商务合作
动脉网APP
可切换为仅中文
AbstractSpatial transcriptomics technologies aim to advance gene expression studies by profiling the entire transcriptome with intact spatial information from a single histological slide. However, the application of spatial transcriptomics is limited by low resolution, limited transcript coverage, complex procedures, poor scalability and high costs of initial setup and/or individual experiments.
摘要空间转录组学技术旨在通过分析来自单个组织学载玻片的完整空间信息的整个转录组来推进基因表达研究。然而,空间转录组学的应用受到低分辨率,有限的转录覆盖率,复杂的程序,较差的可扩展性以及初始设置和/或单个实验的高成本的限制。
Seq-Scope repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, overcoming these limitations. It offers submicrometer resolution, high capture efficiency, rapid turnaround time and precise annotation of histopathology at a much lower cost than commercial alternatives.
Seq Scope将Illumina测序平台重新用于高分辨率,高内容的空间转录组分析,克服了这些限制。它以比商业替代品低得多的成本提供亚微米分辨率,高捕获效率,快速周转时间和组织病理学的精确注释。
This protocol details the implementation of Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell, allowing the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. We describe the preparation of a fresh-frozen tissue section for both histological imaging and sequencing library preparation and provide a streamlined computational pipeline with comprehensive instructions to integrate histological and transcriptomic data for high-resolution spatial analysis.
该协议详细介绍了使用Illumina NovaSeq 6000测序流动池实现Seq Scope,可以在7 mm×7 mm或更大的区域内对多个组织切片进行分析。我们描述了用于组织学成像和测序文库制备的新鲜冷冻组织切片的制备,并提供了简化的计算流程,其中包含全面的说明,以整合组织学和转录组学数据以进行高分辨率空间分析。
This includes the use of conventional software tools for single-cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Aside from array production and sequencing, which can be done in batches, tissue processing, library preparation and running the computational pipeline can be completed within 3 days by researchers with experience in molecular biology, histology and basic Unix skills.
这包括使用常规软件工具进行单细胞和空间分析,以及我们最近开发的无分割方法来分析亚微米分辨率的空间数据。除了可以分批完成的阵列生产和测序外,具有分子生物学,组织学和基本Unix技能经验的研究人员还可以在3天内完成组织处理,文库制备和运行计算管道。
Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for.
鉴于其在各种生物组织中的适应性,Seq Scope将其确立为一种宝贵的工具。
The protocol repurposes an Illumina NovaSeq 6000 flow cell for spatial transcriptomics, generating high-resolution datasets and integrating a streamlined data-analysis pipeline.
该协议将Illumina NovaSeq 6000流通池用于空间转录组学,生成高分辨率数据集并集成简化的数据分析管道。
Leveraging commonly available Illumina equipment, the protocol offers researchers ultra-high, submicrometer resolution in spatial transcriptomics analysis with a comprehensive analytical pipeline, whole-transcriptome coverage, rapid turnaround, cost efficiency and versatility.
利用常用的Illumina设备,该协议为研究人员提供了超高,亚微米分辨率的空间转录组学分析,具有全面的分析流程,整个转录组覆盖范围,快速周转,成本效益和多功能性。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Overview of experimental procedures.Fig. 2: An overview of computational procedures.Fig. 3: Example outputs from the Illumina SAV application.Fig. 4: Flow cell disassembly and dicing.Fig. 5: Liquid handling in Seq-Scope chip surface treatment.Fig. 6: Tissue-freezing chamber.Fig. 7: Tissue sectioning and attachment.Fig.
图1:实验程序概述。图2:计算程序概述。图3:Illumina SAV应用程序的示例输出。图4:流通池拆卸和切割。图5:Seq Scope芯片表面处理中的液体处理。图6:组织冷冻室。图7:组织切片和附着。图。
8: Liquid- and chip-handling procedure.Fig. 9: Seq-Scope adapter frame and silicone isolator used in Part 3: library construction.Fig. 10: Conceptual representation of the NovaScope workflow based on the ‘Request’ option.Fig. 11: Spatial arrangement between tiles in the NovaSeq 6000 S4 flow cell.Fig.
