商务合作
动脉网APP
可切换为仅中文
AbstractDuring COVID-19 pandemic, international pharmaceutical companies put effort to build global manufacturing networks for vaccines. Soberana Plus vaccine, a recombinant protein based vaccine (RBD dimer), with the trade name of PastoCovac Plus in Iran, is based on a protein subunit platform in Cuba and completed preclinical and toxicological assessments.
摘要在新型冠状病毒肺炎大流行期间,国际制药公司致力于建立全球疫苗生产网络。Soberana Plus疫苗是一种重组蛋白质疫苗(RBD二聚体),在伊朗的商品名为PastoCovac Plus,基于古巴的蛋白质亚基平台,完成了临床前和毒理学评估。
This study aimed at presenting the steps of vaccine technology transfer from Cuba to Iran. This study provides the first practical comparability results in Iran to ensure the quality, safety and efficacy of a protein subunit vaccine against COVID-19 after a successful technology transfer from Cuba. PastoCovac Plus was transferred to Iran at the formulation stage.
这项研究旨在介绍从古巴向伊朗转让疫苗技术的步骤。这项研究提供了伊朗第一个实际的可比性结果,以确保古巴成功技术转让后针对新型冠状病毒19的蛋白质亚单位疫苗的质量,安全性和有效性。PastoCovac Plus在制定阶段被转移到伊朗。
The assessment of the active ingredient pharmaceutical (API) was achieved through physicochemical and clinical data collection and tests to assure if there was any adverse impact on the vaccination results. In order to assess the quality of the vaccine product after technology transfer, we sought different properties including regulatory features, physicochemical quality, vaccine potency and stability as well as its immunogenicity and safety.
通过物理化学和临床数据收集和测试来评估活性成分药物(API),以确保是否对疫苗接种结果产生任何不利影响。为了评估技术转让后疫苗产品的质量,我们寻求了不同的特性,包括监管特征,理化质量,疫苗效力和稳定性以及其免疫原性和安全性。
Following the evaluation of the clinical quality attributes (CQAs) based on the standard protocols, the results showed that the two vaccines are highly similar and comparable, with no considerable effect on safety or efficacy profiles. The CQAs were all in the acceptance limits in terms of safety and efficacy as well as clinical evaluation results.
根据标准方案评估临床质量属性(CQA)后,结果显示两种疫苗高度相似和可比,对安全性或有效性没有显着影响。就安全性和有效性以及临床评估结果而言,CQA均在可接受范围内。
The immunogenicity evaluation also confirmed no significant differences between the vaccines regarding reinfection (P = 0.199) or vaccine breakthrough (P = 0.176). Furthermore, the level of anti-spike and neutralizing antibodies in the both vaccine groups was not significant.
免疫原性评估也证实疫苗在再感染(P=0.199)或疫苗突破(P=0.176)方面没有显着差异。此外,两个疫苗组中的抗穗抗体和中和抗体水平不显着。
IntroductionVaccines have always been considered as the most effective approach to control infectious diseases worldwide. Given the urgent need for COVID-19 (Coronavirus disease 2019) vaccination and its potential far-reaching impact on global health, a massive race to achieve a candidate vaccine took an extraordinary urgency across the world1.
引言疫苗一直被认为是控制全球传染病的最有效方法。鉴于迫切需要新型冠状病毒肺炎(2019年冠状病毒病)疫苗接种及其对全球健康的潜在深远影响,全球范围内迫切需要一场大规模的候选疫苗竞赛1。
However, research and development (R&D) in terms of vaccines is normally a costly and high risk process which may take many years to reach an approved formulation with an appropriate dosage form2. Therefore, vaccine developers generally seek a continuous sequence of steps and pauses to data analysis and process assessment.
