EN
登录

揭示酵母hansenispora valbyensis中新的聚羟基脂肪酸酯生物合成基因和独特途径,以实现可持续的生物塑料生产

Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production

Nature 等信源发布 2024-11-08 10:39

可切换为仅中文


AbstractThis study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules.

摘要本研究深入探讨了野生型酵母菌株中聚羟基烷酸酯(PHA)生物合成基因的探索,揭示了分离株DMG-2的特殊能力。通过细致的筛选,DMG-2成为了一个杰出的候选者,显示出鲜艳的红色荧光,表明细胞内PHA颗粒丰富。

Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification.

通过FTIR光谱表征揭示了DMG-2内多种生物聚合物组成,具有与PHA和多磷酸盐相关的不同官能团。系统发育分析将DMG-2置于Hanseniaspora valbyensis NRRL Y-1626组中,突出了其独特的分类学分类。

Subsequent investigation into DMG-2’s PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs.

。ORF1的蛋白质分析揭示了其参与糖代谢,这得到了其细胞定位和功能基序鉴定的支持。

Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate.

基因组分析揭示了ORF1内的调控元件,揭示了影响PHA合成途径的潜在剪接点和转录网络。从转基因大肠杆菌DMG2-1中提取的生物聚合物的光谱分析提供了对其共聚物性质的见解,包括PHB,PHV和多磷酸盐的片段。

GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications..

GC-MS分析进一步阐明了聚合物复杂的分子结构。总之,这项研究代表了探索酵母细胞内PHA生物合成基因的开创性努力,分离株DMG-2显示出显着的潜力。。。

IntroductionThe growing environmental concerns surrounding plastic pollution have galvanized scientific efforts toward the development of sustainable and biodegradable alternatives. Among various biopolymers, polyhydroxyalkanoates (PHAs) have emerged as promising candidates due to their biodegradability, biocompatibility, and versatile material properties1.

引言围绕塑料污染日益增长的环境问题促使科学努力开发可持续和可生物降解的替代品。。

PHAs are polyesters synthesized by numerous microorganisms as intracellular carbon and energy storage compounds2. These biopolymers can potentially replace conventional petrochemical plastics in numerous applications, ranging from packaging materials to medical devices3. However, the high production costs and limited yields of PHAs have hindered their large-scale commercial adoption, preventing them from completely replacing oil-based polymers4.Therefore, identifying and optimizing microbial strains capable of efficient PHA production is critical for advancing sustainable bioplastic technologies.

PHA是由许多微生物合成的聚酯,作为细胞内碳和储能化合物2。这些生物聚合物可能在许多应用中取代传统的石化塑料,从包装材料到医疗设备3。然而,PHA的高生产成本和有限产量阻碍了它们的大规模商业应用,阻止了它们完全取代油基聚合物4。因此,鉴定和优化能够高效PHA生产的微生物菌株对于推进可持续生物塑料技术至关重要。

In this context, yeast isolates represent a compelling avenue for exploration due to their robust growth characteristics, ease of genetic manipulation, and ability to thrive on diverse substrates. Yeasts can utilize inexpensive substrates as carbon sources and can be easily genetically engineered, offering significant advantages for PHA production5.For example, Abd-El-Haleem6 screened forty yeast isolates from different Egyptian ecosystems for their ability to produce PHAs.

在这种情况下,酵母分离株由于其强大的生长特性,易于遗传操作以及在不同底物上茁壮成长的能力而成为一种引人注目的探索途径。酵母可以利用廉价的底物作为碳源,并且可以很容易地进行基因工程,为PHA生产提供了显着的优势5。例如,Abd-El-Haleem6筛选了来自不同埃及生态系统的40种酵母分离株产生PHA的能力。

The isolate Rhodotorula minuta strain RY4 was found to produce 2% PHA in biomass over a growth period of 96 h in a medium containing glucose, oleic acid, and Tween 60. The PHAs produced by Rhodotorula minuta strain RY4 were characterized using infrared spectroscopy and nuclear magnetic resonance (1 H and 13 C NMR) spectroscopy, revealing the presence of p.

发现分离的微小红酵母菌株RY4在含有葡萄糖,油酸和吐温60的培养基中在96小时的生长期内产生2%的生物量PHA。使用红外光谱和核磁共振(1 H和13 C NMR)光谱对微小红酵母菌株RY4产生的PHA进行了表征,揭示了p的存在。

Data availability

数据可用性

Data Availability Statement: All data generated or analyzed during this study are comprehensively documented within the manuscript. Moreover, the DNA sequences showcased in this research have been diligently deposited in GenBank with the accession numbers AC PP869688 for ORF1 and AC PP865075 for the yeast strain DMG-2.

