EN
登录

猛禽物种在不同扩散阶段的印记栖息地选择各不相同

Imprinted habitat selection varies across dispersal phases in a raptor species

Nature 等信源发布 2024-11-04 07:35

可切换为仅中文


AbstractNatal Habitat Preference Induction (NHPI) plays a significant role in shaping settlement decisions in dispersive animals. Despite its importance, limited research has explored how NHPI varies during natal dispersal phases and across different types of natal habitats. In this study, we examined NHPI in 77 GPS-tagged juvenile red kites (Milvus milvus) originating from different natal habitats along an elevational gradient in Switzerland.

摘要出生栖息地偏好诱导(NHPI)在塑造分散动物的定居决策中起着重要作用。。在这项研究中,我们检测了来自瑞士海拔梯度不同出生栖息地的77只带有GPS标签的幼年红风筝(Milvus Milvus)的NHPI。

We applied individual-based step selection analysis to investigate habitat selection from independence to settlement. We found that during the prospecting phase, individuals predominantly selected habitats similar to their natal environments. However, this pattern changed in the settlement phase: individuals fledged from habitats at higher elevations or closer to urban areas mostly avoided similar habitats (negative NHPI), while those from areas with more farmlands or pastures (combined with forests) showed a preference for similar habitats (positive NHPI).

我们应用基于个体的步骤选择分析来研究从独立到定居的栖息地选择。我们发现,在勘探阶段,个体主要选择与其出生环境相似的栖息地。然而,这种模式在定居阶段发生了变化:来自海拔较高或靠近城市地区的栖息地的个体大多避免了类似的栖息地(负NHPI),而来自农田或牧场(与森林结合)较多的地区的个体则表现出对类似栖息地的偏好(正NHPI)。

Moreover, the magnitude and individual variation in NHPI differed depending on the natal habitat types from which individuals originated. These findings highlight that strength, direction, and individual variation in NHPI differ between natal habitat types and dispersal phases. Natal habitats therefore can have pervasive legacy effects on subsequent habitat selection, likely affecting population and range dynamics..

此外,NHPI的大小和个体差异取决于个体起源的出生栖息地类型。这些发现突出表明,NHPI的强度,方向和个体变异在出生栖息地类型和扩散阶段之间有所不同。因此,出生栖息地可能会对随后的栖息地选择产生普遍的遗留影响,可能会影响种群和范围动态。。

IntroductionNatal dispersal consists of three phases: departure from the birth location, prospecting for suitable habitats, and final settlement at a breeding site1,2,3. Natal dispersal is central in shaping individual life-histories4 and intersects with developmental and behavioural factors affecting ecological and evolutionary outcomes5,6,7.

引言出生扩散包括三个阶段:离开出生地点,寻找合适的栖息地,以及在繁殖地最终定居1,2,3。出生扩散是塑造个体生活史的核心4,并与影响生态和进化结果的发展和行为因素相交5,6,7。

Early-life experiences, particularly through mechanisms like ‘ecological imprinting’, have long been recognized to play a critical role in shaping dispersal patterns8. Imprinting also represents an important mechanism shaping individual preferences in food, habitat, mate, or host selection (reviewed in9), extending its impact beyond individual ecology to broader evolutionary processes, such as reproductive isolation and speciation5,10,11.The concept of Natal Habitat Preference Induction (NHPI) generalizes processes of habitat imprinting and describes how early experiences in the natal habitat influence the likelihood of selecting a similar environment during later life-history stages12.

早期的生活经历,特别是通过“生态印记”等机制,长期以来被认为在塑造扩散模式方面发挥着关键作用8。印记也代表了塑造个体在食物,栖息地,配偶或宿主选择中偏好的重要机制(综述见9),将其影响扩展到个体生态学以外的更广泛的进化过程,如生殖隔离和物种形成5,10,11。出生栖息地偏好诱导(NHPI)的概念概括了栖息地印记的过程,并描述了出生栖息地的早期经历如何影响在以后的生活史阶段选择类似环境的可能性12。

Experimental support for NHPI has been found across a range of animal taxa, primarily in controlled laboratory conditions (reviewed in12, but see two studies that haven’t found any effects13,14). In free-living vertebrates, the influence of natal habitat on subsequent settlement habitat preferences has been demonstrated in mammals such as rodents15,16,17,18, canids19,20,21,22, and ungulates23,24, as well as in reptiles25 and fishes13.

NHPI的实验支持已经在一系列动物分类群中发现,主要是在受控的实验室条件下(12年综述,但见两项尚未发现任何效果的研究13,14)。在自由生活的脊椎动物中,出生栖息地对随后定居栖息地偏好的影响已经在哺乳动物中得到证实,如啮齿动物15,16,17,18,犬科动物19,20,21,22和有蹄类动物23,24,以及爬行动物25和鱼类13。

More recent studies have also strengthened the evidence for NHPI in birds26,27,28,29,30,31,32.While the occurrence of NHPI is widely recognized, there is a gap in understanding its intraspecific variation. This variation includes individual differences, changes across life stages, and spatial differences related to na.

。这种变化包括个体差异,生命阶段的变化以及与na相关的空间差异。

(1)

(1)

With xo and y0 representing the values of PC1 and PC2 for the natal area, while xi and yi denote the values of PC1 and PC2 for each of the i-step location (both observed and available). Lower dissimilarity values therefore indicate habitats more similar to the natal habitat.Distance to natal nestTo account for the tendency of individuals to select areas closer to their natal area, we also extracted the geographic distance to the natal nest (distance, in km) for each observed and available step (following42) and used this distance as covariate in the models.

xo和y0表示出生区域的PC1和PC2值,而xi和yi表示每个i步位置(观察到的和可用的)的PC1和PC2值。因此,较低的不相似性值表明栖息地与出生栖息地更相似。。

The two covariates, dissimilarity and distance, were not strongly correlated (Pearson’s correlation < 0.6).Individual-year modelling of NHPITo investigate the impact of the dissimilarity on step selection, while controlling for the distance to the natal nest, we first standardized and centred both covariates60.

