商务合作
动脉网APP
可切换为仅中文
AbstractCadmium (Cd) contamination poses significant risks to agricultural productivity and human health, particularly through its accumulation in staple crops such as bread wheat (Triticum aestivum L.). This study evaluated Cd accumulation and tolerance among six bread wheat cultivars exposed to six Cd concentrations (0, 2.5, 5, 10, 15, 20, and 25 mg kg−1 soil).
摘要镉(Cd)污染对农业生产力和人类健康构成重大风险,特别是通过其在面包小麦(Triticum aestivum L.)等主要作物中的积累。本研究评估了暴露于六种Cd浓度(0、2.5、5、10、15、20和25 mg kg-1土壤)的六种面包小麦品种中Cd的积累和耐受性。
Phenotypic assessments and quantitative real-time PCR (qRT-PCR) were conducted to analyze the expression patterns of TaNRAMP and TaZIP genes in various tissues and developmental stages of wheat, which play crucial roles in Cd uptake and transport. Results demonstrated significant variability in Cd accumulation.
。结果表明,Cd积累存在显着差异。
The Barat cultivar exhibited the lowest accumulation in grain (ranging from 0.21 to 8.8 mg kg−1) and the highest tolerance. In contrast, Kavir and Pishtaz displayed elevated Cd levels in both grain and straw, while Parsi accumulated more Cd in straw at lower concentrations (56.9 mg kg−1 in Cd concentration of 10 mg kg−1 soil).
Barat品种在谷物中的积累最低(范围为0.21至8.8 mg kg-1),耐受性最高。相比之下,Kavir和Pishtaz在谷物和秸秆中均显示出较高的Cd水平,而Parsi在较低浓度(10 mg kg-1土壤中Cd浓度为56.9 mg kg-1)的秸秆中积累了更多的Cd。
The gene expression analysis revealed that most cultivars showed increased expression of TaNRAMP genes, particularly TaNRAMP2 in Cd concentration of 10 mg kg−1 soil, which facilitates Cd uptake from the soil, and TaZIP genes, such as TaZIP4 and TaZIP7, involved in transporting Cd within the plant. Notably, the expression of TaZIP1 was significantly lower in cultivars with high Cd accumulation, suggesting a potential regulatory mechanism for Cd tolerance.
基因表达分析表明,大多数品种表现出TaNRAMP基因的表达增加,特别是在10 mg kg-1土壤的Cd浓度下,TaNRAMP2的表达增加,这有助于从土壤中吸收Cd,而TaZIP基因,如TaZIP4和TaZIP7,参与了植物内Cd的运输。值得注意的是,在具有高Cd积累的品种中,TaZIP1的表达显着降低,表明Cd耐受性的潜在调节机制。
Furthermore, cultivars exhibiting higher Cd levels correlated with increased expression of stress-responsive genes, indicating a broader response to Cd stress. These findings highlight Barat’s potential for bread-making applications due to its low Cd accumulation, while Morvarid and Pishtaz which show reduced Cd content in the stra.
此外,表现出较高Cd水平的品种与应激反应基因表达的增加相关,表明对Cd胁迫的反应更广泛。这些发现突出了Barat由于其低Cd积累而在面包制作中的应用潜力,而Morvarid和Pishtaz则显示stra中Cd含量降低。
IntroductionWheat, a major cereal crop for billions of people, belongs to the Poaceae family, comprising various species, with T. aestivum L. (bread wheat) and Triticum turgidum var. durum (pasta wheat) being the most widely cultivated and recognized1. Bread wheat is an essential agricultural product, with approximately 35% of the global food supply relying on it.
引言小麦是数十亿人的主要谷物作物,属于禾本科,包括各种物种,其中小麦(面包小麦)和硬粒小麦(面食小麦)是种植最广泛和公认的1。面包小麦是一种重要的农产品,约占全球粮食供应的35%。
It serves as a significant source of carbohydrates, proteins, minerals, and vitamins for human consumption2,3,4. Furthermore, its versatility in food processing has resulted in the production of an array of products such as bread, pasta, and cereals, establishing wheat as a dietary staple for numerous populations5.The quality and safety of wheat crops are subject to a multitude of influencing factors, among which the presence of heavy metals in the soil emerges as a critical concern.
它是人类消耗的碳水化合物,蛋白质,矿物质和维生素的重要来源2,3,4。此外,它在食品加工方面的多功能性导致了面包,面食和谷物等一系列产品的生产,使小麦成为众多人群的主食5。小麦作物的质量和安全受到多种影响因素的影响,其中土壤中重金属的存在成为一个关键问题。
Heavy metals, including Cd, lead, and arsenic, have the potential to accumulate in wheat plants when present in excessive concentrations within the soil6. These metals are absorbed by the plant’s root system and may subsequently translocate to various plant tissues, including the grain, which constitutes a primary component of the human diet.
重金属,包括Cd,铅和砷,当土壤中浓度过高时,有可能在小麦植株中积累6。这些金属被植物的根系吸收,随后可能转移到各种植物组织中,包括构成人类饮食主要成分的谷物。
Accumulation of heavy metals in wheat grains raises significant health concerns, as heavy metals are known to exhibit toxicity, posing risks to human health through the consumption of contaminated grains7,8,9,10. Therefore, the execution of efficient agronomic practices, including the adoption of wheat cultivars with low accumulation rates11,12, play a crucial role in safeguarding the nutritional quality and safety of wheat-based products in the food supply chain.As a toxic and unnecessary element in humans and animals, Cd may become a serious menace through transfer from plants and food chai.
