EN
登录

基于极性模型的1-茚酮化合物在不同环境中的线性和微观非线性光学响应研究

Investigation of linear and microscopic nonlinear optical responses of 1-indanone compounds in different environments based on polarity models

Nature 等信源发布 2024-11-04 21:02

可切换为仅中文


AbstractMolecular spectroscopic and nonlinear features can indicate positive changes by solvent molecules. In this work, DFT and spectroscopic techniques were used to study the polarity effects of different solvent environments. Polarity-based models were used for studying solvent induced interactions on the optical features of new groups of biomolecules.

摘要分子光谱和非线性特征可以表明溶剂分子的积极变化。在这项工作中,DFT和光谱技术被用来研究不同溶剂环境的极性效应。基于极性的模型用于研究溶剂诱导的相互作用对新组生物分子光学特征的影响。

Despite the significant contribution of general effects on the molecular absorption spectra, there is considerable competition between general and specific environmental effects on the molecular emission properties. Under this condition, strong hydrogen bonds tend to increase molecular nonlinear responses.

尽管一般效应对分子吸收光谱有重大贡献,但一般和特定环境效应对分子发射特性之间存在相当大的竞争。在这种条件下,强氢键倾向于增加分子的非线性响应。

The same results were observed for the low order (first and second order) nonlinearity of biomolecules. Therefore, the studies on the environment effects on the biomolecules’ first order nonlinearity can give valuable information about higher-order optical responses. Moreover, 1-Indanone compounds with high nonlinearity can be considered as an effective element in designing optical devices..

对于生物分子的低阶(一阶和二阶)非线性,观察到了相同的结果。因此,研究环境对生物分子一阶非线性的影响可以提供有关高阶光学响应的有价值的信息。此外,具有高非线性的1-茚满酮化合物可以作为设计光学器件的有效元素。。

Introduction1-Indanone compounds with unique structures and biologically active groups in their chemical structures are important in pharmacology. They are involved in biologically important activities because of their anti-inflammatory1, anti-cholinergic2, antimalarial3, anti-microbial4, anticancer5, analgesic6, and dopaminergic7 properties.

简介1茚满酮化合物具有独特的结构和化学结构中的生物活性基团,在药理学中很重要。由于它们的抗炎1,抗胆碱2,抗疟疾3,抗微生物4,抗癌5,镇痛6和多巴胺能7特性,它们参与了生物学上重要的活动。

This moiety is usually found in some natural compounds and is used as an intermediate in the synthesis process of various biological molecules with wide application in the treatment of diseases. Among various diseases, today, Alzheimer’s is a great threat to human health by increasing the elderly population.

该部分通常存在于一些天然化合物中,并用作各种生物分子合成过程中的中间体,广泛应用于疾病的治疗。在各种疾病中,今天,老年痴呆症通过增加老年人口对人类健康构成巨大威胁。

In this case, drugs with 1-indanone moiety and enzyme inhibitor characteristics can play a main role in treating Alzheimer’s disease8,9,10.Moreover, important biological activities of indanone compounds may be modified by their surrounding environment properties. The study of the various biological characteristics of molecules is generally done in the solution.

在这种情况下,具有1-茚满酮部分和酶抑制剂特征的药物可以在治疗阿尔茨海默病中发挥主要作用8,9,10。此外,茚满酮化合物的重要生物活性可能会因其周围环境特性而改变。分子的各种生物学特性的研究通常在溶液中进行。

Under this circumstance, interactions between the selected molecules and their environmental molecules are a significant issue in their function. In this case, studies on possible molecular interactions with different contributions are significant in explaining various phenomena.Molecular interactions are separated into two categories: general and specific interactions.

在这种情况下,所选分子与其环境分子之间的相互作用是其功能的重要问题。在这种情况下,研究可能具有不同贡献的分子相互作用对于解释各种现象具有重要意义。分子相互作用分为两类:一般相互作用和特定相互作用。

The first groups are directional, induction, and dispersion forces that cannot be saturated completely. The second group comprises hydrogen bonds, and electron-pair donor–acceptor forces which can be saturated and lead to stoichiometric molecular compounds11,12,13. Studies have indicated that solvents can modify the intensity, and position of absorption bands studied molecules.

第一组是无法完全饱和的定向力、感应力和分散力。第二组包括氢键和电子对供体-受体力,它们可以饱和并产生化学计量的分子化合物11,12,13。研究表明,溶剂可以改变所研究分子的吸收带的强度和位置。

Solvent effects are usually.

溶剂效应通常是。

(1)

(1)

In Eq. 1, a, b, and c are regression coefficients that display the strength of various polarity effects. In the Kamlet-Abboud-Taft model, A, B, and C are indicated by α, β, and π*, respectively. α, and β explain hydrogen bonds17,18, and π* is solvent dipolarity/polarizability ability19.

。在Kamlet-Abboud-Taft模型中,A,B和C分别由α,β和π*表示。α、 β解释氢键17,18,π*是溶剂偶极/极化能力19。

y0 is also obtained from the analysis. To separate general environment effects, the Catalan model can be considered as a proper selection. In this case, A, B, and C are indicated by SA, SB, and SPP. In this formalism, SA, SB, and SPP are selected environment acidity, basicity, and dipolarity/polarizability, respectively20,21.

y0也是从分析中获得的。为了分离一般的环境影响,加泰罗尼亚模型可以被认为是一个合适的选择。。

The last solvent polarity parameter can be divided into SP and SdP parameters.Moreover, light-mater interactions at the molecular level in the linear and nonlinear optical domains can limit the activity of biologically important molecules in the solution state. The studies on the various optical responses of understudy molecules will provide essential information about their function in different processes.In this experimental research, the effects of environment polarity on the optical behavior of some 1-Indanone compounds were investigated in linear and nonlinear optics domains.