然而,疫苗的研究与开发(R&D)通常是一个昂贵且高风险的过程,可能需要多年才能达到具有适当剂型的批准制剂2。因此,疫苗开发人员通常会寻求连续的步骤序列,并暂停数据分析和过程评估。
Nevertheless, this pathway substantially changed in response to COVID-19 pandemic3,4.COVID-19 imposed different sets of hardships, owing to the unique features of the virus, urgent need of quick action and the technological complications of the emerging new vaccines. To address this global crisis, technology transfer for local production has been widely regarded by international organizations5,6.Vaccine technology transfer to low-income countries from multinational pharmaceutical companies to small scale facilities has more obstacles on the way including lack of financial resources and skillfully trained personnel for vaccine production, limitation of appropriate physical infrastructure, and poor R&D investment capacity7,8.
然而,这一途径在应对新型冠状病毒肺炎3,4时发生了重大变化。由于病毒的独特特征,迫切需要快速行动以及新兴新疫苗的技术复杂性,新型冠状病毒肺炎带来了不同的困难。为了应对这场全球危机,当地生产的技术转让受到国际组织的广泛关注5,6。从跨国制药公司到小规模设施向低收入国家的疫苗技术转让存在更多障碍,包括缺乏资金和训练有素的疫苗生产人员,适当的物理基础设施有限,研发投资能力差7,8。
Consequently, the recent pandemic mounted enormous interests regarding the role of international technology transfer of vaccines. In order to provide the proceeding demands on vaccination, there was a need of manufacturing networks for COVID-19 vaccines through which the developers could transfer the technology to the global partners9.Vaccine supply network also was subjected to severe disru.
因此,最近的大流行引起了人们对疫苗国际技术转让作用的极大兴趣。为了提供疫苗接种的持续需求,需要新冠肺炎疫苗的制造网络,开发者可以通过该网络将技术转让给全球合作伙伴9。疫苗供应网络也受到严重破坏。
Data availability
数据可用性
The data which support the findings are included in the manuscript.
手稿中包含了支持这些发现的数据。
ReferencesKoirala, A., Joo, Y. J., Khatami, A., Chiu, C. & Britton, P. N. Vaccines for COVID-19: the current state of play. Paediatr. Respir. Rev. 35, 43–49 (2020).PubMed
参考文献Koirala,A.,Joo,Y.J.,Khatami,A.,Chiu,C。&Britton,P.N。新型冠状病毒疫苗:目前的现状。儿科。呼吸。。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Funk, C. D., Laferrière, C. & Ardakani, A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front. Pharmacol. 11, 937 (2020).Article
Funk,C.D.,Laferrière,C。和Ardakani,A。全球针对SARS-CoV-2和COVID-19大流行的疫苗竞赛的快照。正面。药理学。11937(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lurie, N., Saville, M., Hatchett, R. & Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 382(21), 1969–1973 (2020).Article
Lurie,N.,Saville,M.,Hatchett,R。&Halton,J。以大流行速度开发Covid-19疫苗。N、 英语。J、 医学382(21),1969-1973(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Carneiro, D. C., Sousa, J. D. & Monteiro-Cunha, J. P. The COVID-19 vaccine development: A pandemic paradigm. Virus Res. 301, 198454 (2021).Article
Carneiro,D.C.,Sousa,J.D。和Monteiro Cunha,J.P。新型冠状病毒疫苗的开发:大流行范例。Virus Res.301198454(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yamey, G. et al. It is not. too late to achieve global covid-19 vaccine equity. BMJ 376, o812 (2022).Krishtel, P. & Hassan, F. Share Vaccine Know-How 379 (American Association for the Advancement of Science, 2021).Friede, M. et al. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: Supporting developing country production capacity through technology transfer.
Yamey,G。等人,事实并非如此。实现全球新型冠状病毒肺炎疫苗公平为时已晚。。Krishtel,P。&Hassan,F。共享疫苗专有技术379(美国科学促进会,2021)。世界卫生组织关于在大流行情况下增加全球和公平获得流感疫苗的倡议:通过技术转让支持发展中国家的生产能力。
Vaccine 29, A2–A7 (2011).Bown, C. P. & Bollyky, T. J. How COVID-19 vaccine supply chains emerged in the midst of a pandemic. World Econ. 45(2), 468–522 (2022).Fonseca, E. M. D., Shadlen, K. C. & Achcar, H. M. Vaccine technology transfer in a global health crisis: Actors, capabilities, and institutions.