小麦籽粒中重金属的积累引起了严重的健康问题,因为已知重金属具有毒性,通过食用受污染的谷物对人类健康构成风险7,8,9,10。因此,实施有效的农艺措施,包括采用低积累率的小麦品种11,12,在保障食品供应链中小麦产品的营养质量和安全方面起着至关重要的作用。作为人类和动物中有毒且不必要的元素,Cd可能通过从植物和食物中转移而成为严重的威胁。
AFss = [Cd] in straws/[Cd] in soil.
AFss=秸秆中的[Cd]/土壤中的[Cd]。
AFgs = [Cd] in grains/[Cd] in soil.
AFgs=谷物中的[镉]/土壤中的[镉]。
TFsg = [Cd] in grains/[Cd] in straws.
TFsg=谷物中的[镉]/稻草中的[镉]。
Furthermore, variations in Cd concentrations were precisely analyzed among different wheat cultivars. The significant differences between the Cd treatments from the same cultivar were analyzed using one-way ANOVA via Duncan’s multiple range test.Gene expression assayBased on preliminary experiments, three wheat cultivars were selected for gene expression analysis due to their demonstrated highest diversity in response to Cd stress, covering the spectrum of sensitivity to Cd: Morvarid (sensitive), Pishtaz (semi-sensitive), and Barat (resistant).
此外,精确分析了不同小麦品种之间Cd浓度的变化。通过Duncan的多范围检验,使用单向ANOVA分析了来自同一品种的Cd处理之间的显着差异。基因表达测定基于初步实验,选择了三个小麦品种进行基因表达分析,因为它们对Cd胁迫的反应表现出最高的多样性,涵盖了对Cd的敏感性范围:Morvarid(敏感),Pishtaz(半敏感)和Barat(抗性)。
This selection ensured a comprehensive understanding of Cd uptake and translocation mechanisms by capturing a wide range of genetic responses. The experimental setup involved cultivating seeds in soil treated with two Cd concentrations, 5 mg kg−1 and 10 mg kg−1, chosen because they induced significant differences among the cultivars.
这种选择通过捕获广泛的遗传反应,确保了对Cd吸收和转运机制的全面了解。实验设置涉及在用两种Cd浓度(5 mg kg-1和10 mg kg-1)处理的土壤中培养种子,因为它们诱导了品种之间的显着差异。
Subsequently, samples of the blade, sheath, and root were collected at three crucial stages of development: tillering (Zadok’s growth stages 20–29), booting (Zadok’s growth stage 45), and flowering (Zadok’s growth stage 58). Then, RNA was extracted in triplicate utilizing the DENAzist column RNA isolation kit, in accordance with the manufacturer’s instructions.
随后,在发育的三个关键阶段收集叶片,鞘和根的样品:分蘖(Zadok的生长阶段20-29),孕穗(Zadok的生长阶段45)和开花(Zadok的生长阶段58)。然后,根据制造商的说明,使用DENAzist柱RNA分离试剂盒一式三份提取RNA。
The concentration and purity of the isolated RNA were evaluated through the utilization of a NanoDrop Spectrophotometer (NanoDrop Technologies) and agarose gel electrophoresis to guarantee the quality of the RNA samples. After verifying the integrity of the RNA, quantification of the RNA samples was carried out, leading to the commencement of cDNA library construction.
通过使用NanoDrop分光光度计(NanoDrop Technologies)和琼脂糖凝胶电泳来评估分离的RNA的浓度和纯度,以保证RNA样品的质量。在验证了RNA的完整性后,对RNA样品进行了定量,从而开始了cDNA文库的构建。
For the cDNA library preparation, aimed at reverse transcription quantitative polymerase chain reaction (RT-qPCR), the initial step involved treating the isolated RNA samples wi.
对于旨在逆转录定量聚合酶链反应(RT-qPCR)的cDNA文库制备,第一步涉及处理分离的RNA样品。
Data availability
数据可用性
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.
本研究中使用和/或分析的数据集可根据合理要求从通讯作者处获得。
ReferencesSalamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441 (2002).Article
参考文献Alamini,F.,Ozkan,H.,Brandolini,A.,Schäfer Pregl,R。&Martin,W。近东野生谷物驯化的遗传学和地理学。Genet自然Rev。3429-441(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jones, J., Peña, R., Korczak, R., Braun, H. J. & Carbohydrates grains, and wheat in nutrition and health: An overview part I. Role of carbohydrates in Health. Cereal Foods World 60, 224–233 (2015).Article
Jones,J.,Peña,R.,Korczak,R.,Braun,H.J.&碳水化合物谷物和小麦在营养与健康中的作用:概述第一部分:碳水化合物在健康中的作用。谷物食品世界60224–233(2015)。文章
Google Scholar
谷歌学者
Shewry, P. R. & Hey, S. J. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).Article
Shewry,P.R。&Hey,S.J。小麦对人类饮食和健康的贡献。食品能源安全。4178-202(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Al-Khaishany, M. et al. Genetic variation of wheat for salt tolerance based on physiological and agronomic traits. Int. J. Agric. Biol. 20, 2853–2861 (2018).