相异性和距离这两个协变量没有强相关性(Pearson相关系数<0.6)。NHPITo的个体年建模研究了差异对步骤选择的影响,在控制到出生巢的距离的同时,我们首先对两个协变量进行了标准化和集中60。

We then fitted conditional logistic regressions to each individual-year separately to specifically assess individual variation39,41. This analysis was conducted using the IndRSA package which allows for individual-iSSA and the extraction of individual-year coefficients for both covariates39. We hereafter refer to NHPI as the negative of the dissimilarity coefficients.Inter-individual variation in NHPITo separate population averages from inter-individual variation in NHPI coefficients, three metrics were calculated for each individual-year i (equations recently formulated by39):$$\:Average=\overline{x}=\frac{1}{n}{\sum\:}_{i=1}^{n}{x}_{i}$$.

然后,我们将条件逻辑回归分别拟合到每个年份,以专门评估个体变量39,41。这项分析是使用IndRSA软件包进行的,该软件包允许单个iSSA和提取两个协变量的单个年份系数39。以下我们将NHPI称为不相似系数的负值。NHPI的个体间变异为了将人口平均数与NHPI系数的个体间变异分开,为每个年份i计算了三个指标(最近由39公式化的方程式):$$:平均值=\上划线{x}=\分数{1}{n}{\总和:}{ui=1}^{n}{x}_{i} $$。

(2)

(2)

NHPI average (Eq. 2) represents the population average of individual-year NHPI coefficients xi with a total of n individual-years (n = 216 + 129 = 345).$$\:Specialization=\:\frac{1}{n}\:\sum\:_{i=1}^{n}Abs\left({x}_{i}\right)$$

NHPI平均值(等式2)表示个人年份NHPI系数xi的人口平均值,总共n个个人年份(n=216++129=345)。$$\:专门化=\:\frac{1}{n}\:\sum\:\ui=1}^{n}Abs\左({x}_{i} \右)$$

(3)

(3)

NHPI specialization (Eq. 3) represents the average of the magnitude of the individual-year NHPI coefficients xi (independent of the direction), and it is strictly positive, with higher values indicating higher individual specialization. This metric can be particularly informative when the overall population average is equal to zero and/or to capture a bimodal (or more complex) pattern in a population coefficients39.$$\:Heterogeneity=\:\sqrt{{\frac{1}{n-1}\:\sum\:_{i=1}^{n}\left({x}_{i}-\:\stackrel{-}{x}\right)}^{2}}$$.

NHPI专业化(方程3)表示单个年份NHPI系数xi(与方向无关)大小的平均值,它是严格正的,数值越高表示个体专业化程度越高。当总体总体平均值等于零和/或在总体系数39中捕获双峰(或更复杂)模式时,此度量可能特别有用。$$\:异质性=\:\ sqrt{\ frac{1}{n-1}\:\ sum\:\ ui=1}^{n}\ left({x}_{i}-\:\ stackrel{-}{x}\右)}^{2}}$$。

(4)

(4)

NHPI heterogeneity (Eq. 4) corresponds to the standard deviation of individual-year NHPI coefficients xi with higher values indicating higher inter-individual heterogeneity.Intra-individual variation in NHPINHPI change from prospecting to settlementTo quantify intra-individual variation i.e., how an individual’s NHPI coefficients change from the prospecting to settlement, we applied a consistency and reversal metrics39 to the dispersal phases prospecting p and settlement s (with the same notation as above):$$\:Consistency=\:\frac{1}{n}\:\sum\:_{i=1}^{n}Abs({x}_{i,p}-\:{x}_{i,\:s})$$.

NHPI异质性(方程4)对应于个体年份NHPI系数xi的标准偏差,较高的值表明个体间异质性较高。NHPINHPI的个体内变异从勘探到定居的变化为了量化个体内变异,即个体的NHPI系数如何从勘探到定居的变化,我们将一致性和反转度量39应用于勘探p和定居s的扩散阶段(与上述符号相同):$$\:一致性=\:\ frac{1}{n}\:\ sum\:\ ui=1}^{n}Abs(笑声)({x}_{i,p}-\{x}_{i,\:s})$$。

(5)

(5)

$$\:Reversal=\:\frac{1}{n}\:\sum\:_{i=1}^{n}\left\{\begin{array}{c}1\:if\:sign\left({x}_{i,p}\right)\ne\:\:sign\left({x}_{i,s}\right)\:\\\:0\:if\:sign\left({x}_{i,p}\right)=\:sign\left({x}_{i,s}\right)\end{array}\right.$$

$$\:反转=\:\ frac{1}{n}\:\ sum\:\ ui=1}^{n}\ left\{\ begin{array}{c}1\:if \:符号\左({x}_{i,p}\右)\ne\:\:符号\左({x}_{i,s}\右)\:\ \:0 \:if \:符号\左({x}_{i,p}\右)=\:符号\左({x}_{i,s}\右)\end{array}\右$$

(6)

(6)

This involved re-running the step selection models with data only from the final year of prospecting with the first year of settlement per individual (n = 77). We specifically modelled the interaction of dispersal phase (prospecting vs. settlement) with both covariates (distance and dissimilarity).

这涉及重新运行步骤选择模型,数据仅来自勘探的最后一年,每个人的第一年结算(n=77)。我们专门模拟了扩散阶段(勘探与沉降)与两个协变量(距离和差异)的相互作用。

Following39, only the interaction terms were tested, providing a separate coefficient for each phase. These interaction coefficients were then used to compute the consistency and reversal metrics, quantifying intra-individual shifts in habitat preferences between the two phases.NHPI consistency represents the average of the absolute differences between the coefficients of the two dispersal phases across all n individuals (n = 77, Eq. 5).

在39之后,仅测试了相互作用项,为每个阶段提供了单独的系数。然后使用这些相互作用系数来计算一致性和逆转指标,量化两个阶段之间栖息地偏好的个体内变化。NHPI一致性表示所有n个个体的两个扩散阶段的系数之间的绝对差异的平均值(n=77,等式5)。

Consistency is an inverse measure as values closer to zero indicate a higher consistency between prospecting and settlement (indicating minimal difference in the coefficients). Conversely, higher values indicate greater changes in the coefficients between the two phases, implying lower consistency. NHPI reversal (Eq. 6) represents the proportion of individuals showing reversal preference between the two dispersal phases, switching from positive to negative (or vice versa).