最后一个溶剂极性参数可分为SP和SdP参数。此外,线性和非线性光学域中分子水平的光-物质相互作用可以限制溶液状态下生物重要分子的活性。对被研究分子的各种光学响应的研究将提供关于它们在不同过程中的功能的基本信息。在这项实验研究中,在线性和非线性光学领域研究了环境极性对一些1-茚满酮化合物光学行为的影响。

In this case, the spectroscopic technique and density functional theory (DFT) theoretical method were used for studying the optical properties of understudy samples in various environments with different features. In addition, the obtained results from a simple experimental method were used to quantitatively detect the effects of polarity-sensitive features of some biologically important molecules.

。此外,从简单的实验方法获得的结果用于定量检测某些生物学重要分子的极性敏感特征的影响。

It is expected that results can give a simple way to improve the nonlinearity of biomolecules. Moreover, the data will give interesting results for increasing the application of .

预计这些结果可以为改善生物分子的非线性提供一种简单的方法。此外,这些数据将为增加应用提供有趣的结果。

(2)

(2)

The variation of Stokes shift values of 1-indanon compounds with different substituents based on orientation polarity function is indicated in Fig. 8. Using this figure, the differences between the dipole moments were calculated according to the data in Table 5, and Table 6. The obtained data indicate the possibility of charge transfer by exciting biomolecules in environments with different polarities.

基于取向极性函数,具有不同取代基的1-茚满酮化合物的斯托克斯位移值的变化如图8所示。使用该图,根据表5和表6中的数据计算偶极矩之间的差异。获得的数据表明在具有不同极性的环境中通过激发生物分子进行电荷转移的可能性。

The different dipole moment values are due to active groups in the structure of solute molecules that lead to various interactions between solute and solvent molecules with different strengths. Therefore, the function of these compounds can be modified because of the presence of solvent molecules and various substituents in their chemical structures.

不同的偶极矩值是由于溶质分子结构中的活性基团导致溶质和具有不同强度的溶剂分子之间的各种相互作用。因此,由于这些化合物的化学结构中存在溶剂分子和各种取代基,因此可以修饰这些化合物的功能。

According to our results, solute molecules with different chemical groups operate differently in solvent environments. These behaviors are related to different contributions of various molecular interactions. Although some polarity parameters such as dielectric constant can be considered for a qualitative investigation of solvent-induced general effects, they cannot fully explain the contribution of different molecular interactions.

根据我们的结果,具有不同化学基团的溶质分子在溶剂环境中的作用不同。这些行为与各种分子相互作用的不同贡献有关。尽管可以考虑一些极性参数(例如介电常数)来定性研究溶剂诱导的一般效应,但它们不能完全解释不同分子相互作用的贡献。

Hence, in the next section, some applicable models will be used.Fig. 8Stokes shift changes of sample I, sample II, sample III, and sample IV based on Lippert Mataga’s polarity function.Full size imageTable 5 The experimental results of sample I, and sample II in esu units. (Δµ: differences between ground and excited state dipole moments, f: oscillator strength, µ: transition dipole moment, α’: Linear polarizability, β’: first-order hyperpolarizability, and γ’: second order hyperpolarizability)Full size tableTable 6 The experimental results of sample III, and sample IV in esu units..

因此,在下一节中,将使用一些适用的模型。图8基于Lippert-Mataga的极性函数,样品I,样品II,样品III和样品IV的斯托克斯位移变化。全尺寸成像表5以esu单位显示样品I和样品II的实验结果。(Δµ:基态和激发态偶极矩之间的差异,f:振荡器强度,µ:跃迁偶极矩,α:线性极化率,β:一阶超极化率和γ:二阶超极化率)全尺寸表6样品III和样品IV的实验结果(esu单位)。。

1.

1.

All selected solvents are considered in the analysis.

分析中考虑了所有选定的溶剂。

2.

2.

Some solvents may be deleted by paying attention to the values of statistical factor value (R2).

通过注意统计因子值(R2)的值,可以删除一些溶剂。

3.

3.

Multi-linear analysis of spectral results with Kamlet-Abbod-Taft and Catalan polarity scales was performed.

使用Kamlet-Abbod-Taft和加泰罗尼亚极性标度对光谱结果进行了多线性分析。

There is an excellent linear relation between the spectral data of sample solutions and solvent polarity parameters, as shown in Table 7, and Table 8. Furthermore, for a precise comparison of the behavior of various samples with each other, the contribution percentage of solvent polarity factors was calculated.Table 7 Regression fit to Kamlet-Abboud-Taft polarity scales for linear optical features of used samples with percentage contribution of various interactions.

样品溶液的光谱数据与溶剂极性参数之间存在极好的线性关系,如表7和表8所示。此外,为了精确比较各种样品的行为,计算了溶剂极性因子的贡献百分比。表7回归拟合Kamlet-Abboud-Taft极性尺度,用于所用样品的线性光学特征,具有各种相互作用的百分比贡献。

(a, b, and c: regression coefficients)Full size tableTable 8 Regression fit to Catalan polarity scales for linear optical features of used samples with percentage contribution of various interactions.Full size tableIn biomolecules’ ground state, general interactions show a major role in the absorption characteristics of three selected samples.

(a,b和c:回归系数)全尺寸表表8回归适合加泰罗尼亚极性尺度,用于所用样品的线性光学特征,具有各种相互作用的百分比贡献。全尺寸表在生物分子的基态中,一般相互作用在三个选定样品的吸收特性中显示出主要作用。

By optical excitation, general solvent effects still play the dominant role in sample II and sample IV. In sample I, the solvent environment hydrogen bond acceptor parameter with considerable contribution modifies the solute molecules’ linear optical behaviors. In sample III, hydrogen bond donor parameter has the dominant role.