Al-Khaishany,M.等人。基于生理和农艺性状的小麦耐盐遗传变异。国际农业杂志。生物学202853-2861(2018)。
Google Scholar
谷歌学者
Delcour, J. & Hoseney, R. Principles of cereal science and technology. AACC Int. 229–289 (2010).Alloway, B. J. In Sources of Heavy Metals and Metalloids in Soils BT - Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability 11–50 (ed Alloway, B. J.) (Springer Netherlands, 2013).
Delcour,J。&Hoseney,R。谷物科学与技术原理。AACC Int.229–289(2010)。Alloway,B.J.《土壤中重金属和类金属的来源-土壤中的重金属:土壤中的痕量金属和类金属及其生物有效性11-50》(ed Alloway,B.J.)(Springer Netherlands,2013)。
https://doi.org/10.1007/978-94-007-4470-7_2Shi, G. L. et al. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci. Total Environ. 667, 532–539 (2019).Article .
https://doi.org/10.1007/978-94-007-4470-7_2Shi,G.L。等人。不同发育阶段冬小麦(Triticum aestivum L.)中砷和镉的积累和分布。科学。总环境。667532-539(2019)。文章。
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Pirhadi, M., Shariatifar, N., Bahmani & Manouchehri, A. Heavy metals in wheat grain and its impact on human health: A mini-review. J. Chem. Health Risks 3, 421–426. https://doi.org/10.22034/jchr.2021.1924307.1269 (2021).Wang, C. C., Tian, W., Xiang, P., Xu, W. & Guan, D. X. Mechanism of heavy metal uptake and transport in soil-rice/wheat system and regulation measures for safe production.
Pirhadi,M.,Shariatifar,N.,Bahmani&Manouchehri,A。小麦籽粒中的重金属及其对人类健康的影响:迷你评论。J、 化学。健康风险3421-426。https://doi.org/10.22034/jchr.2021.1924307.1269(2021年)。Wang,C.C.,Tian,W.,Xiang,P.,Xu,W.&Guan,D.X.土壤-水稻/小麦系统中重金属吸收和运输的机制以及安全生产的调控措施。
Zhongguo Huanjing Kexue/China Environ. Sci. https://doi.org/10.19674/j.cnki.issn1000-6923.20210929.003 (2021).Article .
中国环经科技/中国环境。科学。https://doi.org/10.19674/j.cnki.issn1000-6923.20210929.003(2021年)。文章。
Google Scholar
谷歌学者
Zhuang, Z. et al. Source-specific risk assessment for cadmium in wheat and maize: towards an enrichment model for China. J. Environ. Sci. (China). 125, 723–734 (2023).Article
Zhuang,Z.等人,《小麦和玉米中镉的特定来源风险评估:建立中国的富集模型》。J、 环境。科学。(中国)。125723-734(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, S. et al. Selection of low-cadmium and high-micronutrient wheat cultivars and exploration of the relationship between agronomic traits and grain cadmium. Environ. Sci. Pollut Res. 29, 42884–42898 (2022).Article
Li,S.等人。低镉和高微量营养素小麦品种的选择以及农艺性状与籽粒镉之间关系的探索。环境。科学。Pollut Res.2942884–42898(2022)。文章
Google Scholar
谷歌学者
Bai, L. et al. Stability and adaptability of wheat cultivars with low cadmium accumulation based on farmland trials. Eur. J. Agron. 144, 126764 (2023).Article
Bai,L.等人。基于农田试验的低镉积累小麦品种的稳定性和适应性。Eur.J.Agron。144126764(2023)。文章
Google Scholar
谷歌学者
Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 96, 32–48 (2016).Article
Bosch,A.C.,O'Neill,B.,Sigge,G.O.,Kerwath,S.E。和Hoffman,L.C。海洋鱼肉中的重金属与消费者健康:综述。J、 科学。粮食农业。96,32-48(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Uraguchi, S. & Fujiwara, T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation. Rice (N Y). 5, 5 (2012).Article
Uraguchi,S。和Fujiwara,T。水稻中镉的运输和耐受性:减少谷物镉积累的观点。大米(纽约)。5,5(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Abedi, T. & Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): an overview. Plants 9 (2020).Kaur, R. et al. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 173, 430–448 (2021).PubMed
Abedi,T。&Mojiri,A。小麦(Triticum aestivum L.)对镉的吸收:概述。工厂9(2020)。Kaur,R。等人。水稻中的重金属胁迫:吸收,运输,信号传导和耐受机制。生理学。工厂。173430-448(2021)。PubMed出版社
Google Scholar
谷歌学者
Verbruggen, N., Hermans, C. & Schat, H. Molecular mechanisms of metal hyperaccumulation in plants. New. Phytol. 181, 759–776 (2009).Article
Verbruggen,N.,Hermans,C。&Schat,H。植物中金属超积累的分子机制。新建。植物醇。181759-776(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ai, H., Wu, D., Li, C. & Hou, M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. Front. Plant. Sci. 13, 1003953 (2022).Article
Ai,H.,Wu,D.,Li,C。&Hou,M。水稻镉吸收和转运的分子机制进展。正面。工厂。科学。131003953(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cobbett, C. S. Phytochelatins and their roles in heavy metal detoxification. Plant. Physiol. 123, 825–832 (2000).Article
Cobbett,C.S。植物螯合素及其在重金属解毒中的作用。工厂。生理学。123825-832(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sebastian, A. & Prasad, M. N. V. Cadmium minimization in rice. A review. Agron. Sustain. Dev. 34, 155–173 (2014).Article
Sebastian,A。&Prasad,M.N.V。大米中镉的最小化。回顾。阿格伦。维持。第34155-173页(2014年)。文章
Google Scholar
谷歌学者
Xiao, Y. et al. Differences in cadmium uptake and accumulation in seedlings of wheat varieties with low- and high-grain cadmium accumulation under different drought stresses. Plants 12 (2023).Wang, C. C. et al. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis.