一致性是一种反向度量,因为接近零的值表示勘探和沉降之间的一致性更高(表明系数差异最小)。相反,较高的值表示两个阶段之间的系数变化较大,这意味着一致性较低。NHPI逆转(方程6)表示在两个扩散阶段之间表现出逆转偏好的个体比例,从正面转换为负面(反之亦然)。

It is bounded between 0 and 1 with high values indicating an increased proportion of reversal.Annual variation in NHPI during prospectingFinally, to assess interannual variation (consistency across consecutive years) for each individual during the prospecting phase (which can last several years) we customized the consistency metric by incorporating ‘year’ as an interactive factor, with both covariates, in each individual-iSSA and calculated the metric as follows:$$\:Interranual\:Consistency\:=\:\frac{1}{n}\sum\:_{i=1}^{n}\left[\frac{1}{{m}_{i}-1}\sum\:_{j=1}.

它在0和1之间有界,高值表示反转比例增加。勘探期间NHPI的年变化最后,为了评估勘探阶段(可能持续几年)每个人的年际变化(连续几年的一致性),我们通过在每个iSSA中将“年”作为一个交互因子(带有两个协变量)来定制一致性度量,并按如下方式计算度量:$$\:年间\:一致性\:=:\ frac{1}{n}\ sum\:\ui=1}^{n}\ left[\ frac{1}{{m}_{i}-1}\和\:{j=1}。

(7)

(7)

Using the same notation as before, here m refers to the total number of years for each individual i. The first summation calculates the absolute differences for each consecutive year j for each individual i. The term mi – 1 normalizes these differences across individuals. The second summation thus provides an average measure of temporal NHPI consistency across n individuals (n = 77).Propagation of uncertainties, models validation and residuals spatial autocorrelationTo estimate uncertainties within the five NHPI metrics (average, specialization, heterogeneity, consistency, and reversal), we applied a data augmentation method using the IndRSA package.

使用与之前相同的符号,这里m是指每个个体i的总年数。第一次求和计算每个个体i的每个连续年份j的绝对差异。术语mi-1标准化了个体之间的这些差异。因此,第二次求和提供了n个个体的时间NHPI一致性的平均度量(n=77)。不确定性的传播,模型验证和残差空间自相关为了估计五个NHPI指标(平均值,专业化,异质性,一致性和反转)内的不确定性,我们使用IndRSA软件包应用了数据增强方法。

This method involved the generation of 1000 simulated replicates of each individual coefficient from each covariate for each model, drawn from a normal distribution centred around the given coefficient values. The chosen standard deviation was the standard error corresponding to these coefficients (see39 for detailed explanations).

该方法涉及从每个模型的每个协变量中生成每个系数的1000个模拟重复,这些重复来自以给定系数值为中心的正态分布。。

For each set of individual simulated coefficients, we then calculated the NHPI metrics, producing 1000 values for each metric39. This method, similar to bootstrapping, minimizes the effects of autocorrelation by treating each individual as independent, ensuring more reliable errors estimations41. We then assessed model performance using k-fold cross-validation using the indRSA package39, withholding 20% of the data, assessing model fit, and repeating the process five times for each individual model.

对于每组单独的模拟系数,我们然后计算NHPI指标,为每个指标产生1000个值39。这种方法类似于自举,通过将每个个体视为独立的个体来最小化自相关的影响,从而确保更可靠的误差估计41。然后,我们使用indRSA软件包39使用k倍交叉验证评估模型性能,扣留20%的数据,评估模型拟合,并对每个模型重复该过程五次。

Cross-validation provided relatively high Spearman rank correlations with averages ranging from 0.63 to 0.75 indicating good model performances61,62. Finally, the absence of strong spatial autocorrelation in the residuals of each model was checked visually using variograms using the ge.

交叉验证提供了相对较高的Spearman等级相关性,平均值范围为0.63至0.75,表明模型性能良好61,62。最后,使用ge使用变异函数目视检查每个模型的残差中不存在强空间自相关。

Data availability

数据可用性

The GPS datasets analysed in the current study are available in Movebank (www.movebank.org), under the project named “Milvusmilvus_Milsar_SOI_final” (ID 1356790386) and 'Milvusmilvus_GSM_SOI' (ID 230545451). Data and codes to reproduce the analyses are made available through the Open Repository and Archive from vogelwarte.ch (https://doi.org/10.5281/zenodo.13970545)..

本研究中分析的GPS数据集可在Movebank(www.Movebank.org)上获得,该项目名为“Milvusmilsar\u SOI\u final”(ID 1356790386)和“Milvusmilv\u GSM\u SOI”(ID 230545451)。重现分析的数据和代码可通过vogelwarte.ch的开放存储库和存档获得(https://doi.org/10.5281/zenodo.13970545)。。

ReferencesClobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. Dispersal. (2001).Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).Article

参考文献Clobert,J.,Danchin,E.,Dhondt,A.A。&Nichols,J。Distribution。(2001年)。Bowler,D.E。和Benton,T.G。动物扩散策略的原因和后果:将个体行为与空间动力学联系起来。《生物学评论》80205-225(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Boulinier, T., Mariette, M., Doligez, B. & Danchin, E. Choosing where to breed - breeding habitat choice. in Behav. Ecol. 285–322 (2008).Matthysen, E. Oxford University Press Oxford,. Multicausality of dispersal: a review. in Dispersal ecol.evol. vol. 27 3–18 (2012).Benard, M. F. & McCauley, S.