8: 液体和碎屑处理程序。图9:第3部分:库结构中使用的Seq Scope适配器框架和硅胶隔离器。图10:基于“请求”选项的NovaScope工作流的概念表示。图11:NovaSeq 6000 S4流通池中瓷砖之间的空间排列。图。
12: An output sbcd image from Step 168 illustrates the distribution of all spatial barcodes (i.e., HDMIs).Fig. 13: An output smatch image from Step 172, showing the distribution of spatial barcodes (i.e., HDMIs) that matched to the 2nd-Seq FASTQ files.Fig. 14: An output sge image from Step 174, showing the distribution of spatial barcodes (HDMIs) that align to the reference genome.Fig.
12: 来自步骤168的输出sbcd图像说明了所有空间条形码(即HDMI)的分布。图13:来自步骤172的输出smatch图像,显示了与第二个Seq FASTQ文件匹配的空间条形码(即HDMIs)的分布。图14:来自步骤174的输出sge图像,显示了与参考基因组对齐的空间条形码(HDMI)的分布。图。
15: Comparison between sge (left) and aligned histology (right) images.Fig. 16: An exemplary multidimensional clustering result obtained by using Seurat.Fig. 17: An exemplary output image from Step 191, illustrating distinct zonation of hepatocellular factors.Fig. 18: An exemplary pixel-level output image from LDA-based analysis showing clear zonation of hepatocellular factors.Fig.
15: sge(左)和对齐组织学(右)图像之间的比较。图16:通过使用修拉获得的示例性多维聚类结果。图17:来自步骤191的示例性输出图像,示出了肝细胞因子的不同分区。图18:来自基于LDA的分析的示例性像素级输出图像,显示肝细胞因子的清晰分区。图。
19: An exemplary pixel-level output image from Seurat-based analysis showing hepatocellular and non-parenchymal cell factors.Fig. 20: An exemplary black-and-white segmentation image.Fig. 21: An exemplary overlay analysis to inspect the cell segmentation performance.Fig. 22: An exemplary multidimensional clustering result obtained by using Seurat, based on the single-cell data, segmented throu.
19: 来自基于修拉的分析的示例性像素级输出图像,显示肝细胞和非实质细胞因子。图20:示例性黑白分割图像。图21:用于检查单元分割性能的示例性叠加分析。图22:通过使用Seurat获得的基于单细胞数据的示例性多维聚类结果,通过分割。
Data availability
数据可用性
All source data described in this protocol are available online via public repositories, such as Zenodo and Deep Blue Data: minimal test run dataset (https://doi.org/10.5281/zenodo.10835761), shallow-sequenced liver dataset (https://doi.org/10.5281/zenodo.10840696), deep-sequenced liver dataset (https://doi.org/10.7302/tw62-4f97) and exemplary downstream analysis input (https://doi.org/10.5281/zenodo.10841777)..
该协议中描述的所有源数据都可以通过公共存储库在线获得,例如Zenodo和深蓝数据:最小测试运行数据集(https://doi.org/10.5281/zenodo.10835761),浅测序肝脏数据集(https://doi.org/10.5281/zenodo.10840696),深度测序肝脏数据集(https://doi.org/10.7302/tw62-4f97)和示例性下游分析输入(https://doi.org/10.5281/zenodo.10841777)。。
Code availability
代码可用性
All source code described in this protocol is available online via GitHub: NovaScope pipeline, v1.0.0 (https://github.com/seqscope/novascope) and NEDA, v1.0.0 (https://github.com/seqscope/NovaScope-exemplary-downstream-analysis).