Xiao,Y.等人。不同干旱胁迫下低粒和高粒镉积累小麦品种幼苗镉吸收和积累的差异。工厂12(2023)。Wang,C.C.等人。中国农业土壤、水稻和小麦中的重金属(loid):现状评估和时空分析。
Sci. Total Environ. 882, 163361 (2023).Article .
科学。总环境。。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Guo, G., Lei, M., Wang, Y., Song, B. & Yang, J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph15112601 (2018).Yang, W. et al. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China.
Guo,G.,Lei,M.,Wang,Y.,Song,B。&Yang,J。在污染土壤中生长的16个小麦品种中As,Cd和Pb的积累以及相关的健康风险评估。内景J.环境。Res.公共卫生。https://doi.org/10.3390/ijerph15112601(2018年)。Yang,W.等人。中国陕西宝鸡传统种植区小麦籽粒的重金属和相关健康风险。
Environ. Monit. Assess. 191 (2019).Kubo, K. et al. Cadmium concentration in grains of Japanese wheat cultivars: Genotypic difference and relationship with agronomic characteristics. Plant. Prod. Sci. 11, 243–249 (2008).Article .
环境。。评估。191(2019)。Kubo,K。等人。日本小麦品种籽粒中镉浓度:基因型差异及其与农艺性状的关系。工厂。生产科学。11243-249(2008)。文章。
Google Scholar
谷歌学者
Mourad, A. M. I., Amin, A. E. E. A. Z. & Dawood, M. F. A. Genetic variation in kernel traits under lead and tin stresses in spring wheat diverse collection. Environ. Exp. Bot. 192, 104646 (2021).Article
Mourad,A.M.I.,Amin,A.E.E.A.Z.&Dawood,M.F.A.春小麦不同品种在铅和锡胁迫下籽粒性状的遗传变异。环境。实验Bot 192104646(2021)。文章
Google Scholar
谷歌学者
Elgharbawy, S., Abdelhamid, M., Mansour, E. & Salem, A. Rapid screening wheat genotypes for tolerance to heavy metals. https://doi.org/10.1007/978-3-030-64323-2_6 (2021).Bhatti, K. H. et al. Effect of heavy metal lead (PB) stress of different concentration on wheat (Triticum aestivum L).
Elgharbawy,S.,Abdelhamid,M.,Mansour,E。&Salem,A。快速筛选小麦基因型对重金属的耐受性。https://doi.org/10.1007/978-3-030-64323-2_6(2021年)。Bhatti,K.H.等人。不同浓度重金属铅(PB)胁迫对小麦(Triticum aestivum L)的影响。
Middle East. J. Sci. Res. 14, 148–154 (2013)..
中东。J、 科学。第14148-154号决议(2013年)。。
Google Scholar
谷歌学者
Awaad Auda, H. & Moustafa, E. Identification of genetic variation among Bread Wheat genotypes for lead tolerance using Morpho – physiological and molecular markers. J. Am. Sci. 6 (2010).Tang, L. et al. Characterization of fava bean (Vicia faba L.) genotypes for phytoremediation of cadmium and lead co-contaminated soils coupled with agro-production.
Awaad Auda,H。&Moustafa,E。使用形态生理学和分子标记鉴定面包小麦基因型之间的铅耐受性遗传变异。J、 美国科学院。。Tang,L.等人。蚕豆(Vicia faba L.)基因型的表征,用于镉和铅共污染土壤的植物修复以及农业生产。
Ecotoxicol. Environ. Saf. 171, 190–198 (2019).Article .
生态毒理学。大约。Saf。171190-198(2019)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Kuruvilla, P. G. K., Mathew, M. & S. & Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L). Plant. Physiol. Biochem. 97, 165–174 (2015).Article
Kuruvilla,P.G.K.,Mathew,M。&S。&来自水稻(Oryza sativa L)的过渡金属离子转运蛋白OsZIP6的功能表征。工厂。生理学。生物化学。97165-174(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, J. et al. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L). Cells 11 (2022).Liu, X. S. et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant. Biol. 19, 283 (2019).Article .