Boulinier,T.,Mariette,M.,Doligez,B。&Danchin,E。选择繁殖地点-繁殖栖息地选择。在Behav。Ecol公司。285-322(2008)。Matthysen,E。牛津大学出版社,牛津,。扩散的多原因:综述。在分散的ecol.evol。第27卷第3-18页(2012年)。贝纳德,M.F。和麦考利,S。

J. Integrating across Life-History stages: consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).Article .

J、 整合生命史阶段:出生栖息地对扩散的影响。《美国国家公报》171553-567(2008)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B Biol. Sci. 281, 20132851 (2014).Ponchon, A. & Travis, J. M. J. Informed dispersal based on prospecting impacts the rate and shape of range expansions.

。程序。R、 社会学B生物学。科学。28120132851(2014)。Ponchon,A.&Travis,J.M.J.基于勘探的知情扩散会影响范围扩展的速度和形状。

Ecography (2022). (2022).Stamps, J. Oxford University Press,. Habitat selection by dispersers: integrating proximate and ultimate approaches. in Dispersal 230–242 (2001).Immelmann, K. Ecological significance of imprinting and early learning. Annu. Rev. Ecol. Syst. 6, 15–37 (1975).Article .

生态地理学(2022)。(2022年)。邮票,J。牛津大学出版社,。分散者的栖息地选择:整合近距离和最终方法。在分散230-242(2001)中。Immelmann,K。印记和早期学习的生态学意义。年。修订版Ecol。系统。6,15-37(1975)。文章。

Google Scholar

谷歌学者

Beltman, J. & Metz, J. a. j. Speciation: more likely through a genetic or through a learned habitat preference? Proc. R. Soc. B Biol. Sci. 272, 1455–1463 (2005).Berner, D. & Thibert-Plante, X. How mechanisms of habitat preference evolve and promote divergence with gene flow. J. Evol.

Beltman,J.&Metz,J.a.J.物种形成:更可能是通过遗传还是通过后天的栖息地偏好?程序。R、 社会学B生物学。科学。2721455-1463(2005)。Berner,D。&Thibert-Plante,X。栖息地偏好机制如何进化并促进基因流的分化。J、 进化。

Biol. 28, 1641–1655 (2015).Article .

《生物学》281641-1655(2015)。第[UNK]条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).Article

Davis,J.M。和Stamps,J.A。出生经验对栖息地偏好的影响。趋势Ecol。进化。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dixson, D. L. et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia. 174, 99–107 (2014).Article

Dixson,D.L.等人。珊瑚礁鱼类印记的实验评估和先天偏好在栖息地选择中的作用。食欲不振。174,99-107(2014)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Ousterhout, B. H., Luhring, T. M. & Semlitsch, R. D. No evidence of natal habitat preference induction in juveniles with complex life histories. Anim. Behav. 93, 237–242 (2014).Article

Ousterhout,B.H.,Luhring,T.M。和Semlitsch,R.D。没有证据表明具有复杂生活史的青少年的出生栖息地偏好诱导。动画。行为。93237-242(2014)。文章

Google Scholar

谷歌学者

Haughland, D. L. & Larsen, K. W. Exploration correlates with settlement: Red squirrel dispersal in contrasting habitats. J. Anim. Ecol. 73, 1024–1034 (2004).Article

Haughland,D.L。和Larsen,K.W。探索与定居相关:红松鼠在对比栖息地中的扩散。J、 动画。Ecol公司。731024-1034(2004)。文章

Google Scholar

谷歌学者

Selonen, V., Hanski, I. K. & Desrochers, A. Natal habitat-biased dispersal in the siberian flying squirrel. Proc. R Soc. B Biol. Sci. 274, 2063–2068 (2007).Article

Selonen,V.,Hanski,I.K。&Desrochers,A。西伯利亚飞鼠的出生栖息地偏向分散。程序。R Soc.B生物学。科学。2742063-2068(2007)。文章

Google Scholar

谷歌学者

Mabry, K. E. & Stamps, J. A. Dispersing brush mice prefer habitat like home. Proc. R. Soc. B Biol. Sci. 275, 543–548 (2008).Merrick, M. J. & Koprowski, J. L. Evidence of natal habitat preference induction within one habitat type. Proc. R. Soc. B Biol. Sci. 283, 20162106 (2016).Karlin, M.

Mabry,K.E。&Stamps,J.A。分散的灌木丛小鼠更喜欢像栖息地一样的家。程序。R、 社会学B生物学。科学。275543-548(2008)。Merrick,M.J.和Koprowski,J.L.在一种栖息地类型内诱导出生栖息地偏好的证据。程序。R、 社会学B生物学。科学。。卡林,M。

& Chadwick, J. Red wolf natal dispersal characteristics: comparing periods of population increase and stability. J. Zool. 286, 266–276 (2012).Article .

&Chadwick,J。Red wolf出生扩散特征:比较种群增长期和稳定期。J、 佐尔。286266-276(2012)。文章。

Google Scholar

谷歌学者

Sanz-Pérez, A. et al. No place like home? A test of the natal habitat-biased dispersal hypothesis in scandinavian wolves. R Soc. Open. Sci. 5, 181379 (2018).Article

?斯堪的纳维亚狼的出生栖息地偏向扩散假说的检验。R Soc打开。科学。5181379(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Milleret, C. et al. Testing the influence of habitat experienced during the natal phase on habitat selection later in life in scandinavian wolves. Sci. Rep. 9, 6526 (2019).Article

Milleret,C.等人测试了斯堪的纳维亚狼出生阶段经历的栖息地对其生命后期栖息地选择的影响。科学。代表96526(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zepeda, E., Payne, E., Wurth, A., Sih, A. & Gehrt, S. Early life experience influences dispersal in coyotes (Canis latrans). Behav. Ecol. 32, 728–737 (2021).Article

Zepeda,E.,Payne,E.,Wurth,A.,Sih,A。&Gehrt,S。早期的生活经历影响土狼(Canis latrans)的扩散。行为。Ecol公司。32728-737(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Larue, B., Côté, S. D., St-Laurent, M. H., Dussault, C. & Leblond, M. Natal habitat preference induction in large mammals—like mother, like child? Ecol. Evol. 8, 12629–12640 (2018).Article