通过光激发,一般溶剂效应仍然在样品II和样品IV中起主导作用。在样品I中,具有相当大贡献的溶剂环境氢键受体参数改变了溶质分子的线性光学行为。在样品III中,氢键供体参数起主导作用。

Stokes shifts also increase with the increase of the dominant media polarity factors.In samples I, and IV, nonspecific polarity effects are significant in the Stokes shift values. In samples II, and III, specific solvent effects indicate significant roles. In this case, various substituents led to the detection of different types of molecular interactions with different contributions in the environments with different polarities.The results show that solvent dipolarity/polarizability factor has considerable effects on the biomolecules’ optical linearity.

斯托克斯位移也随着主要介质极性因子的增加而增加。在样品I和IV中,斯托克斯位移值中的非特异性极性效应是显着的。在样品II和III中,特定的溶剂效应表明了重要的作用。在这种情况下,各种取代基导致在具有不同极性的环境中检测到具有不同贡献的不同类型的分子相互作用。结果表明,溶剂偶极/极化率因子对生物分子的光学线性有相当大的影响。

Furthermore, the model presented by Catalan contains information about the dipolarity and po.

此外,加泰罗尼亚提出的模型包含有关偶极和po的信息。

(3)

(3)

In Eq. 3, h indicates Plank’s constant, and c is known as velocity of light in vacuum.Transition dipole moment is also related to obtained results from biomolecules’ absorption spectra (Eq. 4)37.$$\begin{aligned} \mu _{{eg}}^{2} & = \frac{{3he^{2} }}{{8\pi ^{2} mc}} \times \frac{f}{{\upsilon _{{eg}} }} \\ f & = 4.32 \times 10^{{ - 9}} \int {\varepsilon (\upsilon )d\upsilon } \\ \end{aligned}$$.

在等式3中,h表示普朗克常数,c表示真空中的光速。跃迁偶极矩也与从生物分子的吸收光谱(方程4)37获得的结果有关。$$$\ begin{aligned}\ mu{{eg}}^{2}&=\ frac{{3he ^{2}}{{8 \ pi ^{2}mc}}\ times \ frac{f}{\ upsilon{{eg}}}}\ f&=4.32 \乘以10^{-9}}\int{\varepsilon(\upsilon)d\upsilon}\\\ end{aligned}$$。

(4)

(4)

In Eq. 4, e, and m symbols describe charge, and m is the electron’s mass. The obtained results from two-level model are displayed in Table 5, and Table 6.In this case, molecules with high transition dipole moments indicate high linear polarizability. As shown in Table 5, and Table 6, the values of this parameter and linear polarizability depend on the polarity characteristics of solvents.

在等式4中,e和m符号描述电荷,m是电子的质量。从二能级模型获得的结果显示在表5和表6中。在这种情况下,具有高跃迁偶极矩的分子表示高线性极化率。如表5和表6所示,该参数和线性极化率的值取决于溶剂的极性特征。

According to Fig. 9 (a), by incrementing the dielectric factor of solvents, the molecular linear polarizability is increased gradually. However, the opposite behavior is observed in high-polar solvents such as DMSO, DMF, and Methanol. Hence, various molecular interactions lead to observing different behaviors of samples with different substituents.Fig.

根据图9(a),通过增加溶剂的介电因子,分子线性极化率逐渐增加。然而,在高极性溶剂如DMSO,DMF和甲醇中观察到相反的行为。。图。

9The changes of (a) α’, (b) β’, and (c) γ’ of used samples based on of dielectric constant of selected solvents.Full size imageBiomolecules’ hyperpolarizability (β’) in the first orderOudar’s famous equation is a simple way to measure the nonlinearity of sample solutions. The Two-level model explains the relationship between the molecular hyperpolarizability parameter and changes in dipole moments (Δµ), and dipole transition (µe.g.) as follows39,40,41:$$\beta ^{\prime}=\frac{{3\upsilon _{{eg}}^{2}\mu _{{eg}}^{2}\Delta \mu }}{{2{h^2}{c^2}(\upsilon _{{eg}}^{2} - \upsilon _{L}^{2})(\upsilon _{{eg}}^{2} - 4\upsilon _{L}^{2})}}$$.

9基于所选溶剂的介电常数,所用样品的(a)α',(b)β'和(c)γ'的变化。一阶著名方程中的全尺寸成像生物分子的超极化率(β')是测量样品溶液非线性的简单方法。两级模型解释了分子超极化率参数与偶极矩(Δµ)和偶极跃迁(µe.g.)变化之间的关系,如下39,40,41:$$\ beta ^{\ prime}=\ frac{{{3 \ upsilon{{{eg}}^{2}\ mu{{eg}}^{2}\ Delta \ mu}{{2{h ^ 2}{c ^ 2}(\ upsilon{{{eg}}^{2}-\upsilon{L}^{2})(\upsilon{{eg}}^{2}-4\upsilon{L}^{2}}}$$。

(5)

(5)

In above equation, υL is the reference incident beam’s frequency. In this research, Δµ was calculated using Lippert Mataga’s model (Table 5, and Table 6). µe.g. is also obtained from the oscillator strength data of samples in different environments. Sample III with high differences between dipole moments tend to show high first-order hyperpolarizability.

在上面的等式中,νL是参考入射光束的频率。在这项研究中,使用Lippert-Mataga模型计算Δµ(表5和表6)。µ例如,也可以从不同环境中样品的振荡器强度数据中获得。。

Under this condition, the molecular nonlinear responses are modified by variations in the molecular environment features. As shown in Fig. 9(b), molecular first-order hyperpolarizability is decreased in high-polar solvents such as DMSO.Biomolecules’ hyperpolarizability (γ’) in the second orderCompared to first-order calculations, the three-level model is usually used for calculating nonlinear optical hyperpolarizability in the second order.