Zhang,J.等。水稻镉吸收、转运和抗性的研究进展。细胞11(2022)。Liu,X。S。等人。OsZIP1作为一种金属外排转运蛋白,限制水稻中过量的锌,铜和镉积累。BMC工厂。生物学19283(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peng, F. et al. Cloning and characterization of TpNRAMP3, a metal transporter from Polish wheat (Triticum polonicum L). Front. Plant. Sci. 9, 1354 (2018).Article
Peng,F.等人。波兰小麦(Triticum polonicum L)金属转运蛋白TpNRAMP3的克隆和表征。正面。工厂。科学。91354(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Das, N., Bhattacharya, S. & Maiti, M. K. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant. Physiol. Biochem. 105, 297–309 (2016).Article
Das,N.,Bhattacharya,S。&Maiti,M.K。在过表达水稻金属耐受蛋白基因OsMTP1的转基因烟草中增强镉的积累和耐受性有望用于植物修复。工厂。生理学。生物化学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, S. et al. Variation in the tonoplast cadmium transporter heavy metal ATPase 3 (HMA3) homolog gene in Aegilops tauschii. PLoS ONE 18, e0279707 (2023).Article
Li,S.等人。节节麦液泡膜镉转运蛋白重金属ATP酶3(HMA3)同源基因的变异。PLoS ONE 18,e0279707(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shafiq, S. et al. Lead, Cadmium and Zinc Phytotoxicity alter DNA methylation levels to Confer heavy metal tolerance in wheat. Int. J. Mol. Sci. 20 (2019).Sizmur, T. & Richardson, J. Earthworms accelerate the biogeochemical cycling of potentially toxic elements: Results of a meta-analysis.
铅、镉和锌的植物毒性会改变DNA甲基化水平,从而赋予小麦重金属耐受性。Int.J.Mol.Sci。20(2019)。Sizmur,T。&Richardson,J。蚯蚓加速潜在有毒元素的生物地球化学循环:荟萃分析的结果。
Soil. Biol. Biochem. 148, 107865 (2020).Article .
土壤。生物化学。148, 107865 (2020).第[UNK]条。
Google Scholar
谷歌学者
Bamagoos, A. A., Alharby, H. F. & Abbas, G. Differential uptake and translocation of cadmium and lead by quinoa: A multivariate comparison of physiological and oxidative stress responses. Toxics 10 (2022).Liu, N. et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China.
Bamagoos,A.A.,Alharby,H.F。&Abbas,G。藜麦对镉和铅的差异吸收和转运:生理和氧化应激反应的多变量比较。毒物10(2022)。Liu,N.等人。在中国三种不同农业环境下筛选稳定的低镉和中高微量元素小麦品种。
Chemosphere 241, 125065 (2020).Article .
化学圈241125065(2020)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, D. et al. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L). J. Environ. Manage. 305, 114365 (2022).Article
。J、 环境。管理。305114365(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
He, C. et al. Evaluation of three wheat (Triticum aestivum L.) cultivars as sensitive cd biomarkers during the seedling stage. PeerJ 8, e8478 (2020).Article
He,C.等人评估了三个小麦(Triticum aestivum L.)品种在苗期作为敏感的cd生物标志物。PeerJ 8,e8478(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halim, M., Rahman, M. M., Mondal, D., Mallavarapu, M. & Naidu, R. Bioaccumulation and tolerance indices of cadmium in wheat plants grown in cadmium-spiked soil: Health risk assessment. Front. Environ. Sci. 9 (2021).Gao, X., Mohr, R. M., McLaren, D. L. & Grant, C. A. Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization.
Halim,M.,Rahman,M.M.,Mondal,D.,Mallavarapu,M。&Naidu,R。在镉加标土壤中生长的小麦植物中镉的生物累积和耐受指数:健康风险评估。正面。环境。科学。。Gao,X.,Mohr,R.M.,McLaren,D.L。和Grant,C.A。基因型变异和氯化钾施肥对小麦籽粒镉和锌浓度的影响。
Food Crop Res. 122, 95–103 (2011).Article .
《粮食作物第122号决议》,95-103(2011年)。文章。
Google Scholar
谷歌学者
Eđed Rebekić, A. & Lončarić, Z. Genotypic difference in cadmium effect on agronomic traits and grain zinc and iron concentration in winter wheat. Emirates J. Food Agric. 28, 1 (2016).
Eđed Rebekić,A。&Lončarić,Z。镉对冬小麦农艺性状和籽粒锌铁浓度影响的基因型差异。阿联酋J.食品农业。28,1(2016)。
Google Scholar
谷歌学者
Lu, M. et al. Identification of wheat (Triticum aestivum L.) genotypes for food safety on two different cadmium contaminated soils. Environ. Sci. Pollut Res. Int. 27, 7943–7956 (2020).Article
Lu,M.等人。在两种不同镉污染土壤上鉴定小麦(Triticum aestivum L.)基因型以确保食品安全。环境。科学。Pollut Res.Int.277943–7956(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Qiao, L. et al. Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Front. Plant. Sci. 12, 756741 (2021).Article
Qiao,L.等人。硬白春小麦籽粒镉含量的新数量性状基因座。正面。工厂。科学。12756741(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
An, T. et al. Variability in cadmium stress tolerance among four maize genotypes: Impacts on plant physiology, root morphology, and chloroplast microstructure. Plant. Physiol. Biochem. 205, 108135 (2023).Article
An,T.等人。四种玉米基因型镉胁迫耐受性的变异性:对植物生理学,根系形态和叶绿体微观结构的影响。工厂。生理学。生物化学。205108135(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Deng, S. et al. Effects of Cd stress on morphological and physiological characteristics of maize seedlings. Agronomy. https://doi.org/10.3390/agronomy14020379 (2024).Ehrnstorfer, I. A., Geertsma, E. R., Pardon, E., Steyaert, J. & Dutzler, R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport.