Larue,B.,Côté,S.D.,St Laurent,M.H.,Dussault,C。&Leblond,M。大型哺乳动物如母亲,如孩子的出生栖息地偏好诱导?Ecol公司。进化。812629-12640(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hooven, N. D., Springer, M. T., Nielsen, C. K. & Schauber, E. M. Influence of natal habitat preference on habitat selection during extra-home range movements in a large ungulate. Ecol. Evol. 13, e9794 (2023).Article

Hooven,N.D.,Springer,M.T.,Nielsen,C.K。&Schauber,E.M。出生栖息地偏好对大型有蹄类动物野外活动期间栖息地选择的影响。Ecol公司。进化。13,e9794(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roe, J. H., Frank, M. R., Gibson, S. E., Attum, O. & Kingsbury, B. A. No place like home: an experimental comparison of reintroduction strategies using snakes. J. Appl. Ecol. 47, 1253–1261 (2010).Article

Roe,J.H.,Frank,M.R.,Gibson,S.E.,Attum,O。&Kingsbury,B.A。没有像家一样的地方:使用蛇重新引入策略的实验比较。J、 应用。Ecol公司。471253-1261(2010)。文章

Google Scholar

谷歌学者

Piper, W. H., Palmer, M. W., Banfield, N. & Meyer, M. W. Can settlement in natal-like habitat explain maladaptive habitat selection? Proc. R. Soc. B Biol. Sci. 280, 20130979 (2013).Fletcher, R. J. et al. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

?程序。R、 社会学B生物学。科学。28020130979(2013)。分散体对出生环境的亲和力影响繁殖,并解释了高度流动鸟类的地理结构。

Proc. R Soc. B Biol. Sci. 282, 20151545 (2015).Article .

珀西。生物学会。科学。282, 20151545 (2015).第[UNK]条。

Google Scholar

谷歌学者

Koleček, J., Procházka, P., Brlík, V. & Honza, M. Cross-continental test of natal philopatry and habitat-imprinting hypotheses to explain host specificity in an obligate brood parasite. Sci. Nat. 107, 12 (2020).Article

Koleček,J.、Procházka,P.、Brlík,V.和Honza,M.解释专性面包寄生虫宿主特异性的出生哲学和栖息地印记假说的跨大陆测试。科学。《自然》杂志2020年第107、12期。文章

Google Scholar

谷歌学者

Hoover, B. A. et al. Early evidence of natal-habitat preference: juvenile loons feed on natal-like lakes after fledging. Ecol. Evol. 11, 1310–1319 (2021).Article

胡佛(Hoover,B.A.)等人,《初生栖息地偏好的早期证据:幼龙羽化后以类似初生的湖泊为食。Ecol公司。进化。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Picardi, S. et al. Behavioural state-dependent habitat selection and implications for animal translocations. J. Appl. Ecol. 59, 624–635 (2022).Article

Picardi,S.等人。行为状态依赖的栖息地选择和对动物易位的影响。J、 应用。Ecol公司。。文章

Google Scholar

谷歌学者

Dawson Pell, F. S. E. et al. Dispersal behaviour and settlement in an invasive bird: dispersers prefer their natal habitat. Anim. Behav. 205, 139–148 (2023).Article

道森·佩尔(DawsonPell),F.S.E。等人,《入侵鸟类的扩散行为和定居:扩散者更喜欢它们的出生栖息地》。动画。行为。205139-148(2023)。文章

Google Scholar

谷歌学者

Camacho, C., Canal, D. & Potti, J. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population. BMC Evol. Biol. 16, 158 (2016).Article

Camacho,C.,Canal,D。&Potti,J。Natal栖息地印记抵消了空间结构种群中表型依赖性扩散的多样化影响。。生物学16158(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stamps, J. A. & Swaisgood, R. R. Someplace like home: experience, habitat selection and conservation biology. Appl. Anim. Behav. Sci. 102, 392–409 (2007).Article

Stamps,J.A。&Swaisgood,R.R。像家一样的地方:经验,栖息地选择和保护生物学。应用。动画。行为。科学。102392-409(2007)。文章

Google Scholar

谷歌学者

Stamps, J. A. & Davis, J. M. Adaptive effects of natal experience on habitat selection by dispersers. Anim. Behav. 72, 1279–1289 (2006).Article

Stamps,J.A.&Davis,J.M。出生经验对分散者栖息地选择的适应性影响。动画。行为。721279-1289(2006)。文章

Google Scholar

谷歌学者

Jønsson, K. A. et al. Tracking animal dispersal: from individual movement to community assembly and global range dynamics. Trends Ecol. Evol. 31, 204–214 (2016).Article

。趋势Ecol。进化。31204-214(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stamps, J. A., Krishnan, V. V. & Willits, N. H. How different types of natal experience affect habitat preference. Am. Nat. 174, 623–630 (2009).Article

Stamps,J.A.,Krishnan,V.V。和Willits,N.H。不同类型的出生经历如何影响栖息地偏好。《美国国家公报》174623-630(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Evolution driven by differential dispersal within a wild bird population. Nature. 433, 60–65 (2005).Article

。自然。433,60-65(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia. 180, 697–705 (2016).Article

Leclerc,M.等人,《量化栖息地选择中一致的个体差异》。食欲不振。180697-705(2016)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Bastille-Rousseau, G. & Wittemyer, G. Simple metrics to characterize inter-individual and temporal variation in habitat selection behaviour. J. Anim. Ecol. 91, 1693–1706 (2022).Article

Bastille Rousseau,G。&Wittemyer,G。描述栖息地选择行为的个体间和时间变化的简单指标。J、 动画。Ecol公司。911693-1706(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).Article

Avgar,T.,Potts,J.R.,Lewis,M.A。和Boyce,M.S。综合步骤选择分析:弥合资源选择和动物运动之间的差距。方法Ecol。进化。7619-630(2016)。文章

Google Scholar

谷歌学者

Fieberg, J., Signer, J., Smith, B. & Avgar, T. A ‘How to’ guide for interpreting parameters in habitat-selection analyses. J. Anim. Ecol. 90, 1027–1043 (2021).Article

Fieberg,J.,Signer,J.,Smith,B。&Avgar,T。A《如何解释栖息地选择分析中的参数》指南。J、 动画。Ecol公司。901027-1043(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Orgeret, F., Grüebler, M. U., Scherler, P., van Bergen, V. S. & Kormann, U. G. Shift in habitat selection during natal dispersal in a long-lived raptor species. Ecography e06729 (2023). (2023).Welti, N., Scherler, P. & Grüebler, M. U. Carcass predictability but not domestic pet introduction affects functional response of scavenger assemblage in urbanized habitats.