该协议中描述的所有源代码都可以通过GitHub在线获得:NovaScope pipeline,v1.0.0(https://github.com/seqscope/novascope)和NEDA,v1.0.0(https://github.com/seqscope/NovaScope-exemplary-downstream-analysis)。
ReferencesStahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).Article
ReferencesStahl,P.L.等人。通过空间转录组学可视化和分析组织切片中的基因表达。科学353,78-82(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bergenstrahle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, 482 (2020).Article
Bergenstrahle,J.,Larsson,L。&Lundeberg,J。图像和分子分析的无缝集成,用于空间转录组学工作流程。BMC基因组学21482(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).Article
Stickels,R.R.等人。使用Slide-seqV2在近细胞分辨率下进行高度敏感的空间转录组学。美国国家生物技术公司。39313-319(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).Article
Rodriques,S.G.等人,Slide-seq:一种用于以高空间分辨率测量全基因组表达的可扩展技术。科学3631463-1467(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).Article
Liu,Y。等人。通过组织中的确定性条形码进行高空间分辨率多组学测序。细胞1831665-1681.e18(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sergio Marco, S. et al. Optimizing xenium in situ data utility by quality assessment and best practice analysis workflows. Preprint at https://www.biorxiv.org/content/10.1101/2023.02.13.528102v1 (2023).He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging.
Sergio Marco,S.等人。通过质量评估和最佳实践分析工作流程优化xenium原位数据实用程序。预印于https://www.biorxiv.org/content/10.1101/2023.02.13.528102v1(2023年)。He,S.等人。通过空间分子成像在固定组织中以亚细胞分辨率对RNA和蛋白质进行高倍成像。
Nat. Biotechnol. 40, 1794–1806 (2022).Article .
美国国家生物技术公司。401794-1806(2022)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).Article
Zhang,M.等人。整个小鼠大脑的分子定义和空间分辨细胞图谱。自然624343-354(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Slovin, S. et al. Single-cell RNA sequencing analysis: a step-by-step overview. Methods Mol. Biol. 2284, 343–365 (2021).Article
Slovin,S。等人。单细胞RNA测序分析:逐步概述。。2284343-365(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021).Article
Cho,C.-S.等人。使用Seq Scope对空间转录组进行显微镜检查。细胞1843559-3572.e22(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
10x Genomics. Visium HD: whole transcriptome spatial discovery at the resolution you need. https://www.10xgenomics.com/library/8012d2 (accessed 25 February 2024).Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).Article .
10倍基因组学。Visium HD:以您需要的分辨率进行全转录组空间发现。https://www.10xgenomics.com/library/8012d2(2024年2月25日访问)。Chen,A。等人。使用DNA纳米球图案阵列的小鼠器官发生的时空转录组图谱。细胞1851777-1792.e21(2022)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633.e17 (2022).Article
Fu,X。等人,Polony凝胶能够扩增慢性疼痛的DNA标记和空间转录组学。细胞1854621–4633.e17(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).Article
Macosko,E.Z.等人。使用纳升液滴对单个细胞进行高度平行的全基因组表达谱分析。细胞1611202-1214(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
BD_Biosciences BD Rhapsody™ system—mRNA whole transcriptome analysis (WTA) library preparation protocol. https://scomix.bd.com/hc/article_attachments/13726971063565 (2022).Salmen, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections.
BD\U Biosciences BD Rhapsody™system mRNA全转录组分析(WTA)文库制备方案。https://scomix.bd.com/hc/article_attachments/13726971063565(2022年)。Salmen,F。等人。条形码固相RNA捕获,用于哺乳动物组织切片中的空间转录组学分析。
Nat. Protoc. 13, 2501–2534 (2018).Article .
国家议定书。13, 2501–2534 (2018).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
10x Genomics. Visium spatial tissue optimization reagents kits user guide. https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/tissue-optimization/visium-spatial-tissue-optimization-reagents-kits-user-guide (2022).10x Genomics. Visium spatial gene expression reagent kits user guide.