邓,S。等。镉胁迫对玉米幼苗形态和生理特性的影响。农学。https://doi.org/10.3390/agronomy14020379(2024年)。Ehrnstorfer,I.A.,Geertsma,E.R.,Predone,E.,Steyaert,J。&Dutzler,R。SLC11(NRAMP)转运蛋白的晶体结构揭示了过渡金属离子转运的基础。
Nat. Struct. Mol. Biol. 21, 990–996 (2014).Article .
自然结构。分子生物学。21990–996(2014)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Milner, M. J. et al. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in cd hyperaccumulation. Plant. J. 78, 398–410 (2014).Article
Milner,M.J.等人。两种生态型的夜蛾的根和芽转录组分析揭示了NcNramp1在cd超积累中的作用。工厂。J、 78398-410(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pottier, M. et al. Identification of mutations allowing natural resistance associated macrophage proteins (NRAMP) to discriminate against cadmium. Plant. J. 83, 625–637 (2015).Article
Pottier,M.等人。鉴定允许天然抗性相关巨噬细胞蛋白(NRAMP)区分镉的突变。工厂。J、 83625-637(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Leonhardt, T., Sácký, J. & Kotrba, P. Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula Atropurpurea. Biometals Int. J. Rle Met. Ions Biol. Biochem. Med. 31, 255–266 (2018).Article
Leonhardt,T.,Sácký,J。&Kotrba,P。功能分析来自外生菌根锌积累红菇的ZIP家族的RaZIP1转运蛋白。Biometals Int.J.Rle Met。离子生物学。生物化学。医学31255-266(2018)。文章
Google Scholar
谷歌学者
Zhao, J. et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice (N Y) 11, 61 (2018).Article
Zhao,J.等人。全基因组关联研究和候选基因分析,研究不同水稻品种籽粒中镉的积累。赖斯(纽约)11,61(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chang, J. D., Xie, Y., Zhang, H., Zhang, S. & Zhao, F. J. The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects cd distribution to rice grain. Plant. Soil 476, 79–95 (2022).Article
Chang,J.D.,Xie,Y.,Zhang,H.,Zhang,S。&Zhao,F.J。液泡转运蛋白OsNRAMP2在发芽过程中介导Fe再活化并影响cd向水稻籽粒的分布。工厂。土壤476,79-95(2022)。文章
Google Scholar
谷歌学者
Yang, W. et al. OsNRAMP2 facilitates cd efflux from vacuoles and contributes to the difference in grain cd accumulation between japonica and indica rice. Crop J. 11, 417–426 (2023).Article
Yang,W。等人。OsNRAMP2促进液泡中cd的流出,并有助于粳稻和籼稻籽粒cd积累的差异。作物J.11417–426(2023)。文章
Google Scholar
谷歌学者
Cailliatte, R., Lapeyre, B., Briat, J. F., Mari, S. & Curie, C. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem. J. 422, 217–228 (2009).Article
Cailliatte,R.,Lapeyre,B.,Briat,J.F.,Mari,S。&Curie,C。NRAMP6金属转运蛋白有助于镉毒性。生物化学。J、 422217-228(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hu, X., Li, T., Xu, W. & Chai, Y. Distribution of cadmium in subcellular fraction and expression difference of its transport genes among three cultivars of pepper. Ecotoxicol. Environ. Saf. 216, 112182 (2021).Article
Hu,X.,Li,T.,Xu,W。&Chai,Y。镉在三个辣椒品种亚细胞部分的分布及其转运基因的表达差异。生态毒性。环境。南非。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, D. et al. Overexpression of Leymus chinensis vacuole transporter NRAMP2 in rice increases Mn and cd accumulation. Plant. Stress. 11, 100344 (2024).Article
Wang,D。等人。水稻中羊草液泡转运蛋白NRAMP2的过表达增加了Mn和cd的积累。工厂。压力。11100344(2024)。文章
Google Scholar
谷歌学者
Zhang, Y. et al. The expression of the StNRAMP2 gene determined the accumulation of cadmium in different tissues of potato. Int. J. Mol. Sci. 24 (2023).Shi, X., Sun, H., Chen, Y., Pan, H. & Wang, S. Transcriptome sequencing and expression analysis of cadmium (cd) transport and detoxification related genes in cd-accumulating salix integra.
Zhang,Y。等人。StNRAMP2基因的表达决定了镉在马铃薯不同组织中的积累。Int.J.Mol.Sci。24(2023年)。Shi,X.,Sun,H.,Chen,Y.,Pan,H。&Wang,S。转录组测序和cd累积salix integra中镉(cd)转运和解毒相关基因的表达分析。
Front. Plant. Sci. 7, 1577 (2016).Article .