数据可用性声明:本研究期间生成或分析的所有数据均在手稿中全面记录。此外,本研究中显示的DNA序列已被勤勉地保存在GenBank中,ORF1的登录号为AC PP869688,酵母菌株DMG-2的登录号为AC PP865075。

These resources are readily accessible for additional scrutiny and validation by the scientific community..

这些资源很容易被科学界进一步审查和验证。。

ReferencesMożejko-Ciesielska, J. & Kiewisz, R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol. Res. https://doi.org/10.1016/j.micres.2016.07.010 (2016).Koller, M., Maršálek, L., de Sousa Dias, M. M. & Braunegg, G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.

参考文献Możejko Ciesielska,J。&Kiewisz,R。细菌多羟基链烷酸酯:仍然令人难以置信?微生物。研究。https://doi.org/10.1016/j.micres.2016.07.010(2016年)。Koller,M.,Maršálek,L.,de Sousa Dias,M.M。&Braunegg,G。以可持续的方式生产微生物聚羟基链烷酸酯(PHA)生物聚合物。

New. Biotechnol. https://doi.org/10.1016/j.nbt.2016.05.001 (2017).Dietrich, K., Dumont, M. J., Del Rio, L. F. & Orsat, V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. https://doi.org/10.1016/j.spc.2016.06.003 (2017).Kourmentza, C. et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production.

。生物技术。https://doi.org/10.1016/j.nbt.2016.05.001(2017年)。Dietrich,K.,Dumont,M.J.,Del Rio,L.F。&Orsat,V。在生物经济中生产PHA,以实现可持续的生物塑料。维持。消费品。https://doi.org/10.1016/j.spc.2016.06.003(2017年)。Kourmentza,C.等人。可持续聚羟基烷酸酯(PHA)生产的最新进展和挑战。

Bioengineering. https://doi.org/10.3390/bioengineering4020055 (2017).Thu, N. T. T. et al. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci. Rep. https://doi.org/10.1038/s41598-023-28220-z (2023).Abd-El-Haleem, D. A. Biosynthesis of polyhydroxyalkanotes in wild type yeasts.

生物工程。https://doi.org/10.3390/bioengineering4020055(2017年)。Thu,N.T.T.等人。越南分离的毕赤酵母TSLS24酵母对聚羟基烷酸酯(PHA)合成的评估。科学。代表。https://doi.org/10.1038/s41598-023-28220-z(2023年)。Abd El Haleem,D.A。野生型酵母中多羟基链烷酸酯的生物合成。

Pol. J. Microbiol. 58(1), 37–41 (2009a).CAS .

波尔。J.微生物学。58(1)、37-41(2009a)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, B., Carlson, R. & Srienc, F. Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.72.1.536-543.2006 (2006).Poirier, Y., Erard, N. & Petétot, J. M. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation.

Zhang,B.,Carlson,R。&Srienc,F。设计在酿酒酵母中合成的聚羟基链烷酸酯的单体组成。。环境。微生物。https://doi.org/10.1128/AEM.72.1.536-543.2006(2006年)。Poirier,Y.,Erard,N。&Petétot,J.M。通过使用脂肪酸β-氧化的中间体在酿酒酵母的过氧化物酶体中合成聚羟基链烷酸酯。

Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.67.11.5254-5260.2001 (2001).Ylinen, A. et al. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. https://doi.org/10.1093/jimb/kuab028 (2021).Abd-El-Haleem, D., Amara, A., Zaki, S., Abulhamd, A.

。环境。微生物。https://doi.org/10.1128/AEM.67.11.5254-5260.2001(2001年)。Ylinen,A.等人。在酿酒酵母中生产含D-乳酸的聚羟基链烷酸酯聚合物。J、 工业微生物。生物技术。https://doi.org/10.1093/jimb/kuab028(2021年)。Abd El-Haleem,D.,Amara,A.,Zaki,S.,Abulhamd,A。

& Abulreesh, G. Biosynthesis of biodegradable polyhydroxyalkanoates biopolymers in genetically modified yeasts. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/BF03325988 (2009b).Gao, C., Qi, Q., Madzak, C. & Lin, C. S. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

&Abulreesh,G。在转基因酵母中生物合成可生物降解的聚羟基链烷酸酯生物聚合物。内景J.环境。科学。技术。https://doi.org/10.1007/BF03325988(2009年b)。Gao,C.,Qi,Q.,Madzak,C。&Lin,C.S。探索在工程酵母解脂耶氏酵母中生产中链长的聚羟基链烷酸酯。

J. Ind. Microbiol. Biotechnol. https://doi.org/10.1007/s10295-015-1649-y (2015).Haddouche, R. et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-011-3331-2 (2011).Bhattacharyya, A.