在这种情况下,分子环境特征的变化会改变分子的非线性响应。如图9(b)所示,在高极性溶剂如DMSO中,分子的一阶超极化率降低。二阶生物分子的超极化率(γ')与一阶计算相比,三能级模型通常用于计算二阶非线性光学超极化率。

In this case, three different terms are appeared in Eq. 6 for calculating molecular third-order nonlinear hyperpolarizability42,43.$$\gamma ^{\prime}=\frac{{24\mu _{{eg}}^{2}\Delta \mu }}{{E_{{eg}}^{3}}} - \frac{{24\mu _{{eg}}^{4}}}{{E_{{eg}}^{3}}}+24\sum\limits_{{e^{\prime}}} {\frac{{\mu _{{ge}}^{2}\mu _{{e^{\prime}e}}^{2}}}{{E_{{eg}}^{2}{E_{e^{\prime}g}}}}}$$.

在这种情况下,方程6中出现了三个不同的项来计算分子的三阶非线性超极化率42,43。$$\γ^{\素数}=\ frac{{24 \ mu{{{eg}}^{2}\ Delta \ mu}{{{E\u{{eg}}}^{3}}-\ frac{{24 \ mu{eg}}^{4}}{{{E{{eg}}}^{3}}+24个求和\极限{{{E{prime}}}{\frac{{\mu{{ge}}}}}{2}\mu{{E^{\ prime}E}}}^{2}}}{{E{{{eg}}}}^{2}{E\uu{E ^{\素数}g}}}}$$。

(6)

(6)

A comparison between Eq. 6 and Eqs. 3, 5 indicates that the second term depends on the dipole transition (µe.g.) and transition energy (Ee.g.) similar to Eq. 3, and the first term depends on the dipole transition (µe.g.), transition energy (Ee.g.) and changes in dipole moments (Δµ) similar behavior to Eq. 5.

方程6和方程3、5之间的比较表明,第二项取决于与方程3相似的偶极跃迁(μe.g.)和跃迁能(Ee.g.),第一项取决于与方程5相似的偶极跃迁(μe.g.)、跃迁能(Ee.g.)和偶极矩变化(Δμ)。

In contrast to first and second terms, dipole transition (\(\mu _{{e^{\prime}e}}^{{}}\)) and energy transition from ground to the second excited state (\({E_{e^{\prime}g}}\)) have the contribution in the molecular higher-order nonlinearity. Hence, by neglecting the third term, the above expression can be rewritten according to Eq. 5 (a quasi-two-level model).$$\gamma ^{\prime}=\frac{{24\mu _{{eg}}^{2}}}{{E_{{eg}}^{3}}}(\Delta {\mu ^2} - \mu _{{eg}}^{2})$$.

。因此,通过忽略第三项,可以根据等式5(准两级模型)重写上述表达式$$\伽玛^{\素数}=\ frac{{{24 \ mu{{{{{eg}}}}{{E{{eg}}}^{3}}(\ Delta{\ mu ^ 2}-\ mu{{{eg}}}^{2})$$。

(5)

(5)

As summarized in Table 5, and Table 6, sample III with high Δµ indicates high second-order hyperpolarizability compared to other samples. In general, charge distribution and molecular electronic structure are modified differently in environments with different polarity features. As shown in Fig. 9 (c), different nonlinear behaviors occur in low and high-polar solvent environments.

如表5和表6所示,与其他样品相比,具有高Δμ的样品III表示高二阶超极化率。通常,在具有不同极性特征的环境中,电荷分布和分子电子结构会发生不同的改变。如图9(c)所示,在低极性和高极性溶剂环境中发生不同的非线性行为。

For environments with ɛ < 21, by increment dielectric factor of solvents, molecular hyperpolarizability in the second order is enhanced. In opposite behaviors, the molecular nonlinear responses are decreased in environments with ɛ ˃ 21. In this case, in competition between various solute-solvent interactions, sample III with the methoxy group indicates high nonlinearity.

对于ɛ<21的环境,通过增加溶剂的介电因子,二阶分子超极化率得到增强。在相反的行为中,分子非线性响应在ɛ˃21的环境中降低。在这种情况下,在各种溶质-溶剂相互作用之间的竞争中,具有甲氧基的样品III显示出高度非线性。

The results display the same effects of solvents on the biomolecules’ linear polarizability, and their hyperpolarizability in the first and second order. Although, this qualitative study gives main data about environment polarity effects on the biomolecules’ nonlinear features, the studies on the contribution of each environment polarity effect will be helpful.

结果表明,溶剂对生物分子的线性极化率及其一阶和二阶超极化率具有相同的影响。虽然这项定性研究提供了有关环境极性效应对生物分子非线性特征的主要数据,但对每种环境极性效应的贡献的研究将有所帮助。

In this case, multi-linear analysis is used similarly to Sect. 3.2. According to Data in Tables 9 and 10, specific solute-solvent interactions have an important effect on the molecular hyperpolarizability. Although environments with strong hydrogen bond acceptor features are increased the nonlinear optical behaviors of sample I, nonlinearity of other samples is enhanced in environments with high hydrogen bond donor abilities.

在这种情况下,多线性分析的使用类似于Sect。三点二。根据表9和表10中的数据,特定的溶质-溶剂相互作用对分子超极化率有重要影响。尽管具有强氢键受体特征的环境增加了样品I的非线性光学行为,但在具有高氢键供体能力的环境中,其他样品的非线性增强。

So, a correct selection of polarity features of environments surrounding understudy molecules can enhance their nonlinear optical responses.Moreover, a comparison between the nonlinear optical properties of 1-Indanone compounds with.

因此,正确选择被研究分子周围环境的极性特征可以增强其非线性光学响应。此外,比较了1-茚酮化合物的非线性光学性质。

Data availability

数据可用性

All data generated or analyzed during this study are included in this published article.