Orgeret,F.,Grüebler,M.U.,Scherler,P.,van Bergen,V.S。&Kormann,U.G。长寿猛禽物种出生扩散期间栖息地选择的变化。生态地理学e06729(2023)。(2023年)。Welti,N.,Scherler,P。&Grüebler,M.U。胴体的可预测性,但不是家养宠物的引入会影响城市化栖息地中清道夫组合的功能反应。

Funct. Ecol. 34, 265–275 (2020).Article .

函数。Ecol公司。34265-275(2020)。文章。

Google Scholar

谷歌学者

Cereghetti, E., Scherler, P., Fattebert, J. & Grüebler, M. U. Quantification of anthropogenic food subsidies to an avian facultative scavenger in urban and rural habitats. Landsc. Urban Plan. 190, 103606 (2019).Article

Cereghetti,E.,Scherler,P.,Fattebert,J。&Grüebler,M.U。量化城市和农村栖息地鸟类兼性清道夫的人为食物补贴。土地SC。城市规划。190103606(2019)。文章

Google Scholar

谷歌学者

Seoane, J., Viñuela, J., Dı́az-Delgado, R. & Bustamante, J. The effects of land use and climate on red kite distribution in the Iberian peninsula. Biol. Conserv. 111, 401–414 (2003).Article

Seoane,J.,Viñuela,J.,Dı́az Delgado,R。&Bustamante,J。土地利用和气候对伊比利亚半岛红风筝分布的影响。生物保护。111401-414(2003)。文章

Google Scholar

谷歌学者

Sergio, F. et al. Preservation of wide-ranging top predators by site-protection: Black and red kites in Doñana National Park. Biol. Conserv. 125, 11–21 (2005).Article

Sergio,F.等人,《通过场地保护保护保护范围广泛的顶级捕食者:多尼亚纳国家公园的黑风筝和红风筝》。Biol。保守。125,11-21(2005)。文章

Google Scholar

谷歌学者

Hothorn, T., Müller, J., Schröder, B., Kneib, T. & Brandl, R. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol. Monogr. 81, 329–347 (2011).Article

Hothorn,T.,Müller,J.,Schröder,B.,Kneib,T。&Brandl,R。分解物种分布的环境,空间和时空成分。Ecol公司。Monogr公司。81329-347(2011)。文章

Google Scholar

谷歌学者

Heuck, C., Brandl, R., Albrecht, J. & Gottschalk, T. K. The potential distribution of the red kite in Germany. J. Ornithol. 154, 911–921 (2013).Article

Heuck,C.,Brandl,R.,Albrecht,J。&Gottschalk,T.K。红色风筝在德国的潜在分布。J、 鸟氨酸。154911–921(2013)。文章

Google Scholar

谷歌学者

Nägeli, M. et al. Weather and food availability additively affect reproductive output in an expanding raptor population. Oecologia. 198, 125–138 (2022).Article

Nägeli,M.等人。天气和食物供应会对猛禽种群不断扩大的繁殖产量产生额外影响。食欲不振。198125-138(2022)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Scherler, P. et al. Determinants of departure to natal dispersal across an elevational gradient in a long-lived raptor species. Ecol. Evol. 13, e9603 (2023).Article

Scherler,P。等人。长寿猛禽物种在海拔梯度上偏离出生扩散的决定因素。Ecol公司。进化。13,e9603(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kenward, R. E. Raptor radio-tracking and telemetry. ICBP Tech. Publ. 5, e420 (1985).

Kenward,R.E。猛禽无线电跟踪和遥测。ICBP技术公共。5,e420(1985)。

Google Scholar

谷歌学者

Kenward, R. E. A Manual for Wildlife Radio Tagging (Academic, 2000).Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2018).Article

《野生动物无线电标签手册》(Academic,2000)。Signer,J.,Fieberg,J。&Avgar,T。动物运动工具(amt):用于管理跟踪数据和进行栖息地选择分析的R包。Ecol公司。进化。9880-890(2018)。文章

Google Scholar

谷歌学者

Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/b21874Patin, R., Etienne, M. P., Lebarbier, E., Chamaillé-Jammes, S. & Benhamou, S. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements.

Husson,F.,Le,S。&PagèS,J。使用R进行探索性多变量分析(Chapman and Hall/CRC,2017)。https://doi.org/10.1201/b21874Patin,R.,Etienne,M.P.,Lebarbier,E.,Chamaillé-Jammes,S。&Benhamou,S。识别多变量时间序列中的平稳阶段,以突出行为模式和家庭范围的定居点。

J. Anim. Ecol. 89, 44–56 (2020).Article .

J、 动画。Ecol公司。89,44-56(2020)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Delgado, M. & Penteriani, V. Behavioral States help translate dispersal movements into spatial distribution patterns of floaters. Am. Nat. 172, 475–485 (2008).Article

Delgado,M。和Penteriani,V。行为状态有助于将分散运动转化为漂浮物的空间分布模式。《美国国家学报》172475-485(2008)。文章

Google Scholar

谷歌学者

Delgado, M., Penteriani, V., Nams, V. O. & Campioni, L. Changes of movement patterns from early dispersal to settlement. Behav. Ecol. Sociobiol. 64, 35–43 (2009).Article

Delgado,M.,Penteriani,V.,Nams,V.O。和Campioni,L。运动模式从早期扩散到定居的变化。行为。Ecol公司。社会生物学。64,35-43(2009)。文章

Google Scholar

谷歌学者

Fortin, D. et al. Wolves influence elk movements: Behavior shapes a trophic Cascade in yellowstone national park. Ecology. 86, 1320–1330 (2005).Article