疫苗29,A2-A7(2011)。Bown,C.P。&Bollyky,T.J。新型冠状病毒肺炎疫苗供应链如何在大流行期间出现。世界经济。。Fonseca,E.M.D.,Shadlen,K.C。和Achcar,H.M。全球健康危机中的疫苗技术转让:参与者,能力和机构。
Res. Policy 52(4), 104739 (2023).Forman, R., Shah, S., Jeurissen, P., Jit, M. & Mossialos, E. COVID-19 vaccine challenges: What have we learned so far and what remains to be done? Health Policy 125(5), 553–567 (2021).Article .
第52(4)号决议,104739(2023)。Forman,R.,Shah,S.,Jeurissen,P.,Jit,M。&Mossialos,E。COVID-19疫苗挑战:到目前为止我们学到了什么,还有什么需要做的?卫生政策125(5),553-567(2021)。文章。
Google Scholar
谷歌学者
Maslehat, S., Doroud, D. & Mostafavi, E. A leading institute in the production and development of vaccines in Iran. Vacres 6(1), 33–42 (2019).Article
Maslehat,S.,Doroud,D。和Mostafavi,E。是伊朗疫苗生产和开发的领先研究所。Vacres 6(1),33-42(2019)。文章
Google Scholar
谷歌学者
Optimism as Cuba set to test its own Covid vaccine [Internet]. BBC News. https://www.bbc.com/news/world-latin-america-56069577 (2023).Mostafavi, E. et al. Efficacy and safety of a protein-based SARS-CoV-2 vaccine: A randomized clinical trial. JAMA Netw. Open. 6(5), e2310302 (2023).Article .
古巴开始测试自己的新型冠状病毒疫苗[互联网]时的乐观情绪。英国广播公司新闻。https://www.bbc.com/news/world-latin-america-56069577(2023年)。Mostafavi,E.等人。基于蛋白质的SARS-CoV-2疫苗的有效性和安全性:一项随机临床试验。JAMA网络。打开。6(5),e2310302(2023)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pérez-Rodríguez, S. et al. A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: Safety, reactogenicity and immunogenicity. Vaccine 40(13), 2068–2075 (2022).Article
Pérez-Rodríguez,S.等人。两种重组二聚体RBD COVID-19候选疫苗的随机,双盲I期临床试验:安全性,反应原性和免疫原性。疫苗40(13),2068-2075(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Toledo-Romani, M. E. et al. Safety and immunogenicity of anti-SARS-CoV-2 heterologous scheme with SOBERANA 02 and SOBERANA Plus vaccines: Phase IIb clinical trial in adults. Med. (New York NY) 3(11), 760–773 (2022).
Toledo Romani,M.E.等人。使用SOBERANA 02和SOBERANA Plus疫苗的抗SARS-CoV-2异源方案的安全性和免疫原性:成人IIb期临床试验。医学(纽约州纽约)3(11),760-773(2022)。
Google Scholar
谷歌学者
Ghanei, M. et al. Exploring the experience of developing COVID-19 vaccines in Iran. Clin. Exp. Vacc. Res. 12(1), 1–12 (2023).Article
Ghanei,M.等人,探索在伊朗开发新型冠状病毒疫苗的经验。临床。出口真空。第12(1)号决议,第1-12(2023)号决议。文章
Google Scholar
谷歌学者
Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807), 221–224 (2020).Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807), 215–220 (2020).Article
Shang,J。等人。SARS-CoV-2受体识别的结构基础。《自然》581(7807),221-224(2020)。Lan,J。等人。与ACE2受体结合的SARS-CoV-2尖峰受体结合结构域的结构。《自然》581(7807),215-220(2020)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Krammer, F. SARS-CoV-2 vaccines in development. Nature 586(7830), 516–527 (2020).Valdes-Balbin, Y. et al. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS Cent. Sci. 7(5), 757–767 (2021).Article
Krammer,F。SARS-CoV-2疫苗正在开发中。《自然》586(7830),516-527(2020)。Valdes Balbin,Y.等人。关于使用SARS-CoV-2受体结合结构域作为预防性疫苗靶标的分子方面。ACS分。科学。7(5),757–767(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zang, J. et al. Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell. Discov. 6(1), 61 (2020).Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability.