J、 工业微生物。生物技术。https://doi.org/10.1007/s10295-015-1649-y(2015年)。Haddouche,R。等人。通过修饰ß-氧化多功能蛋白,设计含油酵母解脂耶氏酵母中聚羟基烷酸酯的含量和单体组成。。微生物。生物技术。https://doi.org/10.1007/s00253-011-3331-2。巴塔查里亚,A。

et al. Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express. https://doi.org/10.1186/2191-0855-2-34 (2012).Kanai, T., Hara, A., Kanayama, N., Ueda, M. & Tanaka, A. An n-Alkane-responsive promoter element found in the gene encoding the peroxisomal protein of candida tropicalis does not contain a .

等。利用酒糟通过Haloferax mediterranei生产聚-3-(羟基丁酸-羟基戊酸共聚物)。AMB Express。https://doi.org/10.1186/2191-0855-2-34(2012年)。Kanai,T.,Hara,A.,Kanayama,N.,Ueda,M。&Tanaka,A。在编码热带假丝酵母过氧化物酶体蛋白的基因中发现的正构烷烃反应性启动子元件不含。

Google Scholar

谷歌学者

Tian, J. et al. Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative Western analysis and transmission electron microscopy. J. Bacteriol. https://doi.org/10.1128/JB.187.11.3825-3832.2005 (2005).Cánovas, V. et al. Analysis of polyhydroxyalkanoates granules in Haloferax mediterranei by double-fluorescence staining with Nile Red and SYBR Green by confocal fluorescence microscopy.

Tian,J.等人。通过定量Western分析和透射电子显微镜分析Wautersia eutropha H16中瞬时聚羟基丁酸的产生。J、 细菌。https://doi.org/10.1128/JB.187.11.3825-3832.2005(2005年)。Cánovas,V。等人。通过共聚焦荧光显微镜用尼罗红和SYBR绿双重荧光染色分析Haloferax mediterranei中的多羟基烷酸酯颗粒。

Polymers. https://doi.org/10.3390/polym13101582 (2021).Christensen, M. et al. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99. PLoS One. https://doi.org/10.1371/journal.pone.0282623 (2023).Hossain, S.

聚合物。https://doi.org/10.3390/polym13101582(2021年)。Christensen,M.等人通过卤单胞菌属R5-57和假单胞菌属MR4-99的傅里叶变换红外(FTIR)光谱对聚羟基烷酸酯(PHA)生产进行高通量筛选(HTS)。PLoS One。https://doi.org/10.1371/journal.pone.0282623(2023年)。侯赛因,S。

& Ahmed, S. FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection. RSC Adv. https://doi.org/10.1039/d3ra02580b (2023).Kansiz, M., Billmann-Jacobe, H. & McNaughton, D. Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariate statistics.

&Ahmed,S。FTIR光谱分析预测羟基磷灰石的结晶相和非晶相:振动运动与反射的比较。RSC高级。https://doi.org/10.1039/d3ra02580b(2023年)。Kansiz,M.,Billmann-Jacobe,H。&McNaughton,D。通过使用中红外光谱和多元统计定量测定重组大肠杆菌菌株中可生物降解的聚合物聚(β-羟基丁酸酯)。

Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.66.8.3415-3420.2000 (2000).Elouear, Z. et al. Heavy metal removal from aqueous solutions by activated phosphate rock. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2007.12.036 (2008).Panon, G., Massiot, P. & Drilleau, J. F. Pectinolytic enzymes production by yeasts in cider fermentation.

。环境。微生物。https://doi.org/10.1128/AEM.66.8.3415-3420.2000(2000年)。Elouear,Z.等人。活化磷矿从水溶液中去除重金属。J、 危险。马特。https://doi.org/10.1016/j.jhazmat.2007.12.036(2008年)。Panon,G.,Massiot,P。&Drilleau,J.F。苹果酒发酵中酵母产生的果胶酶。

Sci. Aliments. https://doi.org/10.1016/j.femsyr.2005.02.006 (1995).Valles, B. S., Bedriñana, R. P., Tascón, N. F., Simón, A. Q. & Madrera, R. R. Yeast species associated with the spontaneous fermentation of cider. Food Microbiol. 24 (1), 25.

科学。别名https://doi.org/10.1016/j.femsyr.2005.02.006(1995).Valles,B.S.,Bedriñana,R.P.,Tascón,n.F.,Simón,A.Q.和Madrera,R.R.与苹果酒自发发酵相关的酵母物种。食物24 (1), 25.

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abdelal, A. T. H. & Phaff, H. J. Purification and properties of endo-beta-glucanase in yeast Hanseniaspora valbyensis. Can. J. Microbiol. https://doi.org/10.1139/m69-123 (1969).Golubev, V. I. & Golubev, N. V. Selenium tolerance of yeasts. Microbiology. 71 (4), 386–390 (2002).Article .