10倍基因组学。Visium spatial tissue optimization reagents kits用户指南。https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/tissue-optimization/visium-spatial-tissue-optimization-reagents-kits-user-guide(2022)。10倍基因组学。Visium spatial gene expression试剂盒用户指南。
https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/library-construction/visium-spatial-gene-expression-reagent-kits-user-guide (2023).Kaminow, B., Yunosov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data.
https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/library-construction/visium-spatial-gene-expression-reagent-kits-user-guide(2023年)。Kaminow,B.,Yunosov,D。&Dobin,A。STARsolo:单细胞和单核RNA-seq数据的准确,快速和通用的作图/定量。
Preprint at https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1 (2021).Xi, J., Lee, J. H., Kang, H. M. & Jun, G. STtools: a comprehensive software pipeline for ultra-high-resolution spatial transcriptomics data. Bioinform. Adv. 2, vbac061 (2022).Article .
预印于https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1(2021年)。Xi,J.,Lee,J.H.,Kang,H.M。&Jun,G。STtools:超高分辨率空间转录组学数据的综合软件管道。生物信息。Adv.2,vbac061(2022)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Do, T. H. et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci. Immunol. 7, eabo2787 (2022).Article
Do,T.H.等人。由人类脂质诱导的TREM2巨噬细胞驱动痤疮病变中的炎症。科学。免疫。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, F. et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).Article
单细胞和空间测序定义了角质形成细胞和成纤维细胞放大银屑病炎症反应的过程。国家公社。143455(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hsu, J. et al. High-resolution spatial transcriptomic atlas of mouse soleus muscle: unveiling single cell and subcellular heterogeneity in health and denervation. Preprint at https://www.biorxiv.org/content/10.1101/2024.02.26.582103v1 (2024).Poovathingal, S. et al. Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics.
Hsu,J。等人。小鼠比目鱼肌的高分辨率空间转录组图谱:揭示健康和去神经支配中的单细胞和亚细胞异质性。预印于https://www.biorxiv.org/content/10.1101/2024.02.26.582103v1(2024年)。Poovathingal,S。等人。Nova ST:用于空间转录组学的纳米图案化超致密平台。
Cell Rep. Methods 4, 100831 (2024).Article .
细胞代表方法4100831(2024)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972.e26 (2024).Article
Schott,M。等人。Open ST:3D中的高分辨率空间转录组学。细胞1873953-3972.e26(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bahar Halpern, K. et al. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 13, 2653–2662 (2015).Article
Bahar Halpern,K。等人。哺乳动物组织中mRNA的核保留。Cell Rep.132653–2662(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gurkar, A. U. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat. Aging 3, 776–790 (2023).Article
Gurkar,A.U.等人,《细胞衰老的空间定位:新出现的挑战和机遇》。《自然衰老》3776–790(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02086-y (2024).Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell https://doi.org/10.1016/j.cell.2024.09.001 (2024).Wulf, M.
Cao,J。等人。Decoder-seq增强了空间RNA测序中的mRNA捕获效率。美国国家生物技术公司。https://doi.org/10.1038/s41587-023-02086-y(2024年)。Bai,Z.等人。在档案福尔马林固定石蜡包埋组织中空间探索RNA生物学。细胞https://doi.org/10.1016/j.cell.2024.09.001(2024年)。沃尔夫,M。
G. et al. Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J. Biol. Chem. 294, 18220–18231 (2019).Article .
G、 基于莫洛尼鼠白血病病毒(MMLV)的逆转录酶的非模板添加和模板转换共同发生并相互竞争。J、 生物。化学。29418220-18231(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894.e7 (2020).Article
Hughes,T.K.等人。基于大规模平行scRNA-seq的第二链合成揭示了人类炎症性皮肤病变的细胞状态和分子特征。免疫力53878-894.e7(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).Article
Hao,Y。等人。用于综合,多模式和可扩展单细胞分析的词典学习。美国国家生物技术公司。42293-304(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Si, Y. et al. FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics. Nat. Methods 21, 1843–1854 (2024).Article
Si,Y。等人。FICTURE:亚微米分辨率空间转录组学的可扩展无分割分析。自然方法211843-1854(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article
Wolf,F.A.,Angerer,P。&Theis,F.J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pierre, S. & Luc, M. V. Determining watersheds in digital pictures via flooding simulations. Proc. SPIE Int. Soc. Opt. Eng. 1360, 240–250 (1990).
