EN
登录

线粒体抑制剂揭示了特定呼吸链复合物在TIM CRY依赖性降解中的作用

Mitochondrial inhibitors reveal roles of specific respiratory chain complexes in CRY-dependent degradation of TIM

Nature 等信源发布 2024-10-30 21:18

可切换为仅中文


AbstractDrosophila Cryptochrome (CRY) is an essential photoreceptor that mediates the resetting of the circadian clock by light. in vitro studies demonstrated a critical role of redox cycling of the FAD cofactor for CRY activation by light. However, it is unknown if CRY responds to cellular redox environment to modulate the circadian clock.

摘要果蝇隐花色素(CRY)是一种重要的光感受器,可通过光介导生物钟的重置。体外研究表明,FAD辅因子的氧化还原循环对于光激活CRY具有关键作用。然而,CRY是否响应细胞氧化还原环境来调节生物钟尚不清楚。

We report here that the mitochondrial respiratory chain impinges on CRY activity. Inhibition of complex III and V blocks CRY-mediated degradation of TIMELESS (TIM) in response to light, and also blocks light-induced CRY degradation. On the other hand, inhibition of complex I facilitates TIM degradation even in the dark.

我们在这里报告说,线粒体呼吸链影响CRY活性。复合物III和V的抑制阻断了响应光的CRY介导的TIMELESS(TIM)降解,并且还阻断了光诱导的CRY降解。另一方面,即使在黑暗中,复合物I的抑制也会促进TIM降解。

Mutations of critical residues of the CRY C-terminus promote TIM degradation in the dark, even in the presence of complex III and V inhibitors. We propose that complex III and V activities are important for activation of CRY in response to light. Interestingly, we found that transcriptional repressor functions of Drosophila and mammalian CRY proteins are not affected by mitochondrial inhibitors.

即使存在复合物III和V抑制剂,CRY C末端关键残基的突变也会在黑暗中促进TIM降解。我们建议复杂的III和V活性对于响应光激活CRY很重要。有趣的是,我们发现果蝇和哺乳动物CRY蛋白的转录阻遏物功能不受线粒体抑制剂的影响。

Together these data suggest that the two functions of CRY have different sensitivity to disruptions of the mitochondrial respiratory chain: one is sensitive to mitochondrial activities that enable resetting, the other is insensitive so as to sustain the molecular oscillator..

这些数据加在一起表明,CRY的两个功能对线粒体呼吸链的破坏具有不同的敏感性:一个对能够重置的线粒体活动敏感,另一个对维持分子振荡器不敏感。。

IntroductionCircadian timing systems in most organisms have evolved to cope with the day:night cycle on earth. While specific components differ among species, the basic framework of molecular circadian clocks is well conserved among eukaryotes. In a nutshell, such molecular clocks consist of an activator that drives the expression of a repressor, which in turn inhibits the activator.

。虽然物种之间的特定成分不同,但分子生物钟的基本框架在真核生物中是非常保守的。简而言之,这种分子钟由驱动阻遏物表达的激活剂组成,阻遏物反过来抑制激活剂。

In Drosophila, the heterodimeric complex of Clock (CLK) and Cycle (CYC) proteins activates the transcription of repressor genes period (per) and timeless (tim). Accumulation of PER and TIM proteins leads to a heterodimeric complex that represses transcription of these two genes. A series of post-transcriptional and post-translational steps are regulated to generate temporal delays, which are essential to sustain a cycle and presumably also a ~ 24 h period1.

在果蝇中,时钟(CLK)和周期(CYC)蛋白的异二聚体复合物激活阻遏基因period(per)和timeless(tim)的转录。PER和TIM蛋白的积累导致异二聚体复合物抑制这两个基因的转录。调节一系列转录后和翻译后步骤以产生时间延迟,这对于维持一个周期至关重要,并且可能也是24小时周期1。

This negative feedback loop thus maintains rhythmic activity of CLK-CYC, which in turn drives rhythmic expression of other target genes to regulate cellular physiology and metabolism.For optimal function, such a timing mechanism needs to be synchronized with cyclic environmental cues, among which the light–dark cycle is the most prominent factor.