Zang,J。等人。用SARS-CoV-2的受体结合结构域免疫引发抗体交叉中和SARS-CoV-2和SARS-CoV而没有抗体依赖性增强。细胞。迪斯科。6(1),61(2020)。Brouwer,P.J.M.等人。来自COVID-19患者的有效中和抗体定义了多个脆弱性靶标。
Sci. (New York NY) 369(6504), 643–650 (2020).Article .
科学。(纽约州纽约)369(6504),643-650(2020)。文章。
ADS
广告
Google Scholar
谷歌学者
Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Sci. (New York NY) 369(6506), 956–963 (2020).Article
Rogers,T.F.等人。在小动物模型中分离有效的SARS-CoV-2中和抗体和预防疾病。科学。(纽约州纽约)369(6506),956-963(2020)。文章
ADS
广告
Google Scholar
谷歌学者
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584(7821), 443–449 (2020).Article
Zost,S.J.等人有效中和和保护人类抗SARS-CoV-2抗体。《自然》584(7821),443–449(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rutten, L. et al. Impact of SARS-CoV-2 spike stability and RBD exposure on antigenicity and immunogenicity. Sci. Rep. 14(1), 5735 (2024). Article
Rutten,L。等人。SARS-CoV-2尖峰稳定性和RBD暴露对抗原性和免疫原性的影响。科学。代表14(1),5735(2024)。文章
ADS
广告
MathSciNet
MathSciNet
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
http://www.emea.eu.int/pdfs/human/bwp/320702en.pdf. https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf (2003).http://www.emea.eu.int/pdfs/human/bwp/320700en.pdf.
http://www.emea.eu.int/pdfs/human/bwp/320702en.pdf.(笑声)https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf(2003年)。http://www.emea.eu.int/pdfs/human/bwp/320700en.pdf.
https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf (2003). Alasandro, M. et al. Meeting report: Vaccine stability considerations to enable rapid development and deployment.
https://www.ema.europa.eu/en/documents/scientific-guideline/comparability-medicinal-products-containing-biotechnology-derived-proteins-active-substance-quality/ich/5721/03_en.pdf(2003年)。Alasandro,M.等人的会议报告:疫苗稳定性考虑因素,以实现快速开发和部署。
AAPS Open. 7(1), 6 (2021).Article .
AAPS打开。7(1),6(2021)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Usach, I., Martinez, R., Festini, T. & Peris, J-E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Therapy 36(11), 2986–2996 (2019).Farahmand, B. et al. Evaluation of PastoCovac plus vaccine as a booster dose on vaccinated individuals with inactivated COVID-19 vaccine.
Usach,I.,Martinez,R.,Festini,T。&Peris,J-E。皮下注射药物:影响注射部位疼痛感因素的文献综述。Adv.Therapy 36(11),2986–2996(2019)。Farahmand,B。等人。评估PastoCovac plus疫苗作为灭活COVID-19疫苗接种个体的加强剂量。
Heliyon 9(10), e20555 (2023).Ramezani, A. et al. PastoCovac and PastoCovac Plus as protein subunit COVID-19 vaccines led to great humoral immune responses in BBIP-CorV immunized individuals. Sci. Rep. 13(1), 8065 (2023).Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0.