本研究期间生成或分析的所有数据均包含在本文中。

ReferencesTang, M. L., Zhong, C., Liu, Z. Y., Peng, P. & Sun, X. Discovery of novel sesquistilbene indanone analogues as potent anti-inflammatory agents. Eur. J. Med. Chem. 113, 63–74 (2016).Article

参考文献Tang,M.L.,Zhong,C.,Liu,Z.Y.,Peng,P。&Sun,X。发现新型倍半萜茚满酮类似物作为有效的抗炎剂。。113,63-74(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sheng, R. et al. Design, synthesis and AChE inhibitory activity of indanone and aurone derivatives. Eur. J. Med. Chem. 44, 7–17 (2009).Article

Sheng,R.等人。茚满酮和aurone衍生物的设计,合成和AChE抑制活性。。44,7-17(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Charris, J. E. et al. Synthesis and antimalarial activity of (E)2-(2ˊ-chloro-3ˊ-quinolinylmethylidene)-5, 7-dimethoxyindanones, Lett. Drug Des. Discov. 4, 49–54 (2007).CAS

(E)2-(2'-氯-3'-喹啉基亚甲基)-5,7-二甲氧基茚酮的合成和抗疟活性。药物Des。迪斯科。4,49-54(2007)。中科院

Google Scholar

谷歌学者

Finkieisztein, L. M. et al. New 1-indanone thiosemicarbazone derivatives active against BVDV. Eur. J. Chem. 43, 1767–1773 (2008).Article

。欧洲化学杂志。431767-1773(2008)。文章

Google Scholar

谷歌学者

Gomez, N. et al. Synthesis, structural characterization, and pro-apoptotic activity of 1-Indanone thiosemicarbanzone platinum (II) and palladium (II) complexes: Potential as antileukemic agents. Chem. Med. Chem. 6, 1485–1494 (2011).Article

1-茚酮缩氨基硫脲铂(II)和钯(II)配合物的合成、结构表征和促凋亡活性:作为抗白血病药物的潜力。化学。医学化学。61485-1494(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hammen, P. D. & Miline, G. M. US Patent 4164514 (1979).Sindelar, R. D. et al. 2-Amino-4, 7-dimethoxyindan derivatives: Synthesis and assessment of dopaminergic and cardiovascular actions. J. Med. Chem. 25, 858–864 (1982).Article

Hammen,P.D.&Miline,G.M.美国专利4164514(1979)。Sindelar,R.D.等人。2-氨基-4,7-二甲氧基吲哚衍生物:多巴胺能和心血管作用的合成和评估。J、 。25858-864(1982)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Saxena, H. O. et al. Gallic acid-based indanone derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 18, 3914–3918 (2008).Article

。生物组织医学化学。利特。183914-3918(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ahmed, N. Synthetic advances in the indane natural product scaffolds as drug candidates: A review. Elsiver. 51, 383–434 (2016). Studies in natural products chemistry.CAS

Ahmed,N。茚满天然产物支架作为候选药物的合成进展:综述。埃尔西弗。51383-434(2016)。。中科院

Google Scholar

谷歌学者

Patil, S. A., Patil, R. & Patil, S. A. Recent developments in biological activities of indanones. Eur. J. Med. Chem. 138, 182–198 (2017).Article

Patil,S.A.,Patil,R。&Patil,S.A。茚满酮生物活性的最新发展。。138182-198(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reichardet, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed (Wiley-VCH Verlag GmbH & Co. KGaA, 2003).Solomonov, B. N., Varfolomeev, M. A. & Abaidullina, D. I. Solvent effect on H-bond cooperativity factors in ternary complexes of methanol, octan-1-ol, 2,2,2-trifluoroethanol with some bases.

Reichardet,C.《有机化学中的溶剂和溶剂效应》,第三版(Wiley-VCH Verlag GmbH&Co.KGaA,2003)。Solomonov,B.N.,Varfolomeev,M.A。和Abaidullina,D.I。溶剂对甲醇,辛烷-1-醇,2,2,2-三氟乙醇与一些碱的三元配合物中H键协同因子的影响。

J. Spectrochim Acta Mol. Biomol. Spectrosc., 985–990 (2008).Yao, E. & Acree, W. E. Jr Abraham model solute descriptors for favipiravir: Case of tautomeric equilibrium and intermolecular hydrogen-bond formation. Thermo. 3, 443–451 (2023).Article .

J、 Spectrochim Acta Mol.Biomol。光谱。,985-990(2008)。Yao,E。&Acree,W。E。Jr Abraham favipiravir的模型溶质描述符:互变异构平衡和分子间氢键形成的情况。赛默。3443-451(2023)。文章。

Google Scholar

谷歌学者

Khadem Sadigh, M., Zakerhamidi, M. S., Shamkhali, A. N., Shabani, B. & Rad-Yousefinia, N. Investigation on environmental sensitivity characteristics of pyridine compounds with different position of N-atoms and various active functional groups. J. Mol. Liq. 275, 926–940 (2018).