Pierre,S.&Luc,M.V.通过洪水模拟确定数字图片中的流域。程序。SPIE国际社会选择。工程1360240-250(1990)。
Google Scholar
谷歌学者
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).Article
Stringer,C.,Wang,T.,Michaelos,M。&Pachitariu,M。Cellpose:细胞分割的通用算法。自然方法18100-106(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).Article
Pachitariu,M。和Stringer,C。Cellpose 2.0:如何训练自己的模型。自然方法191634-1641(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).Article
Dries,R。et al。Giotto:用于空间表达数据的综合分析和可视化的工具箱。基因组生物学。22,78(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).Article
Palla,G.等人,《Squidpy:空间组学分析的可扩展框架》。自然方法19171-178(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).Article
Zhang,D。等。哺乳动物组织的空间表观基因组转录组共谱分析。自然616113-122(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).Article
Llorens Bobadilla,E.等人。通过空间ATAC固相捕获和分析开放染色质。美国国家生物技术公司。411085-1088(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).Article
Deng,Y.等人。小鼠和人体组织中染色质可及性的空间分析。自然609375-383(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).Article
SM Omics是一个高通量空间多组学的自动化平台。国家公社。13795(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).Article
Zhao,T。等人。空间基因组学能够对组织中的克隆异质性进行多模式研究。自然601,85-91(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).Article
。科学382,eadf8486(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Benotmane, J. K. et al. High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq. Nat. Commun. 14, 7432 (2023).Article
Benotmane,J.K.等人。使用SPTCR-seq进行高灵敏度空间分辨T细胞受体测序。国家公社。147432(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protoc. 3, 101391 (2022).Article
Hudson,W.H。&Sudmeier,L.J。使用Visium空间转录组学平台定位T细胞克隆型。恒星质子。3101391(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing of FFPE tissues at cellular level. Preprint at https://www.biorxiv.org/content/10.1101/2020.10.13.338475v2.full (2020).Gracia Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed tissues.
Liu,Y.,Enninful,A.,Deng,Y。&Fan,R。FFPE组织在细胞水平的空间转录组测序。预印于https://www.biorxiv.org/content/10.1101/2020.10.13.338475v2.full(2020年)。Gracia Villacampa,E。等人。福尔马林固定组织中的全基因组空间表达谱。
Cell Genom. 1, 100065 (2021).Article .
细胞基因组。1, 100065 (2021).第条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heiser, C. N. et al. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 186, 5620–5637.e16 (2023).Article
分子制图揭示了散发性结直肠肿瘤的进化和微环境动力学。细胞1865620–5637.e16(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Illumina sequencing library QC on the MiSeq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote_miseq_libqc.pdf (2014).Illumina bcl2fastq2 conversion software v2.20 software guide. https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq2-v2-20-software-guide-15051736-03.pdf (2019).Schneider, C.
MiSeq系统上的Illumina测序文库QC。https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote_miseq_libqc.pdf(2014年)。Illumina bcl2fastq2转换软件v2.20软件指南。https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq2-v2-20-software-guide-15051736-03.pdf(2019年)。施耐德,C。
A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article .
A、 ,Rasband,W.S。和Eliceiri,K.W.NIH Image to ImageJ:25年的图像分析。自然方法9671-675(2012)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lako, A. & Rodig, S. HTAPP_hematoxylin and eosin (H&E) staining protocol of OCT frozen tissue. https://doi.org/10.17504/protocols.io.8pphvmn (2019).Ma, Z. Y. et al. Comparison of staining quality between rapid and routine hematoxylin and eosin staining of frozen breast tissue sections: an observational study.
