-024-01993-zDownload引文收到日期:2024年4月23日修订日期:2024年9月13日接受日期:2024年9月26日发布日期:2024年10月30日OI:https://doi.org/10.1038/s41392-024-01993-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供