Heliyon 9(10),e20555(2023)。Ramezani,A。等人,PastoCovac和PastoCovac Plus as蛋白亚基COVID-19疫苗在BBIP-CorV免疫的个体中导致了巨大的体液免疫应答。科学。代表13(1),8065(2023)。Percie du Sert,N.等人,《报告动物研究:ARRIVE指南2.0的解释和阐述》。
PLoS Biol. 18(7), e3000411 (2020).Article .
《公共科学图书馆·生物学》。18(7),e3000411(2020)。第[UNK]条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Valdes-Balbin, Y. et al. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS Central Sci. 7(5), 757–767 (2021).Chang-Monteagudo, A. et al. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial.
Valdes Balbin,Y.等人。关于使用SARS-CoV-2受体结合结构域作为预防性疫苗靶标的分子方面。ACS中央科学。7(5),757–767(2021)。Chang-Monteagudo,A。等人。单剂SARS-CoV-2 FINLAY-FR-1A疫苗增强了COVID-19康复者的中和反应,具有很好的安全性:一项开放标签的1期临床试验。
Lancet Reg. Health Am. 2021(4), 100079 (2021).Santana-Mederos, D. et al. A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and Neisseria meningitidis outer membrane vesicles. RSC Chem. Biol.. 3(2), 242–249 (2022).Article .
《柳叶刀健康杂志》2021(4),100079(2021)。Santana Mederos,D。等人。一种由SARS-CoV-2 RBD二聚体和脑膜炎奈瑟菌外膜囊泡组成的新型冠状病毒肺炎候选疫苗。RSC化学。生物学..3(2),242-249(2022)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Hassan, P. M. et al. Potency, toxicity and protection evaluation of PastoCoAd candidate vaccines: Novel preclinical mix and match rAd5 S, rAd5 RBD-N and SOBERANA dimeric-RBD protein. Vaccine 40(20), 2856–2868 (2022).Article
Hassan,P.M.等人。PastoCoAd候选疫苗的效力,毒性和保护评估:新型临床前混合和匹配rAd5 S,rAd5 RBD-N和SOBERANA二聚体RBD蛋白。疫苗40(20),2856-2868(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pichichero, M. E. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum. Vacc. Immunother. 9(12), 2505–2523 (2013).Article
Pichichero,M.E。缀合疫苗的蛋白质载体:特征,发展和临床试验。嗯。真空。免疫疗法。9(12),2505–2523(2013)。文章
Google Scholar
谷歌学者
Chang-Monteagudo, A. et al. A single dose of SARS-CoV-2 FINLAY-FR-1A vaccine enhances neutralization response in COVID-19 convalescents, with a very good safety profile: An open-label phase 1 clinical trial. Lancet Reg. Health Am. 4, 100079 (2021).PubMed
Chang-Monteagudo,A。等人。单剂SARS-CoV-2 FINLAY-FR-1A疫苗增强了COVID-19康复者的中和反应,具有很好的安全性:一项开放标签的1期临床试验。《柳叶刀》健康杂志410079(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ochoa-Azze, R. et al. Safety and immunogenicity of the FINLAY-FR-1A vaccine in COVID-19 convalescent participants: an open-label phase 2a and double-blind, randomised, placebo-controlled, phase 2b, seamless, clinical trial. Lancet Respiratory Med. 10(8), 785–795 (2022).Article
Ochoa-Azze,R。等人。FINLAY-FR-1A疫苗在COVID-19康复期参与者中的安全性和免疫原性:开放标签2a期和双盲,随机,安慰剂对照,2b期,无缝临床试验。柳叶刀呼吸医学杂志10(8),785-795(2022)。文章
Google Scholar
谷歌学者
Toledo-Romaní, M. E. et al. Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous three-dose combination with SOBERANA-Plus: a double-blind, randomised, placebo-controlled phase 3 clinical trial. Lancet Reg. Health Americas 2033, 45 (2023).Annex 3 Guidelines on stability evaluation of vaccines.