Lako,A。&Rodig,S。HTAPP\U OCT冷冻组织的苏木精和曙红(H&E)染色方案。https://doi.org/10.17504/protocols.io.8pphvmn(2019年)。Ma,Z.Y.等人。冷冻乳腺组织切片的快速和常规苏木精和曙红染色质量的比较:一项观察性研究。
J. Int. Med. Res. 52, 3000605241259682 (2024).Article .
J、 《国际医学决议》523000605241259682(2024)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Molder, F. et al. Sustainable data analysis with Snakemake. F1000Res 10, 33 (2021).Article
Molder,F.等人,《Snakemake可持续数据分析》。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe work was supported by the Taubman Institute Innovation Project (to H.M.K. and J.H.L.), the NIH (T32AG000114 to Y.K. and C.-S.C., K01AG061236 to M.K., R01DK118631 to G.J., R01AG079163 to M.K. and J.H.L., R01HG011031 and HHSN268201800002I to H.M.K.
下载参考文献致谢这项工作得到了陶伯曼研究所创新项目(致H.M.K.和J.H.L.),美国国立卫生研究院(T32AG000114致Y.K.和C.S.C.,K01AG061236致M.K.,R01DK118631致G.J.,R01AG079163致M.K.和J.H.L.,R01HG011031和HHSN268201800002I致H.M.K.的支持。
and R01DK133448 and UH3CA268091 to J.H.L.), Technology Transfer Talent Network (T3N) Postdoctoral Fellowship (to Y.K.) and a Gleen Foundation Core grant (to J.H.L.).Author informationAuthor notesThese authors contributed equally: Yongsung Kim, Weiqiu Cheng, Chun-Seok Cho.Authors and AffiliationsDepartment of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USAYongsung Kim, Chun-Seok Cho, Yongha Hwang, Anna Park, Mitchell Schrank, Jer-En Hsu, Angelo Anacleto, Myungjin Kim & Jun Hee LeeDepartment of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USAWeiqiu Cheng, Yichen Si, Jingyue Xi & Hyun Min KangSpace Planning and Analysis, University of Michigan Medical School, Ann Arbor, MI, USAYongha HwangBiomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USAEllen Pedersen, Olivia I.
R01DK133448和UH3CA268091授予J.H.L.),技术转移人才网络(T3N)博士后奖学金(授予Y.K.)和Gleen基金会核心赠款(授予J.H.L.)。作者信息作者注意到这些作者做出了同样的贡献:金永成,郑伟秋,赵春熙。作者和所属机构密歇根大学医学院分子与整合生理学系,密歇根州安娜堡,美国金永成,赵春熙,黄永哈,安娜公园,米切尔·施兰克,徐杰恩,安杰洛·阿纳克托,金明进和李俊熙密歇根大学公共卫生学院生物统计学系,密歇根州安娜堡,美国密歇根大学魏邱城,宜城Si,Jingyue Xi&Hyun Kangmin空间规划与分析,密歇根州安娜堡,美国密歇根大学黄永哈生物医学研究核心设施密歇根大学安娜堡分校高级基因组学核心N佩德森,奥利维亚一世。
Koues & Thomas WilsonDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USAThomas WilsonDepartment of Pathology, University of Michigan Medical School, Ann Arbor, MI, USAThomas WilsonDepartment of Genetics, Harvard Medical School, Boston, MA, USAChangHee LeeHuman Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USAGoo JunAuthorsYongsung KimView author publicationsYou can also search for this author in.