Khadem Sadigh,M.,Zakerhamidi,M.S.,Shamkhali,A.N.,Shabani,B。&Rad Yousefinia,N。研究具有不同N原子位置和各种活性官能团的吡啶化合物的环境敏感性特征。J、 。

Google Scholar

谷歌学者

Khadem Sadigh, M. & Zakerhamidi, M. S. Solvent polarity sensitive characteristics of various tautomers of azo compounds: Linear and nonlinear optical properties. Spectrochemica Acta Part. A: Mol. Biomol. Spectrosc. 239, 118445 (2020).Article

Khadem Sadigh,M。&Zakerhamidi,M.S。偶氮化合物各种互变异构体的溶剂极性敏感特性:线性和非线性光学性质。光谱化学学报部分。A: 摩尔生物摩尔。光谱。239118445(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Khadem Sadigh, M., Hasani, H. & Rahimpour, J. Media polarity and substituent effects on the photo-physical properties of some nickel complexes with azo-azomethine. J. Mol. Struct. 1212, 128122 (2020).Article

Khadem Sadigh,M.,Hasani,H。&Rahinpur,J。介质极性和取代基对一些镍配合物与偶氮甲亚胺的光物理性质的影响。J、 分子结构。1212128122(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Kamlet, M. J. & Taft, R. W. Linear solvation energy relationships, part 3, some reinterpretations of solvent effects based on correlations with solvent effects based on correlations with π* and α values. J. Chem. Soc. Perkin Trans. 2, 349–356 (1979).Article

Kamlet,M.J.&Taft,R.W.线性溶剂化能关系,第3部分,基于与π*和α值相关性的溶剂效应相关性对溶剂效应的一些重新解释。J、 化学。帕金州议会。2349-356(1979)。文章

Google Scholar

谷歌学者

Kamlet, M. J. & Taft, R. W. The solvatochromism comparison method. I. the beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976).Article

Kamlet,M.J。&Taft,R.W。溶剂化变色比较方法。一、 溶剂氢键受体(HBA)碱度的β标度。J、 美国化学。Soc.98377–383(1976)。文章

CAS

中科院

Google Scholar

谷歌学者

Abboud, J. L., Kamlet, M. J. & Taft, R. W. Regarding a generalized scale of solvent polarities. J. Am. Chem. Soc. 99, 8325–8327 (1977).Article

Abboud,J.L.,Kamlet,M.J。&Taft,R.W。关于溶剂极性的广义尺度。J、 美国化学。Soc.998325–8327(1977)。文章

CAS

中科院

Google Scholar

谷歌学者

Catalan, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of medium. J. Phys. Chem. B. 113, 5951–5960 (2009).Article

Catalan,J。基于四个经验尺度对溶剂效应进行了广义处理:介质的偶极性(SdP,一个新尺度),极化率(SP),酸度(SA)和碱度(SB)。J、 物理。化学。B、 1135951-5960(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wypych, G. Handbook of Solvents, 2nd edn (Chem Tec., Torento, 2014).Mozaffarinia, S., Teimuri-Mofrad, R. & Rasidi, M. R. Design, synthesis and biological evaluation of 2,3-dihydro-5,6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors.

Wypych,G.《溶剂手册》,第二版(Chem Tec.,Torento,2014)。Mozaffarinia,S.,Teimuri-Mofrad,R。&Rasidi,M.R。2,3-二氢-5,6-二甲氧基-1H-茚-1-酮和哌嗪盐杂化衍生物作为hAChE和hBuChE酶抑制剂的设计,合成和生物学评价。

Eur. J. Med. Chem. 191, 112140 (2020).Article .

欧洲医学化学杂志。191, 112140 (2020).第[UNK]条。

Google Scholar

谷歌学者

Rahimpour, K., Nikbakht, R., Aghaiepour, A. & Teimmuri-Mofrad, R. Synthesis of 2-(4-amino substituted benzylidene indanone analogues from aromatic nucleophilic substitution (SNAr) reaction. Synth. Commun. 48, 2253–2259 (2018).Article

Rahinpur,K.,Nikbakht,R.,Aghaiepour,A。和Teimmuri-Mofrad,R。从芳香亲核取代(SNAr)反应合成2-(4-氨基取代的亚苄基茚酮类似物。合成。Commun公司。482253-2259(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Yanai, T., Tew, D. & Handy, N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).Article

Yanai,T.,Tew,D。和Handy,N。使用库仑衰减方法(CAM-B3LYP)的新的混合交换相关函数。化学。。利特。393,51-57(2004)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

McLean, A. D. & Chandler, G. S. Contracted gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980).Article

McLean,A.D.&Chandler,G.S.收缩了用于分子计算的高斯基集。1.第二行原子,Z=11-18。化学杂志。。725639-5648(1980)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Sosa, C. et al. A local density functional study of the structure and vibrational frequencies of Molecular Transition-Metal compounds. J. Phys. Chem. 96, 6630–6636 (1992).Article

Sosa,C。等人。分子过渡金属化合物结构和振动频率的局部密度泛函研究。J、 物理。化学。966630-6636(1992)。文章

CAS

中科院

Google Scholar

谷歌学者

Simon, S., Duran, M. & Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996).Article

Simon,S.,Duran,M。&Dannenberg,J.J。基组叠加误差如何改变氢键二聚体的潜在表面?J、 化学。。10511024-11031(1996)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 009, 113, 6378–6396 (2009).Article

Marenich,A.V.,Cramer,C.J。&Truhlar,D.G。基于溶质电子密度的通用溶剂化模型和由体积介电常数和原子表面张力定义的溶剂连续模型。J、 物理。化学。B、 0091136378–6396(2009)。文章

Google Scholar

谷歌学者

https://comp.chem.umn.edu/solvation/mnsddb.pdfFurche, F. & Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117, 7433–7447 (2002).Article

https://comp.chem.umn.edu/solvation/mnsddb.pdfFurche,F。&Ahlrichs,R。激发态性质的绝热时间相关密度泛函方法。J、 化学。。1177433-7447(2002)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936).Article

Onsager,L。液体中分子的电矩。J、 美国化学。Soc.581486-1493(1936)。文章

CAS

中科院

Google Scholar

谷歌学者

Valiev, M. et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477 (2010).Article

Valiev,M。et al。NWChem:用于大规模分子模拟的全面且可扩展的开源解决方案。计算机。。Commun公司。1811477(2010)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Ghanadzadeh Gilani, A., Moghadam, M., Hosseini, S. E. & Zakerhamidi, M. S. A comparative study on the aggregate formation of two oxazine dyes in aqueous and aqueous urea solutions. Spectrochim Acta Mol. Biomol. Spectrosc. 83, 100–105 (2011).Article