狼影响麋鹿的活动:行为塑造黄石国家公园的营养级联。生态学。861320-1330(2005)。文章

Google Scholar

谷歌学者

Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).Article

Thurfjell,H.,Ciuti,S。和Boyce,M。S。阶跃选择函数在生态学和保护中的应用。莫夫。Ecol公司。2,4(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article

Schielzeth,H。提高回归系数可解释性的简单方法。方法Ecol。进化。1103-113(2010)。文章

Google Scholar

谷歌学者

Basille, M. et al. Plastic response of fearful prey to the spatiotemporal dynamics of predator distribution. Ecology. 96, 2622–2631 (2015).Article

Basille,M.等人,《可怕猎物对捕食者分布时空动态的塑性反应》。生态学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fortin, D. et al. Group-size-mediated habitat selection and group fusion–fission dynamics of bison under predation risk. Ecology. 90, 2480–2490 (2009).Article

。生态学。902480-2490(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Coulon, A. et al. Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landsc. Ecol. 23, 603–614 (2008).Article

Coulon,A.等人使用阶跃选择函数推断景观结构对狍(Capreolus Capreolus)运动的影响。土地SC。Ecol公司。23603-614(2008)。文章

Google Scholar

谷歌学者

Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology. 99, 2058–2066 (2018).Article

Martin,A.E.&Fahrig,L。栖息地专家鸟类比栖息地通才鸟类分散得更远,迁徙更多。生态学。992058-2066(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Aebischer, A. & Scherler, P. Der Rotmilan: Ein Greifvogel Im Aufwind (Haupt Verlag AG, 2021).Bolnick, D. I. et al. The Ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).Article

Aebischer,A.和Scherler,P.《红风筝:逆风中的猛禽》(Haupt Verlag AG,2021)。Bolnick,D.I.等人。个体生态学:个体专业化的发生率和影响。《美国国家杂志》第161期,第1-28页(2003年)。文章

MathSciNet

MathSciNet

PubMed

PubMed

Google Scholar

谷歌学者

Woo, K. J., Elliott, K. H., Davidson, M., Gaston, A. J. & Davoren, G. K. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J. Anim. Ecol. 77, 1082–1091 (2008).Article

Woo,K.J.,Elliott,K.H.,Davidson,M.,Gaston,A.J。&Davoren,G.K。多面手海洋捕食者饮食的个体专业化反映了觅食行为的专业化。J、 动画。Ecol公司。771082-1091(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Carlson, B. S., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Individual environmental niches in mobile organisms. Nat. Commun. 12, 4572 (2021).Article

Carlson,B.S.,Rotics,S.,Nathan,R.,Wikelski,M。&Jetz,W。移动生物中的个体环境生态位。国家公社。124572(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davis, J. M. Patterns of variation in the influence of natal experience on habitat choice. Q. Rev. Biol. 83, 363–380 (2008).Article

Davis,J.M。出生经验对栖息地选择影响的变化模式。Q、 生物修订版。83363-380(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schmidt, K. A., Dall, S. R. X. & Van Gils, J. A. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos. 119, 304–316 (2010).Article

Schmidt,K.A.,Dall,S.R.X。和Van Gils,J.A。信息生态学:关于做出明智决策的生态学意义的概述。奥科斯。。文章

ADS

广告

Google Scholar

谷歌学者

Stamps, J. A. & Frankenhuis, W. E. Bayesian models of development. Trends Ecol. Evol. 31, 260–268 (2016).Article

。趋势Ecol。进化。31260-268(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Levitis, D. A. Before senescence: the evolutionary demography of ontogenesis. Proc. R. Soc. B Biol. Sci. 278, 801–809 (2011).Danchin, E., Boulinier, T. & Massot, M. Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology. 79, 2415–2428 (1998).Article .

Levitis,D.A。衰老前:个体发生的进化人口统计学。程序。R、 社会学B生物学。科学。278801-809(2011)。Danchin,E.,Boulinier,T。&Massot,M。同种繁殖成功和繁殖栖息地选择:对殖民地研究的影响。生态学。。文章。

Google Scholar

谷歌学者

Parejo, D., Danchin, E. & Avilés, J. M. The heterospecific habitat copying hypothesis: can competitors indicate habitat quality? Behav. Ecol. 16, 96–105 (2005).Article

Parejo,D.,Danchin,E.&Avilés,J.M。异种栖息地复制假说:竞争者能否表明栖息地质量?行为。Ecol公司。16,96-105(2005)。文章

Google Scholar

谷歌学者

Jaenike, J. & Holt, R. D. Genetic variation for habitat preference: evidence and explanations. Am. Nat. 137, S67–S90 (1991).Article

Jaenike,J。&Holt,R.D。栖息地偏好的遗传变异:证据和解释。《美国国家汇编》137,S67–S90(1991)。文章

Google Scholar

谷歌学者

Johnson, M. D. Measuring habitat quality: a review. Condor. 109, 489–504 (2007).Article

Johnson,M.D。测量栖息地质量:综述。秃鹰。109489-504(2007)。文章

Google Scholar

谷歌学者

Jarvis, P. J. Urban animal ecology. in The Routledge Handbook of Urban Ecology 376–384 (Routledge Taylor & Francis Group, (2010).Collins, M. K., Magle, S. B. & Gallo, T. Global trends in urban wildlife ecology and conservation. Biol. Conserv. 261, 109236 (2021).Article

Jarvis,P.J。城市动物生态学。《Routledge城市生态学手册》376-384(Routledge Taylor&Francis Group,(2010)。Collins,M.K.,Magle,S.B。和Gallo,T。城市野生动物生态和保护的全球趋势。生物保护。261109236(2021)。文章

Google Scholar

谷歌学者

Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island, 2018).Aben, J., Travis, J. M. J., Van Dyck, H. & Vanwambeke, S. O. Integrating learning into animal range dynamics under rapid human-induced environmental change. Ecol. Lett. 27, e14367 (2024).Article .