Koues&Thomas WilsonDepartment of Human Genetics,密歇根大学医学院,密歇根州安阿伯,美国密歇根大学医学院病理学系,密歇根州安阿伯,美国马萨诸塞州哈佛医学院遗传学系,马萨诸塞州波士顿,USAChangHee Leeheuman Genetics Center,公共卫生学院,德克萨斯大学休斯顿健康科学中心,USAGoo JunAuthorsYongsung KimView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarWeiqiu ChengView author publicationsYou can also search for this author in
PubMed Google ScholarWeiqiu ChengView作者出版物您也可以在
PubMed Google ScholarChun-Seok ChoView author publicationsYou can also search for this author in
PubMed Google ScholarChun Seok ChoView作者出版物您也可以在
PubMed Google ScholarYongha HwangView author publicationsYou can also search for this author in
PubMed Google ScholarYongha HwangView作者出版物您也可以在
PubMed Google ScholarYichen SiView author publicationsYou can also search for this author in
PubMed Google ScholarYichen SiView作者出版物您也可以在
PubMed Google ScholarAnna ParkView author publicationsYou can also search for this author in
PubMed Google ScholarAnna ParkView作者出版物您也可以在
PubMed Google ScholarMitchell SchrankView author publicationsYou can also search for this author in
PubMed谷歌ScholarMitchell SchrankView作者出版物您也可以在
PubMed Google ScholarJer-En HsuView author publicationsYou can also search for this author in
PubMed Google ScholarJer En HsuView作者出版物您也可以在
PubMed Google ScholarAngelo AnacletoView author publicationsYou can also search for this author in
PubMed Google ScholarAngelo AnacletoView作者出版物您也可以在
PubMed Google ScholarJingyue XiView author publicationsYou can also search for this author in
PubMed Google ScholarJingyue XiView作者出版物您也可以在
PubMed Google ScholarMyungjin KimView author publicationsYou can also search for this author in
PubMed Google Scholarmamyungjin KimView作者出版物您也可以在
PubMed Google ScholarEllen PedersenView author publicationsYou can also search for this author in
PubMed Google ScholarEllen PedersenView作者出版物您也可以在
PubMed Google ScholarOlivia I. KouesView author publicationsYou can also search for this author in
PubMed Google ScholarOlivia I.KouesView作者出版物您也可以在
PubMed Google ScholarThomas WilsonView author publicationsYou can also search for this author in
PubMed Google ScholarThomas WilsonView作者出版物您也可以在
PubMed Google ScholarChangHee LeeView author publicationsYou can also search for this author in
PubMed Google ScholarChangHee LeeView作者出版物您也可以在
PubMed Google ScholarGoo JunView author publicationsYou can also search for this author in
PubMed Google ScholarGoo JunView作者出版物您也可以在
PubMed Google ScholarHyun Min KangView author publicationsYou can also search for this author in
PubMed谷歌学者Hyun Min KangView作者出版物您也可以在
PubMed Google ScholarJun Hee LeeView author publicationsYou can also search for this author in
PubMed Google ScholarJun Hee LeeView作者出版物您也可以在
PubMed Google ScholarContributionsY.K., C.-S.C., A.P., M.S., J.-E.H., M.K. and J.H.L. developed the experimental part of the protocol. W.C., Y.H., Y.S., J.X., A.A., C.L., G.J. and H.M.K. developed the computational part of the protocol. E.P., O.I.K., T.W., H.M.K. and J.H.L. developed the sequencing part of the protocol.
PubMed谷歌学术贡献。K、 ,C.-S.C.,A.P.,M.S.,J.-E.H.,M.K.和J.H.L.开发了该协议的实验部分。W、 C.,Y.H.,Y.S.,J.X.,A.A.,C.L.,G.J.和H.M.K.开发了协议的计算部分。E、 P.,O.I.K.,T.W.,H.M.K.和J.H.L.开发了该方案的测序部分。
Y.K., W.C., C.-S.C., H.M.K. and J.H.L. prepared the first draft. All authors revised, reviewed and approved the final version.Corresponding authorsCorrespondence to.
Y、 K.,W.C.,C.-S.C.,H.M.K.和J.H.L.编写了初稿。所有作者都修订,审查并批准了最终版本。通讯作者通讯。
Hyun Min Kang or Jun Hee Lee.Ethics declarations
康贤民或李俊熙。道德宣言
Competing interests
相互竞争的利益
H.M.K. owns stock in Regeneron Pharmaceuticals. J.H.L. is an inventor on a patent and pending patent applications related to Seq-Scope.