因此,这种负反馈回路维持CLK-CYC的节律活动,进而驱动其他靶基因的节律表达以调节细胞生理和代谢。为了获得最佳功能,这种计时机制需要与循环环境线索同步,其中明暗循环是最突出的因素。

In flies, the FAD-binding Cryptochrome protein functions as a blue-light photoreceptor to transmit environmental light:dark signals to the molecular circadian clock2,3, mainly through TIM4,5,6,7. Light-activated CRY has a higher affinity for TIM and it promotes TIM degradation by the proteasomal machinery4,5,6,8,9,10,11, such that TIM levels remain low during the day.

在果蝇中,结合FAD的隐花色素蛋白起着蓝光感光器的作用,主要通过TIM4,5,6,7将环境光:暗信号传递给分子昼夜节律时钟2,3。光激活的CRY对TIM具有更高的亲和力,它通过蛋白酶体机制促进TIM降解4,5,6,8,9,10,11,使得TIM水平在白天保持低水平。

After lights-off, TIM accumulates and binds to PER to protect it from degradation, so PER levels peak in the late night, followed by nuclear localization of PER-TIM and subsequent inhibition of CLK-CYC activity. Light at dawn promo.

熄灯后,TIM积累并与PER结合以保护其免受降解,因此PER水平在深夜达到峰值,然后是PER-TIM的核定位和随后的CLK-CYC活性抑制。黎明之光宣传片。

Data availability

数据可用性

No datasets were generated or analysed during the current study.

在当前的研究中,没有生成或分析数据集。

ReferencesZheng, X. & Sehgal, A. Speed control: Cogs and gears that drive the circadian clock. Trends Neurosci. 35(9), 574–585 (2012).Article

参考文献Zheng,X。和Sehgal,A。速度控制:驱动生物钟的齿轮和齿轮。趋势神经科学。35(9),574-585(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Emery, P. et al. CRY, a drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5), 669–679 (1998).Article

CRY是一种果蝇时钟和光调节隐花色素,是昼夜节律重置和光敏性的主要贡献者。细胞95(5),669-679(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stanewsky, R. et al. The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila. Cell 95(5), 681–692 (1998).Article

。细胞95(5),681-692(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84(5), 677–685 (1996).Article

Hunter-Ensor,M.,Ousley,A。和Sehgal,A。对果蝇蛋白质timeless的调节提示了一种通过光重置生物钟的机制。细胞84(5),677-685(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, H. et al. A light-entrainment mechanism for the Drosophila circadian clock. Nature 380(6570), 129–135 (1996).Article

Zeng,H.等人。果蝇生物钟的光夹带机制。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, C. et al. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271(5256), 1740–1744 (1996).Article

Lee,C.等人。通过光调节PER和PER-TIM复合物来重置果蝇的时钟。科学271(5256),1740-1744(1996)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285(5427), 553–556 (1999).Article

Ceriani,M.F.等人。隐花色素对永恒的光依赖性隔离。科学285(5427),553-556(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Naidoo, N. et al. A role for the proteasome in the light response of the timeless clock protein. Science 285(5434), 1737–1741 (1999).Article

Naidoo,N。等人。蛋白酶体在永恒时钟蛋白的光响应中的作用。科学285(5434),1737-1741(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Koh, K., Zheng, X. & Sehgal, A. JETLAG resets the drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312(5781), 1809–1812 (2006).Article

Koh,K.,Zheng,X。&Sehgal,A。JETLAG通过促进光诱导的永恒降解来重置果蝇的生物钟。科学312(5781),1809-1812(2006)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, F.-J. et al. Photic signaling by cryptochrome in the drosophila circadian system. Mol. Cell. Biol. 21(21), 7287–7294 (2001).Article

Lin,F.-J.等人。隐色素在果蝇昼夜节律系统中的光信号传导。摩尔电池。生物学21(21),7287-7294(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Busza, A. et al. Roles of the two drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304(5676), 1503–1506 (2004).Article