Ghanadzadeh Gilani,A.,Moghadam,M.,Hosseini,S.E。和Zakerhamidi,M.S。两种恶嗪染料在尿素水溶液和水溶液中聚集体形成的比较研究。Spectrochim Acta Mol.Biomol。光谱。83100-105(2011)。文章

ADS

广告

Google Scholar

谷歌学者

Khadem Sadigh, M. & Zakerhamidi, M. S. The roles of solute-solute and solute-solvent interactions on the nonlinearity of aqueous solutions of ionic dyes. Z. fur Naturforschung A. 73, 785–794 (2018).Article

Khadem Sadigh,M。&Zakerhamidi,M.S。溶质-溶质和溶质-溶剂相互作用对离子染料水溶液非线性的作用。Z、 。文章

ADS

广告

Google Scholar

谷歌学者

Tajalli, H., Ghanbarzadeh Gilani, A., Zakerhamidi, M. S. & Moghadam, M. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions, 72 697–702. (2009).Prlj, A., Curchod, B. F. E., Fabrizio, A., Floryan, L. & Corminboeuf, C. Qualitatively incorrect features in the TDDFT spectrum of thiophene-based compounds.

Tajalli,H.,Ghanbarzadeh-Gilani,A.,Zakerhamidi,M.S。&Moghadam,M。表面活性剂对罗丹明染料在水溶液中分子聚集的影响,72 697-702。(2009年)。Prlj,A.,Curchod,B。F。E.,Fabrizio,A.,Floryan,L。&Corminboeuf,C。噻吩基化合物的TDDFT光谱中定性不正确的特征。

J. Phys. Chem. Lett. 6, 13–21 (2015).Article .

J.物理学。化学。信件6, 13–21 (2015).第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lippert, E. Spektroskoische Bestimmung Des Dipolmmoments aromatischer Verbindungen Im Ersten Angeregten Singulettzustand. Z. Fur Elektrochemie Berichte Der Bunsengesellschaft Fur Phys. Chem. 61, 962–975 (1957).CAS

Lippert,E.第一激发单重态芳香化合物偶极矩的光谱测定。Z.本生皮肤物理学会电化学报告。化学。61, 962–975 (1957).CAS

Google Scholar

谷歌学者

Cbeng, L., Tam, W., Sevenson, S. H., Meredith, G. R. & Marder, S. R. Experimental investigation of organic molecular nonlinear optical polarizabilities.1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 95, 10631–10643 (1991).Article

Cbeng,L.,Tam,W.,Sevenson,S.H.,Meredith,G.R。&Marder,S.R。有机分子非线性光学极化率的实验研究。苯和二苯乙烯衍生物的方法和结果。J、 物理。化学。9510631-10643(1991)。文章

Google Scholar

谷歌学者

Zakerhamidi, M. S., Moghadam, M. & Karimi, A. Aggregative properties of Phodamine dyes in polyacrylamide hydrophilic gel media. J. Mol. Struct. 1033, 289–297 (2013).Article

Zakerhamidi,M.S.,Moghadam,M。和Karimi,A。Phodamine染料在聚丙烯酰胺亲水凝胶介质中的聚集特性。J、 分子结构。1033289-297(2013)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Oudar, J. L. & Chmla, D. S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664 (1977).Article

Oudar,J.L.&Chmla,D.S。硝基苯胺的超极化率及其与激发态偶极矩的关系。J、 化学。。662664(1977)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Momicchioli, F., Ponterini, G. & Vanossi, D. First- and second order polarizabilities of simple mercocyanines, an experimental and theoretical reassessment of the two-level model. J. Phys. Chem. A. 112, 11861–11872 (2008).Article

Momicchioli,F.,Ponterini,G。&Vanossi,D。简单汞菁的一阶和二阶极化率,对二能级模型的实验和理论重新评估。J、 物理。化学。A、 11211861-11872(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Carlotti, B., Flamini, R., Kikas, I., Mazzucato, U. & Spalletti, A. Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethynylene or ethylene bridges. Chem. Phys. 407, 9–19 (2012).Article

Carlotti,B.,Flamini,R.,Kikas,I.,Mazzucato,U。&Spalletti,A。带有乙炔或乙烯桥的化合物的分子内电荷转移,溶剂化变色和超极化率。化学。。407,9-19(2012)。文章

CAS

中科院

Google Scholar

谷歌学者

Paley, M. S. et al. A solvatochromic method for determining second order polarizabilities of organic molecules. J. Org. Chem. 54, 3774–3778 (1989).Article

Paley,M.S.等人。测定有机分子二阶极化率的溶剂化变色方法。J、 组织化学。543774-3778(1989)。文章

CAS

中科院

Google Scholar

谷歌学者

Dirk, C. W., Cheng, L. T. & Kuzyk, M. G. A simplified three-level model describing the molecular third order optical susceptibility. Int. J. Quantum Chem. 43, 27–36 (1992).Article

Dirk,C.W.,Cheng,L.T。&Kuzyk,M.G。描述分子三阶光学敏感性的简化三能级模型。Int.J.量子化学。43,27-36(1992)。文章

CAS

中科院

Google Scholar

谷歌学者

Warde, U. & Sekar, N. Solvatochromic benzo [h] coumarins: Synthesis, solvatochromism, NLO and DFT study. J. Opt. Mater. 72, 346–358 (2017).Article

Warde,U。&Sekar,N。溶剂变色苯并[h]香豆素:合成,溶剂变色,NLO和DFT研究。J、 选择。马特。72346-358(2017)。文章

CAS

中科院

Google Scholar

谷歌学者

Warde, U. & Sekar, N. NLOphoric mono-azo dyes with negative solvatochromism and in-built ESIPT unit from ethyl 1,3-dihydroxy-2-naphthoate: Estimation of excited state dipole moment and pH study. Dyes Pigm. 137, 384–394 (2017).Article