正面。工厂。科学。71577(2016)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, S. et al. Genome-wide identification of wheat ZIP gene family and functional characterization of the TaZIP13-B in plants. Front. Plant. Sci. 12, 748146 (2021).Article
Li,S。等人。小麦ZIP基因家族的全基因组鉴定和植物中TaZIP13-B的功能表征。正面。工厂。科学。12748146(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feng, S. J. et al. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant. Cell. Environ. 39, 2629–2649 (2016).Article
Feng,S.J.等人。暴露于镉的水稻(Oryza sativa)中与基因表达相关的DNA甲基化模式的变化。工厂。细胞。环境。392629-2649(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yamaji, N., Xia, J., Mitani-Ueno, N. & Yokosho, K. Feng Ma, J. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant. Physiol. 162, 927–939 (2013).Article
Yamaji,N.,Xia,J.,Mitani-Ueno,N。和Yokosho,K。Feng Ma,J。锌优先传递到水稻发育中的组织是由P型重金属ATPase OsHMA2介导的。工厂。生理学。162927-939(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sasaki, A., Yamaji, N., Mitani-Ueno, N., Kashino, M. & Ma, J. F. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant. J. 84, 374–384 (2015).Article
Sasaki,A.,Yamaji,N.,Mitani-Ueno,N.,Kashino,M。&Ma,J.F。节点定位转运蛋白OsZIP3负责锌优先分布到水稻发育组织中。工厂。J、 84374-384(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tian, S. et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of cd and zn in rice (Oryza sativa). J. Hazard. Mater. 380, 120853 (2019).Article
Tian,S。等人。多种重金属转运蛋白的共表达改变了水稻(Oryza sativa)中cd和zn的转运,积累和潜在的氧化应激。J、 危险。马特。380120853(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tan, L. et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in Zinc/Cadmium uptake. Plant. Physiol. 183, 1235–1249 (2020).Article
Tan,L。等人。锌转运蛋白5和锌转运蛋白9在锌/镉吸收中协同作用。工厂。生理学。1831235-1249(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, X., Chen, L. & Li, X. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to cd stress. Bot. Stud. 59, 22 (2018).Article
Zheng,X.,Chen,L。&Li,X。拟南芥和水稻在响应cd胁迫的ZIP基因表达谱中显示出独特的模式。Bot.Stud.59,22(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, H. et al. NRAMP2, a trans-golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New. Phytol. 217, 179–193 (2018).Article
。新建。植物醇。217179-193(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ishimaru, Y. et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci. Rep. 2, 286 (2012).Article
Ishimaru,Y.等人描述了水稻NRAMP5在锰,铁和镉运输中的作用。科学。代表2286(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qing, M., Lin, L., Sun, J. & Ming’an, L. Effects of Cadmium stress on antioxidant enzymes activities and soluble protein content in Cyphomandra betacea Seedlings. IOP Conf. Ser. Earth Environ. Sci. 199, 32025 (2018).Article
Qing,M.,Lin,L.,Sun,J。&Ming'an,L。镉胁迫对香附幼苗抗氧化酶活性和可溶性蛋白质含量的影响。IOP配置序列。地球环境。科学。19932025(2018)。文章
Google Scholar
谷歌学者
Shen, Q., Yang, Q., Ren, B. & Zhang, M. Adsorption and desorption characteristics of cd, Cu and Pb in different soil aggregates through soil profile under single and ternary systems. Pedosphere. https://doi.org/10.1016/j.pedsph.2024.02.004 (2024).Article
Shen,Q.,Yang,Q.,Ren,B。&Zhang,M。通过单体系和三元体系下的土壤剖面,不同土壤团聚体中cd,Cu和Pb的吸附和解吸特征。土壤层。https://doi.org/10.1016/j.pedsph.2024.02.004(2024年)。文章
Google Scholar
谷歌学者
Soni, S., Jha, A. B., Dubey, R. S. & Sharma, P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. Sci. Total Environ. 912, 168826 (2024).Article
Soni,S.,Jha,A.B.,Dubey,R.S。&Sharma,P。减轻植物中镉的积累和毒性:纳米颗粒的有希望的作用。科学。总环境。912168826(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Song, Y. et al. Impact of industrial pollution of cadmium on traditional crop planting areas and land management: A case study in Northwest China. Land. https://doi.org/10.3390/land10121364 (2021).Wang, X., Song, Y., Ma, Y., Zhuo, R. & Jin, L. Screening of cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L).
宋,Y。等。镉工业污染对传统作物种植面积和土地管理的影响:中国西北地区的案例研究。土地。https://doi.org/10.3390/land10121364(2021年)。Wang,X.,Song,Y.,Ma,Y.,Zhuo,R。&Jin,L。苜蓿(Medicago sativa L)中耐镉基因型的筛选和金属硫蛋白基因的分离。
Environ. Pollut. 159, 3627–3633 (2011).Article .
大约。污染。1593627–3633(2011)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Lindsay, W. L. & Norvell, W. A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil. Sci. Soc. Am. J. 42, 421–428 (1978).Article
Lindsay,W.L。和Norvell,W.A。开发锌,铁,锰和铜的DTPA土壤测试。土壤。科学。《美国社会学杂志》42421-428(1978)。文章
ADS
广告
Google Scholar
谷歌学者
Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 3, 71–85 (2013).PubMed
Rao,X.,Huang,X.,Zhou,Z。&Lin,X。用于定量实时聚合酶链反应数据分析的2 ^(-delta-delta-CT)方法的改进。Biostat公司。生物信息。生物数学。3,71-85(2013)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods. 25, 402–408 (2001).Article
Livak,K.J。&Schmittgen,T.D。使用实时定量PCR和2-ΔΔCT方法分析相对基因表达数据。方法。25402-408(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tenea, G. N., Bota, P., Cordeiro Raposo, A. & Maquet, A. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions. BMC Res. Notes 4, 373 (2011).Article
Tenea,G.N.,Bota,P.,Cordeiro-Raposo,A。&Maquet,A。用于在不同耕作条件下生长的小麦旗叶中基因表达研究的参考基因。BMC Res.注释4373(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mirzaghaderi, G. rtpcr: A Package for Statistical Analysis of Real-Tme PCR Data in R. https://doi.org/10.21203/rs.3.rs-4193266/v1 (2024).Download referencesFundingNo funding was received for conducting this study.Author informationAuthor notesFatemeh Beigi, Mahdiye Mortazavi and Farzaneh Najafi contributed equally to this work.Authors and AffiliationsDepartment of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, IranZinat Abdolmalaki, Aboozar Soorni, Fatemeh Beigi, Mahdiye Mortazavi, Farzaneh Najafi, Rahim Mehrabi & Badraldin Ebrahim Sayed-TabatabaeiDepartment of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, IranMehran ShirvaniDepartment of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, IranMohammad Mahdi MajidiAuthorsZinat AbdolmalakiView author publicationsYou can also search for this author in.