H、 M.K.拥有Regeneron Pharmaceuticals的股票。J、 H.L.是与Seq Scope相关的专利和未决专利申请的发明人。
Peer review
同行评审
Peer review information
同行评审信息
Nature Protocols thanks Moritz Gerstung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然协议》感谢Moritz Gerstung和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksKey references using this protocolCho, C.-S. et al. Cell 184, 3559–3572.e22 (2021): https://doi.org/10.1016/j.cell.2021.05.010Xi, J.
。使用此协议的相关linksKey参考文献,C.-S.等人Cell 1843559–3572.e22(2021):https://doi.org/10.1016/j.cell.2021.05.010Xi,J。
et al. Bioinform. Adv. 2, vbac061 (2022): https://doi.org/10.1093/bioadv/vbac061Si, Y. et al. Nat. Methods 21, 1843–1854 (2024): https://doi.org/10.1038/s41592-024-02415-2Do, T. H. et al. Sci. Immunol. 7, eabo2787 (2022): https://doi.org/10.1126/sciimmunol.abo2787Supplementary informationSupplementary Data 13D model (STL) file for the custom frame adapter described in the protocol.
等人。Bioinform。Adv.2,vbac061(2022年):https://doi.org/10.1093/bioadv/vbac061Si,Y.等人,《自然方法》211843-1854(2024):https://doi.org/10.1038/s41592-024-02415-2Do,T.H.等人,科学。免疫。7,eabo2787(2022年):https://doi.org/10.1126/sciimmunol.abo2787Supplementary协议中描述的自定义帧适配器的信息补充数据13D模型(STL)文件。
The STL file can be used to fabricate the adapter in most 3D printing service centers. We printed the adapter on a Stratasys J850 by using the default white material.Supplementary Data 2Sketch drawing and specification of the custom silicone isolator (Grace Bio-Labs, cat. no. JTR25-A-1.0, RD501346).
STL文件可用于在大多数3D打印服务中心制造适配器。我们使用默认白色材料在Stratasys J850上打印了适配器。。
Information in this PDF is sufficient to reproduce the part with the same specifications applied by Grace Bio-Labs.Supplementary Data 3README file providing details on running the code and software applied in the protocolSupplementary Video 1NovaSeq 6000 S4 flow cell disassembly. The scalpel is used to separate the flow cell into its three main components.
此PDF中的信息足以复制具有Grace Bio Labs应用的相同规格的部件。补充数据3自述文件,提供有关运行协议补充视频1NovaSeq 6000 S4流通池反汇编中应用的代码和软件的详细信息。手术刀用于将流通池分离为三个主要组件。
This video demonstrates the entire procedure of the flow cell disassembly. During the demonstration, viewers may notice that a small piece was broken off the top layer of the flow cell. This layer is thin and, therefore, prone to breakage. However, as long as the broken piece is outside the imaging area described in Fig.
该视频演示了流通池拆卸的整个过程。在演示过程中,观众可能会注意到流动池顶层有一小块被折断。该层很薄,因此容易破裂。然而,只要碎片在Fig.描述的成像区域之外。
3d (B02–B10 and T02–T10), it does not interfere with subsequent procedures. Furthermore, even if the breakage damages some imagin.
3d(B02–B10和T02–T10),它不会干扰后续程序。此外,即使破损损坏了一些图像。
Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01065-0Download citationReceived: 19 March 2024Accepted: 21 August 2024Published: 31 October 2024DOI: https://doi.org/10.1038/s41596-024-01065-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Protoc(2024年)。https://doi.org/10.1038/s41596-024-01065-0Download引文接收日期:2024年3月19日接受日期:2024年8月21日发布日期:2024年10月31日OI:https://doi.org/10.1038/s41596-024-01065-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供