Boal,C.W。和Dykstra,C.R。城市猛禽:城市中猛禽的生态学和保护(Island,2018)。Aben,J.,Travis,J.M.J.,Van Dyck,H。&Vanwambeke,S.O。在人类引起的快速环境变化下,将学习整合到动物范围动态中。Ecol公司。利特。27,e14367(2024)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Szulkin, M., Munshi-South, J. & Charmantier, A. Urban Evol. Biol. (Oxford University Press, 2020).Gervais, L. et al. Quantifying heritability and estimating evolutionary potential in the wild when individuals that share genes also share environments. J. Anim. Ecol. 91, 1239–1250 (2022).Article .

Szulkin,M.,Munshi South,J。和Charmantier,A。Urban Evol。《生物学》(牛津大学出版社,2020年)。Gervais,L.等人。当共享基因的个体也共享环境时,量化遗传力并估计野生进化潜力。J、 动画。Ecol公司。911239-1250(2022)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Catitti, B., Grüebler, M. U., Farine, D. R. & Kormann, U. G. Natal legacies cause social and spatial marginalization during dispersal. Ecol. Lett. 27, e14366 (2024).Article

Catitti,B.,Grüebler,M.U.,Farine,D.R。&Kormann,U.G。纳塔尔遗产在扩散过程中导致社会和空间边缘化。Ecol公司。利特。27,e14366(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chalfoun, A. D. & Schmidt, K. A. Adaptive breeding-habitat selection: is it for the birds? Auk. 129, 589–599 (2012).Article

Chalfoun,A.D。和Schmidt,K.A。适应性繁殖栖息地选择:是为了鸟类吗?海雀。129589-599(2012)。文章

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank all the fieldworkers who participated in the project. We also thank Y-C. Chan and S. Oppel from the Red Kite team for fruitful discussions, L. Gross for the help with detecting territories, and R. Carrizo for the help with the equations. We would like to provide special thanks to Guillaume Bastille-Rousseau for his help with the IndRSA package.

下载参考文献致谢我们感谢所有参与该项目的现场工作人员。我们还要感谢红风筝团队的Y-C.Chan和S.Oppel进行了富有成效的讨论,感谢L.Gross在探测领土方面的帮助,感谢R.Carrizo在方程式方面的帮助。我们要特别感谢纪尧姆·巴士底·卢梭(GuillaumeBastilleRousseau)为IndRSA方案提供的帮助。

This work was funded by the Swiss National Science Foundation (Grant 310030 212469).Author informationAuthors and AffiliationsSwiss Ornithological Institute, Sempach, SwitzerlandFlorian Orgeret, Urs G. Kormann, Benedetta Catitti, Stephanie Witczak, Valentijn S. van Bergen, Patrick Scherler & Martin U.

这项工作由瑞士国家科学基金会(Grant 310030212469)资助。作者信息作者和附属机构威斯康星州鸟类研究所,塞姆帕克,瑞士弗洛里安·奥尔盖雷特,乌尔斯·G·科尔曼,贝内德塔·卡蒂蒂,斯蒂芬妮·维特扎克,瓦伦蒂金·S·范·伯根,帕特里克·舍勒和马丁·U。

GrüeblerAuthorsFlorian OrgeretView author publicationsYou can also search for this author in.

GrüeblerAuthorsFlorian OrgeretView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarUrs G. KormannView author publicationsYou can also search for this author in

PubMed Google ScholarUrs G.KormannView作者出版物您也可以在

PubMed Google ScholarBenedetta CatittiView author publicationsYou can also search for this author in

PubMed Google ScholarBenedetta CatitView作者出版物您也可以在

PubMed Google ScholarStephanie WitczakView author publicationsYou can also search for this author in

PubMed Google ScholarStephanie Witchzakview作者出版物您也可以在

PubMed Google ScholarValentijn S. van BergenView author publicationsYou can also search for this author in

PubMed Google ScholarValentijn S.van BergenView作者出版物您也可以在

PubMed Google ScholarPatrick ScherlerView author publicationsYou can also search for this author in

PubMed Google ScholarPatrick ScherlerView作者出版物您也可以在

PubMed Google ScholarMartin U. GrüeblerView author publicationsYou can also search for this author in

PubMed Google ScholarMartin U.GrüeblerView作者出版物您也可以在

PubMed Google ScholarContributionsFO, UK and MG conceived and designed the study. PS, VVB, BC, SW collected data. MG, UK and PS secured long-term funding. FO performed the analyses and wrote the initial version of the manuscript. All authors contributed to the writing and gave their final approval for publication.Corresponding authorCorrespondence to.

PubMed Google ScholarContributionsFO,UK和MG构思并设计了这项研究。PS,VVB,BC,SW收集的数据。MG、英国和PS获得了长期资金。FO进行了分析并撰写了手稿的初始版本。所有作者都为写作做出了贡献,并最终批准了出版。对应作者对应。

Florian Orgeret.Ethics declarations

弗洛里安·奥格雷特。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleOrgeret, F., Kormann, U.G., Catitti, B. et al. Imprinted habitat selection varies across dispersal phases in a raptor species.

转载和许可本文引用本文Orgeret,F.,Kormann,U.G.,Catitti,B。等人。猛禽物种的印迹栖息地选择因扩散阶段而异。

Sci Rep 14, 26656 (2024). https://doi.org/10.1038/s41598-024-75815-1Download citationReceived: 11 April 2024Accepted: 08 October 2024Published: 04 November 2024DOI: https://doi.org/10.1038/s41598-024-75815-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1426656(2024)。https://doi.org/10.1038/s41598-024-75815-1Downloadhttps://doi.org/10.1038/s41598-024-75815-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsMovement ecologyEarly-lifeProspectionGPS telemetryConditional logistic regressionIndividual specialization

关键词运动生态学年度寿命展望GPS遥测条件逻辑回归个体专业化

Subjects

主题

Behavioural ecologyBiogeographyEcological modellingEvolutionary ecologyPopulation dynamicsUrban ecology

行为生态学生物地理学生态学模型进化生态学人口动态城市生态学