Busza,A。等人。两个果蝇隐花色素结构域在昼夜节律光感受中的作用。科学304(5676),1503-1506(2004)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vaidya, A. T. et al. Flavin reduction activates Drosophila cryptochrome. Proceedings of the National Academy of Sciences 110(51), 20455–20460 (2013).Article

Vaidya,A.T。等人,黄素还原激活果蝇隐花色素。美国国家科学院院刊110(51),20455-20460(2013)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Ozturk, N. et al. Reaction mechanism of Drosophila cryptochrome. Proceedings of the National Academy of Sciences 108(2), 516–521 (2011).Article

Ozturk,N。等人。果蝇隐色素的反应机理。美国国家科学院院刊108(2),516-521(2011)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Lin, C. et al. Cryptochrome-timeless structure reveals circadian clock timing mechanisms. Nature 617(7959), 194–199 (2023).Article

Lin,C。等人。隐色素永恒结构揭示了生物钟的计时机制。《自然》617(7959),194-199(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ozturk, N. et al. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore. Journal of Biological Chemistry 289(8), 4634–4642 (2014).Article

Ozturk,N。等人。果蝇隐花色素的光信号传导机制:黄素发色团氧化还原状态的作用。生物化学杂志289(8),4634-4642(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Czarna, A. et al. Structures of drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153(6), 1394–1405 (2013).Article

Czarna,A。等人。果蝇隐色素和小鼠隐色素1的结构提供了对昼夜节律功能的深入了解。细胞153(6),1394-1405(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ozturk, N. et al. Animal type 1 cryptochromes: Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J Biol Chem 283(6), 3256–3263 (2008).Article

Ozturk,N。等人。动物1型隐色素:通过定点诱变分析黄素辅因子的氧化还原状态。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Berndt, A. et al. A novel photoreaction mechanism for the circadian blue light photoreceptor drosophila cryptochrome. Journal of Biological Chemistry 282(17), 13011–13021 (2007).Article

Berndt,A。等人。昼夜节律蓝光光感受器果蝇隐色素的新型光反应机制。生物化学杂志282(17),13011-13021(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hoang, N. et al. Human and drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol 6(7), e160 (2008).Article

人类和果蝇隐花色素在活细胞中被黄素光还原激活。《公共科学图书馆·生物学》6(7),e160(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ganguly, A. et al. Changes in active site histidine hydrogen bonding trigger cryptochrome activation. Proc Natl Acad Sci USA 113(36), 10073–10078 (2016).Article

Ganguly,A。等人。活性位点组氨酸氢键的变化触发隐色素激活。美国国家科学院院刊113(36),10073–10078(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chandrasekaran, S. et al. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome. Commun Biol 4(1), 249 (2021).Article

Chandrasekaran,S.等人。调节黄素环境以检测和控制果蝇隐花色素中的光诱导构象转换。Commun Biol 4(1),249(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480(7377), 396–399 (2011).Article

Zoltowski,B.D.等人。全长果蝇隐色素的结构。《自然》480(7377),396-399(2011)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, C. et al. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc Natl Acad Sci USA 115(15), 3822–3827 (2018).Article

Lin,C。等人。隐色素的昼夜节律活性依赖于色氨酸介导的光还原。美国国家科学院院刊115(15),3822–3827(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, C. et al. Mechanistic insight into light-dependent recognition of timeless by Drosophila cryptochrome. Structure 30(6), 851-861.e5 (2022).Article

Lin,C.等人。果蝇隐花色素对光依赖性永恒识别的机理洞察。结构30(6),851-861.e5(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dissel, S. et al. A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci 7(8), 834–840 (2004).Article

Dissel,S.等人。黑腹果蝇中的组成型活性隐色素。Nat Neurosci 7(8),834-840(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, X. et al. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci USA 104(40), 15899–15904 (2007).Article

Zheng,X。et al。FOXO和胰岛素信号调节生物钟对氧化应激的敏感性。美国国家科学院院刊104(40),15899–15904(2007)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2), 317–328 (2008).Article