Warde,U。&Sekar,N。具有负溶剂化变色和来自1,3-二羟基-2-萘甲酸乙酯的内置ESIPT单元的非磷酸单偶氮染料:激发态偶极矩的估计和pH研究。染料Pigm。137384-394(2017)。文章

CAS

中科院

Google Scholar

谷歌学者

Kadam, M. L., Patil, D. & Sekar, N. Fluorescent carbazole based pyridine dyes synthesis, solvatochromism, linear and nonlinear optical properties. J. Opt. Mater. 85, 308–318 (2018).Article

Kadam,M.L.,Patil,D。&Sekar,N。基于咔唑的荧光吡啶染料合成,溶剂化变色,线性和非线性光学性质。J、 选择。马特。85308-318(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Thorat, K. G., Ray, A. K. & Sekar, N. Modulating TICT to ICT characteristics of acid switchable red emitting boradizaindacene chromophores: Perspectives from synthesis, photophysical, hyperpolarizability and TD-DFT studies. Dyes Pigm. 136, 321–334 (2017).Article

Thorat,K.G.,Ray,A.K。&Sekar,N。将TICT调节为酸可切换的红色发光硼二氮杂蒽发色团的ICT特征:来自合成,光物理,超极化率和TD-DFT研究的观点。染料Pigm。136321-334(2017)。文章

CAS

中科院

Google Scholar

谷歌学者

Lanke, S. K. & Sekar, N. Pyrazole based NLOphores: Synthesis, photophysical, DFT, TDDFT studies. Dyes Pigm. 127, 116–127 (2016).Article

Lanke,S.K。&Sekar,N。吡唑基NLOphores:合成,光物理,DFT,TDDFT研究。染料Pigm。127116-127(2016)。文章

CAS

中科院

Google Scholar

谷歌学者

Lanke, S. K. & Sekar, N. Aggregation induced emissive carbazole-based push pull NLOphores: Synthesis, photophysical properties and DFT studies. Dyes Pigm. 124, 82–92 (2016).Article

Lanke,S.K。&Sekar,N。聚集诱导的发射咔唑基推拉NLOphores:合成,光物理性质和DFT研究。染料Pigm。124,82-92(2016)。文章

CAS

中科院

Google Scholar

谷歌学者

Download referencesAcknowledgementsN.FundingNo funding sources.Author informationAuthors and AffiliationsDepartment of Laser and Optics Engineering, University of Bonab, Bonab, IranMahsa Khadem SadighDepartment of Chemical Engineering, University of Bonab, Bonab, IranZ. SayyarDepartment of Applied Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, P.O.

下载referencesAcknowledgementsN。资金无资金来源。作者信息作者和附属机构博纳布大学激光与光学工程系,博纳布大学,博纳布,伊兰兹,博纳布大学,化学工程系。SayyardDepartment of Applied Chemistry,Faculty of Sciences,Mohaghegh Ardabili大学,P.O。

Box 56199–11367, Ardabil, IranA. N. ShamkhaliDepartment of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, IranR. Teimuri-Mofrad & K. RahimpourAuthorsMahsa Khadem SadighView author publicationsYou can also search for this author in.

邮箱56199–11367,阿达比尔,伊拉纳。N、 。Teimuri Mofrad&K。RahinpurauthorsMahsaKhademSadighview作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarZ. SayyarView author publicationsYou can also search for this author in

PubMed Google ScholarZ。SayyarView作者出版物您也可以在

PubMed Google ScholarA. N. ShamkhaliView author publicationsYou can also search for this author in

PubMed谷歌ScholarA。N、 ShamkhaliView作者出版物您也可以在

PubMed Google ScholarR. Teimuri-MofradView author publicationsYou can also search for this author in

PubMed Google ScholarK. RahimpourView author publicationsYou can also search for this author in

PubMed Google ScholarK.rahimpurview作者出版物您也可以在

PubMed Google ScholarContributionsAll authors contributed to the study conception and design. Sample preparation was performed by Z. Sayyar, R. Teimuri-Mofrad, and K. Rahimpour. Experimental analysis was performed by M. Khadem Sadigh. Theoretical analysis was performed by A. N.

PubMed谷歌学术贡献所有作者都为研究概念和设计做出了贡献。样品制备由Z.Sayyar,R.Teimuri Mofrad和K.Rahinpur进行。实验分析由M.Khadem Sadigh进行。理论分析由A.N。

Shamkhali. The first draft of the manuscript was written by M. Khadem Sadigh. All authors read and approved the final manuscript.Corresponding authorCorrespondence to.

沙姆哈里。手稿的初稿由M.Khadem Sadigh撰写。所有作者都阅读并批准了最终稿件。对应作者对应。

Mahsa Khadem Sadigh.Ethics declarations

马萨·卡德姆·萨迪格。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics approval and consent to participate

道德批准和同意参与

Not applicable.

不适用。

Consent for publication

同意出版

Not applicable.

不适用。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleKhadem Sadigh, M., Sayyar, Z., Shamkhali, A.N. et al. Investigation of linear and microscopic nonlinear optical responses of 1-indanone compounds in different environments based on polarity models.

Sci Rep 14, 26559 (2024). https://doi.org/10.1038/s41598-024-78194-9Download citationReceived: 20 July 2024Accepted: 29 October 2024Published: 04 November 2024DOI: https://doi.org/10.1038/s41598-024-78194-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1426559(2024)。https://doi.org/10.1038/s41598-024-78194-9Download引文收到日期:2024年7月20日接受日期:2024年10月29日发布日期:2024年11月4日OI:https://doi.org/10.1038/s41598-024-78194-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsBiomoleculesEnvironmentNonlinear opticsPolarity

关键词分子环境非线性光学极性