Toledo Romaní,M.E.等人。两剂结合蛋白的SOBERANA-02 COVID-19疫苗和异源三剂联合SOBERANA Plus的安全性和有效性:一项双盲,随机,安慰剂对照的3期临床试验。《柳叶刀》美国健康杂志2033,45(2023)。附件3疫苗稳定性评估指南。
WHO Expert Committee on Biological Standardization (2011).Interim recommendations for use of the ChAdOx1-S. [recombinant] vaccine against COVID-19 (AstraZeneca COVID-19 vaccine AZD1222 Vaxzevria™, SII COVISHIELD™) [Internet]. World Health Organization. https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1 (2023).Download referencesAcknowledgementsThis study was supported by Pasteur Institute of Iran (Grant No.
世卫组织生物标准化专家委员会(2011年)。使用针对COVID-19的ChAdOx1-S[重组]疫苗(阿斯利康COVID-19疫苗AZD1222 Vaxzevria™,SII COVISHIELD™)的临时建议[互联网]。世界卫生组织。https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1(2023年)。下载参考文献致谢本研究得到了伊朗巴斯德研究所的支持(批准号:。
2060) and was approved by the ethical board of the Pasteur Institute of Iran (Reference number: IR.PII.REC.1399.057 & IR.PII.REC.1400.076).Author informationAuthor notesThese authors contributed equally: Delaram Doroud and Mona Sadat Larijani.Authors and AffiliationsQuality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, 1316943551, IranDelaram Doroud & Talieh SabouniClinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, IranMona Sadat Larijani, Fatemeh Ashrafian & Amitis RamezaniSchool of Medicine, Tehran University of Medical Sciences, P.O.
2060),并得到伊朗巴斯德研究所伦理委员会的批准(参考号:IR.PII.REC.1399.057和IR.PII.REC.1400.076)。作者信息作者注意到这些作者做出了同样的贡献:Delaram Doroud和Mona Sadat Larijani。作者和附属机构伊朗巴斯德研究所生产与研究综合楼质量控制部,德黑兰,1316943551,伊朗巴斯德研究所IranDelaram Doroud&Talieh Sabounic临床研究部,德黑兰巴斯德大街69号,13164,伊朗德黑兰医科大学伊兰莫纳·萨达特·拉里贾尼,法特梅·阿什拉菲安和阿米蒂斯·拉梅扎尼医学院,P.O。
BOX 14155-6559, Tehran, Tehran, IranAlireza BiglariDepartment of Epidemiology and Biostatistics, Pasteur Institute of Iran, Research Centre for Emerging and Reemerging Infectious Diseases, Tehran, IranSana EybpooshFinlay Vaccine Institute, Havana, CubaVicente Verez-Bencomo, Yury Valdés-Balbín, Dagmar García-Rivera, Yaneli Herrera-Rojas, Yanet.