Asher,G。等人。SIRT1通过PER2脱乙酰化调节生物钟基因的表达。细胞134(2),317-328(2008)。文章

MathSciNet

MathSciNet

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, N. & Ragsdale, S. W. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor Rev-erbβ. Journal of Biological Chemistry 286(6), 4392–4403 (2011).Article

Gupta,N。&Ragsdale,S。W。硫醇二硫化物氧化还原依赖性血红素结合和血红素配体在核激素受体Rev-erbβ中的转换。生物化学杂志286(6),4392-4403(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ivleva, N. B. et al. LdpA: A component of the circadian clock senses redox state of the cell. EMBO J 24(6), 1202–1210 (2005).Article

Ivleva,N.B。等人。LdpA:生物钟的一个组成部分感知细胞的氧化还原状态。EMBO J 24(6),1202–1210(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927), 651–654 (2009).Article

Ramsey,K.M.等人。通过NAMPT介导的NAD+生物合成的生物钟反馈周期。科学324(5927),651-654(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rutter, J. et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293(5529), 510–514 (2001).Article

Rutter,J。等人。通过NAD辅因子的氧化还原状态调节clock和NPAS2 DNA结合。科学293(5529),510-514(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stoleru, D. et al. The Drosophila circadian network is a seasonal timer. Cell 129(1), 207–219 (2007).Article

果蝇昼夜节律网络是一个季节性计时器。细胞129(1),207-219(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bak, D. W. & Weerapana, E. Cysteine-mediated redox signalling in the mitochondria. Molecular BioSystems 11(3), 678–697 (2015).Article

Bak,D。W。和Weerapana,E。线粒体中半胱氨酸介导的氧化还原信号传导。分子生物系统11(3),678-697(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Y., Yang, J. & Yi, J. Redox sensing by proteins: Oxidative modifications on cysteines and the consequent events. Antioxidants & Redox Signaling 16(7), 649–657 (2011).Article

Wang,Y.,Yang,J。&Yi,J。蛋白质的氧化还原传感:半胱氨酸的氧化修饰和随之而来的事件。抗氧化剂和氧化还原信号16(7),649-657(2011)。文章

Google Scholar

谷歌学者

Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157(5), 1203–1215 (2014).Article

Schmalen,I。等人。生物钟蛋白CRY1和PER2的相互作用受锌结合和二硫键形成的调节。细胞157(5),1203-1215(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Levy, C. et al. Updated structure of Drosophila cryptochrome. Nature 495(7441), E3–E4 (2013).Article

。自然495(7441),E3-E4(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hemsley, M. J., et al. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochemical and Biophysical Research Communications 355(2), 531–537 (2007).Damulewicz, M. & Mazzotta, G. M. One actor, multiple roles: The performances of cryptochrome in drosophila. Front Physiol 11, 99 (2020).Article .

Hemsley,M.J。等人。黑腹果蝇隐色素C末端的线性基序。生化和生物物理研究通讯355(2),531-537(2007)。Damulewicz,M。和Mazzotta,G.M。一名演员,多重角色:隐色素在果蝇中的表现。Front Physiol 11,99(2020)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krishnan, B. et al. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411(6835), 313–317 (2001).Article

Krishnan,B。等人。隐色素在果蝇昼夜节律振荡器中的新作用。自然411(6835),313-317(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Collins, B. et al. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Current Biology 16(5), 441–449 (2006).Article

果蝇隐花色素是一种昼夜节律转录阻遏物。《当代生物学》16(5),441-449(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Froy, O., Chang, D. C. & Reppert, S. M. Redox potential: Differential roles in dCRY and mCRY1 functions. Current Biology 12(2), 147–152 (2002).Article

Froy,O.,Chang,D.C。&Reppert,S.M。氧化还原电位:在dCRY和mCRY1功能中的不同作用。当代生物学12(2),147-152(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vieira, J. et al. Human cryptochrome-1 confers light independent biological activity in transgenic drosophila correlated with flavin radical stability. PLoS ONE 7(3), e31867 (2012).Article

Vieira,J。等人。人类隐色素-1在与黄素自由基稳定性相关的转基因果蝇中赋予不依赖光的生物活性。PLoS ONE 7(3),e31867(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26(2), 493–504 (2000).Article