Mirzaghaderi,G。rtpcr:用于R中真实Tme PCR数据统计分析的软件包。https://doi.org/10.21203/rs.3.rs-4193266/v1(2024年)。下载参考资金进行这项研究没有收到资金。作者信息作者注:Fatemeh Beigi,Mahdiye Mortazavi和Farzaneh Najafi对这项工作做出了同样的贡献。作者和附属机构伊斯法罕理工大学农业学院生物技术系,伊斯法罕,IranZinat Abdolmalaki,Aboozar Soorni,Fatemeh Beigi,Mahdiye Mortazavi,Farzaneh Najafi,Rahim Mehrabi和Badraldin Ebrahim Sayed Tabatabaeid伊斯法罕理工大学农业学院土壤科学系农业,伊斯法罕理工大学,伊斯法罕,84156-83111,IranMohammad Mahdi MajidiAuthorsZinat AbdolmalakiView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarAboozar SoorniView author publicationsYou can also search for this author in
PubMed Google ScholarAboozar SoorniView作者出版物您也可以在
PubMed Google ScholarFatemeh BeigiView author publicationsYou can also search for this author in
PubMed Google ScholarFatemeh BeigiView作者出版物您也可以在
PubMed Google ScholarMahdiye MortazaviView author publicationsYou can also search for this author in
PubMed Google ScholarMahdiye MortazaviView作者出版物您也可以在
PubMed Google ScholarFarzaneh NajafiView author publicationsYou can also search for this author in
PubMed Google ScholarFarzaneh NajafiView作者出版物您也可以在
PubMed Google ScholarRahim MehrabiView author publicationsYou can also search for this author in
PubMed Google Scholarahim MehrabiView作者出版物您也可以在
PubMed Google ScholarBadraldin Ebrahim Sayed-TabatabaeiView author publicationsYou can also search for this author in
PubMed Google ScholarBadraldin Ebrahim Sayed TabatabaeiView作者出版物您也可以在
PubMed Google ScholarMehran ShirvaniView author publicationsYou can also search for this author in
PubMed Google ScholarMohammad Mahdi MajidiView author publicationsYou can also search for this author in
PubMed谷歌学术评论Mahdi MajidiView作者出版物您也可以在
PubMed Google ScholarContributionsZA, FB, MM, and FN: conceptualization, investigation (responsible for most experimental work), formal analysis, validation (qRT-PCR), visualization, and writing review & editing. AS: conceptualization, formal analysis (responsible for all bioinformatic analysis), validation, visualization, supervision, and writing - original draft as well as review & editing.
PubMed Google ScholarContributionsZA,FB,MM和FN:概念化,调查(负责大多数实验工作),正式分析,验证(qRT-PCR),可视化以及写作评论和编辑。AS:概念化,形式分析(负责所有生物信息学分析),验证,可视化,监督和写作-原稿以及评论和编辑。
RM, BEST, MSh, and MMM: conceptualization, investigation; formal analysis, writing-review and editing. All authors contributed to the article and approved the submitted version.Corresponding authorCorrespondence to.
RM,BEST,MSh和MMM:概念化,调查;形式分析,写作评论和编辑。所有作者都为文章做出了贡献,并批准了提交的版本。对应作者对应。
Aboozar Soorni.Ethics declarations
阿博扎尔·索尔尼。道德宣言
Ethics approval and consent to participate
道德批准和同意参与
Not applicable.
不适用。
Consent for publication
同意出版
Not applicable.
不适用。
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Conflict of interest
利益冲突
The authors declare no conflicts of interest.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleAbdolmalaki, Z., Soorni, A., Beigi, F. et al. Exploring genotypic variation and gene expression associated to cadmium accumulation in bread wheat.
转载和许可本文引用本文Abdolmalaki,Z.,Soorni,A.,Beigi,F。等人探索与面包小麦中镉积累相关的基因型变异和基因表达。
Sci Rep 14, 26505 (2024). https://doi.org/10.1038/s41598-024-78425-zDownload citationReceived: 30 July 2024Accepted: 30 October 2024Published: 03 November 2024DOI: https://doi.org/10.1038/s41598-024-78425-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《科学报告》1426505(2024)。https://doi.org/10.1038/s41598-024-78425-zDownload引文接收日期:2024年7月30日接受日期:2024年10月30日发布日期:2024年11月3日OI:https://doi.org/10.1038/s41598-024-78425-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsBread wheatCultivarsSoilCadmiumGene expression
关键词小麦品种土壤管理基因表达