信箱14155-6559,德黑兰,伊朗国立卫生研究院流行病学和生物统计学系,伊朗巴斯德研究所,新兴和重新出现的传染病研究中心,德黑兰,伊朗埃布波什芬莱疫苗研究所,哈瓦那,古巴维森特·韦雷斯·本科莫,尤里·巴尔德斯·巴尔宾,达格玛·加西亚·里维拉,亚内利·埃雷拉·罗哈斯,亚内特。
PubMed Google ScholarMona Sadat LarijaniView author publicationsYou can also search for this author in
PubMed Google ScholarMona Sadat LarijaniView作者出版物您也可以在
PubMed Google ScholarAlireza BiglariView author publicationsYou can also search for this author in
PubMed Google ScholarAlireza BiglariView作者出版物您也可以在
PubMed Google ScholarFatemeh AshrafianView author publicationsYou can also search for this author in
PubMed Google ScholarFatemeh AshrafianView作者出版物您也可以在
PubMed Google ScholarTalieh SabouniView author publicationsYou can also search for this author in
PubMed Google ScholarTalieh SabouniView作者出版物您也可以在
PubMed Google ScholarSana EybpooshView author publicationsYou can also search for this author in
PubMed Google ScholarSana EybpooshView作者出版物您也可以在
PubMed Google ScholarVicente Verez-BencomoView author publicationsYou can also search for this author in
PubMed Google ScholarYury Valdés-BalbínView author publicationsYou can also search for this author in
PubMed Google ScholarYury Valdés-BalbínView作者出版物您也可以在
PubMed Google ScholarDagmar García-RiveraView author publicationsYou can also search for this author in
PubMed Google ScholarDagmar García-RiveraView作者出版物您也可以在
PubMed Google ScholarYaneli Herrera-RojasView author publicationsYou can also search for this author in
PubMed Google ScholarYaneli Herrera RojasView作者出版物您也可以在
PubMed Google ScholarYanet Climent-RuizView author publicationsYou can also search for this author in
PubMed谷歌学术网Climent RuizView作者出版物您也可以在
PubMed Google ScholarDarielys Santana-MederosView author publicationsYou can also search for this author in
PubMed Google ScholarDarielys Santana MederosView作者出版物您也可以在
PubMed Google ScholarAmitis RamezaniView author publicationsYou can also search for this author in
PubMed Google ScholarAmitis RamezaniView作者出版物您也可以在
PubMed Google ScholarContributionsDelaram Doroud, Mona Sadat Larijani, Amitis Ramezani and Alireza Biglari contributed to study design, conceptualization, writing the original draft and revision; Fatemeh Ashrafian, Talieh Sabooni and Sana Eybpoosh contributed to methodology and data analysis; Vicente Verez-Bencomo, Yury Valdés-Balbín, Dagmar García-Rivera, Yaneli Herrera-Rojas, Yanet Climent-Ruiz and Darielys Santana-Mederos provided scientific advice and contributed to data collection.Corresponding authorsCorrespondence to.
PubMed谷歌学术贡献Laram Doroud,Mona Sadat Larijani,Amitis Ramezani和Alireza Biglari为研究设计,概念化,撰写原始草案和修订做出了贡献;Fatemeh Ashrafian,Talieh Sabooni和Sana Eybpoosh为方法和数据分析做出了贡献;Vicente Verez Bencomo,Yury Valdés-Balbín,Dagmar García-Rivera,Yaneli Herrera Rojas,Yanet Climent Ruiz和Darielys Santana Mederos提供了科学建议,并为数据收集做出了贡献。通讯作者通讯。
Alireza Biglari or Amitis Ramezani.Ethics declarations
Alireza Biglari或Amitis Ramezani。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleDoroud, D., Sadat Larijani, M., Biglari, A. et al. Comparative assessment of a COVID-19 vaccine after technology transfer to Iran from critical quality attributes to clinical and immunogenicity aspects.
转载和许可本文引用本文Doroud,D.,Sadat Larijani,M.,Biglari,A。等人。从关键质量属性到临床和免疫原性方面对技术转移到伊朗后的新型冠状病毒肺炎疫苗进行比较评估。
Sci Rep 14, 26793 (2024). https://doi.org/10.1038/s41598-024-77331-8Download citationReceived: 26 February 2024Accepted: 22 October 2024Published: 05 November 2024DOI: https://doi.org/10.1038/s41598-024-77331-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1426793(2024)。https://doi.org/10.1038/s41598-024-77331-8Download引文接收日期:2024年2月26日接受日期:2024年10月22日发布日期:2024年11月5日OI:https://doi.org/10.1038/s41598-024-77331-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsPastoCovac PlusSoberana PlusRBD dimerProtein-based vaccineIran
关键词Spastocovac PlusSoberana PlusRBD二聚蛋白疫苗伊朗
Subjects
主题
BiotechnologyBusiness strategy in drug developmentDrug discoveryDrug regulationDrug safetyImmunology
药物开发中的生物技术商业策略药物发现药物调节药物安全免疫学