Emery,P。等人。果蝇哭泣是一种深部大脑昼夜节律感光器。神经元26(2),493-504(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480(7377), 396–399 (2012).Article

Zoltowski,B.D.等人。全长果蝇隐色素的结构。《自然》480(7377),396-399(2012)。文章

ADS

广告

Google Scholar

谷歌学者

Vaidya, A. T. et al. Flavin reduction activates Drosophila cryptochrome. Proc Natl Acad Sci USA 110(51), 20455–20460 (2013).Article

Vaidya,A.T。等人,黄素还原激活果蝇隐花色素。美国国家科学院院刊110(51),20455–20460(2013)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakashima, H. Effects of respiratory inhibitors on respiration, ATP contents, and the circadian conidiation rhythm of Neurospora crassa. Plant Physiology 76(3), 612–614 (1984).Article

Nakashima,H。呼吸抑制剂对粗糙脉孢菌呼吸,ATP含量和昼夜分生孢子节律的影响。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rutledge, E. M., Mongin, A. A. & Kimelberg, H. K. Intracellular ATP depletion inhibits swelling-induced d-[3H]aspartate release from primary astrocyte cultures. Brain Research 842(1), 39–45 (1999).Article

Rutledge,E.M.,Mongin,A.A。&Kimelberg,H.K。细胞内ATP耗竭抑制肿胀诱导的原代星形胶质细胞培养物中d-[3H]天冬氨酸的释放。大脑研究842(1),39-45(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, N. et al. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicological Sciences 142(1), 261–273 (2014).Article

Li,N。等人对线粒体功能的系统评估确定了药物诱导的细胞线粒体破坏的新特征。毒理学科学142(1),261-273(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wyatt, C. N. & Buckler, K. J. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. The Journal of Physiology 556(1), 175–191 (2004).Article

Wyatt,C.N。&Buckler,K.J。线粒体抑制剂对分离的新生大鼠颈动脉体I型细胞膜电流的影响。生理学杂志556(1),175-191(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barile, M. et al. The riboflavin/FAD cycle in rat liver mitochondria. European Journal of Biochemistry 267(15), 4888–4900 (2000).Article

Barile,M.等人,《大鼠肝线粒体中的核黄素/FAD循环》。欧洲生物化学杂志267(15),4888-4900(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pallotta, M. L. et al. Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase. FEBS Lett 428(3), 245–249 (1998).Article

Pallotta,M.L.等人,酿酒酵母线粒体可以从外部添加的核黄素合成FMN和FAD,并将它们输出到线粒体外相。FEBS Lett 428(3),245–249(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kobayashi, K. et al. Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Research 26(22), 5086–5092 (1998).Article

。核酸研究26(22),5086-5092(1998)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kleine, T., Lockhart, P. & Batschauer, A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. The Plant Journal 35(1), 93–103 (2003).Article

Kleine,T.,Lockhart,P。&Batschauer,A。一种与隐囊藻密切相关的拟南芥蛋白靶向细胞器。《植物杂志》35(1),93-103(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hemsley, M. J., et al., Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem Biophys Res Commun 355(2), 531–7 (2007).Diekmann, C. & Brody, S. Circadian rhythms in Neurospora crassa: oligomycin-resistant mutations affect periodicity. Science 207(4433), 896–898 (1980).Article .

。Biochem Biophys Res Commun 355(2),531-7(2007)。Diekmann,C。&Brody,S。粗糙脉孢菌的昼夜节律:寡霉素抗性突变影响周期性。科学207(4433),896-898(1980)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brody, S. Circadian rhythms in Neurospora crassa: the role of mitochondria. Chronobiol Int 9(3), 222–230 (1992).Article

Brody,S。粗糙脉孢菌的昼夜节律:线粒体的作用。Chronobiol Int 9(3),222-230(1992)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sathyanarayanan, S. et al. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes Dev 22(11), 1522–1533 (2008).Article

Sathyanarayanan,S.等人。通过全基因组RNAi筛选鉴定与光依赖性CRY降解有关的新基因。Genes Dev 22(11),1522–1533(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Dr. Patrick Emery (University of Massachusetts), Dr. Justin Blau (New York University) and Dr. John Hogenesch (University of Pennsylvania) for reagents. This work was supported by an NIH grant 5R37NS048471 to A.S and 2R15GM109282 to B.Z. and in part by a grant P40OD018537 from the NIH Office of Research Infrastructure Programs (ORIP) to the Bloomington Drosophila Stock Center (X.Z.).Author informationAuthors and AffiliationsDepartment of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USAXiangzhong Zheng, Dechun Chen & Amita SehgalDepartment of Biology, Indiana University, Bloomington, IN, 47405, USAXiangzhong ZhengDepartment of Chemistry, Southern Methodist University, Dallas, TX, 75275, USABrian ZoltowskiHoward Hughes Medical Institute, Chevy Chase, MD, 20815, USAAmita SehgalAuthorsXiangzhong ZhengView author publicationsYou can also search for this author in.

下载参考文献致谢我们感谢Patrick Emery博士(马萨诸塞大学),Justin Blau博士(纽约大学)和John Hogenesch博士(宾夕法尼亚大学)提供的试剂。这项工作得到了美国国立卫生研究院授予A.S的5R37NS048471和授予B.Z的2R15GM109282的资助,部分得到了美国国立卫生研究院研究基础设施计划办公室(ORIP)授予布卢明顿果蝇库存中心(X.Z.)的P40OD018537资助。作者信息作者和附属机构宾夕法尼亚大学佩雷尔曼医学院神经科学系,宾夕法尼亚州费城,19104年,USAHiangzhong Zheng,Dechun Chen&Amita SehgaldDepartment of Biology,Indiana University,Bloomington,IN,47405,USAHiangzhong Zheng南方卫理公会大学化学系,德克萨斯州达拉斯,75275,USABrian ZoltowskiHoward Hughes医学研究所,Chevy Chase,MD,20815,USAMITA SehgalAuthorsXiangzhong ZhengView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarDechun ChenView author publicationsYou can also search for this author in

PubMed Google ScholarDechun ChenView作者出版物您也可以在

PubMed Google ScholarBrian ZoltowskiView author publicationsYou can also search for this author in

PubMed谷歌学者ZoltowskiView作者出版物您也可以在

PubMed Google ScholarAmita SehgalView author publicationsYou can also search for this author in

PubMed Google ScholarAmita SehgalView作者出版物您也可以在

PubMed Google ScholarContributionsXZ and AS conceptualized the project. XZ and DC conducted experiments. BZ performed analysis and contributed to writing. XZ and AS wrote the manuscript.Corresponding authorsCorrespondence to

PubMed Google ScholarContributionsXZ和AS概念化了该项目。XZ和DC进行了实验。BZ进行了分析并为写作做出了贡献。XZ和AS撰写了手稿。通讯作者通讯

Xiangzhong Zheng or Amita Sehgal.Ethics declarations

郑祥中或Amita Sehgal。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleZheng, X., Chen, D., Zoltowski, B. et al. Mitochondrial inhibitors reveal roles of specific respiratory chain complexes in CRY-dependent degradation of TIM.

转载和许可本文引用本文Zheng,X.,Chen,D.,Zoltowski,B。等人。线粒体抑制剂揭示了特定呼吸链复合物在TIM CRY依赖性降解中的作用。

Sci Rep 14, 26051 (2024). https://doi.org/10.1038/s41598-024-77692-0Download citationReceived: 20 May 2024Accepted: 24 October 2024Published: 30 October 2024DOI: https://doi.org/10.1038/s41598-024-77692-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1426051(2024)。https://doi.org/10.1038/s41598-024-77692-0Download引文收到日期:2024年5月20日接受日期:2024年10月24日发布日期:2024年10月30日OI:https://doi.org/10.1038/s41598-024-77692-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsCircadian clockCryptochromeTimelessMitochondriaRespiratory chain

关键词Scircadian clockCryptochromeTimelessMitochondriaRespiratory链