Abdelal,A.T.H.&Phaff,H.J.酵母Hanseniaspora valbyensis中内切β-葡聚糖酶的纯化和性质。可以。J、 微生物。https://doi.org/10.1139/m69-123(1969年)。Golubev,V.I。和Golubev,N.V。酵母的硒耐受性。。71(4),386–390(2002)。文章。

CAS

中科院

Google Scholar

谷歌学者

Xu, Y., Zhao, G. A. & Wang, L. P. Controlled formation of volatile components in cider making using a combination of Saccharomyces cerevisiae and Hanseniaspora valbyensis yeast species. J. Ind. Microbiol. Biotechnol. https://doi.org/10.1007/s10295-005-0051-6 (2006).Esteve-Zarzoso, B., Peris-Toran, M.

。J、 工业微生物。生物技术。https://doi.org/10.1007/s10295-005-0051-6(2006年)。埃斯特夫·扎尔佐索(EsteveZarzoso),B。佩里斯·托兰(Peris Toran)。

J., Ramon, D. & Querol, A. Molecular characterisation of Hanseniaspora species. Antonie Van Leeuwenhoek. https://doi.org/10.1023/a:1012268931569 (2001).Alting-Mees, M., Hoener, P., Ardourel, D., Sorge, J. & Short, J. M. Strategies 5(3):58–61. (1992).Abd-El-Haleem, D., Kheiralla, Z. H., Zaki, S., Rushdy, A.

J、 ,Ramon,D。和Querol,A。Hanseniaspora物种的分子表征。安东尼·范·列文虎克。https://doi.org/10.1023/a:1012268931569(2001年)。。(1992年)。阿卜杜勒·哈莱姆(Abd El-Haleem),D。赫伊拉拉(Kheiralla),Z.H。扎基(Zaki),S。拉什迪(Rushdy)。

A. & Abd-El-Rahiem, W. Multiplex-PCR and PCR-RFLP assays to monitor water quality against pathogenic bacteria. J. Environ. Monit. https://doi.org/10.1039/b307476e (2003).Rajacharya, G. H., Sharma, A. & Yazdani, S. S. Proteomics and metabolic burden analysis to understand the impact of recombinant protein production in E.

A、 &Abd El Rahiem,W。多重PCR和PCR-RFLP分析,以监测水质中的病原菌。J.Environ。莫尼特。https://doi.org/10.1039/b307476e(2003年)。Rajacharya,G.H.,Sharma,A。&Yazdani,S.S。蛋白质组学和代谢负荷分析,以了解重组蛋白生产对E的影响。

coli. Sci. Rep. https://doi.org/10.1038/s41598-024-63148-y (2024).Singh, C., Glaab, E. & Linster, C. L. Molecular Identification of d-Ribulokinase in Budding Yeast and Mammals. J. Biol. Chem. https://doi.org/10.1074/jbc.M116.760744 (2017).Zhang, Y., Zagnitko, O., Rodionova, I., Osterman, A. & Godzik, A.

大肠杆菌。科学。代表。https://doi.org/10.1038/s41598-024-63148-y(2024年)。Singh,C.,Glaab,E。&Linster,C.L。芽殖酵母和哺乳动物中d-核糖激酶的分子鉴定。J、 生物。化学。https://doi.org/10.1074/jbc.M116.760744(2017年)。张,Y.,扎格尼特科,O.,罗迪奥尼娃,I.,奥斯特曼,A.&戈奇克,A。

The FGGY carbohydrate kinase family: insights into the evolution of functional specificities. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002318 (2011).Basnett, P. et al. Production of a novel medium chain length poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold.

FGGY碳水化合物激酶家族:对功能特异性进化的见解。。生物。https://doi.org/10.1371/journal.pcbi.1002318。Basnett,P.等人。使用未加工的生物柴油废物生产新型中链长聚(3-羟基烷酸酯)及其作为组织工程支架的评估。

Microb. Biotechnol. https://doi.org/10.1111/1751-7915.12782 (2018).Petschnigg, J., Moe, O. W. & Stagljar, I. Using yeast as a model to study membrane proteins. Curr. Opin. Nephrol. Hypertens. https://doi.org/.

。生物技术。https://doi.org/10.1111/1751-7915.12782(2018年)。Petschnigg,J.,Moe,O.W。&Stagljar,I。使用酵母作为模型研究膜蛋白。货币。奥平。肾。高血压。https://doi.org/.

Google Scholar

谷歌学者

Wang, Y. et al. Acetyl-CoA carboxylases and diseases. Front. Oncol. 12, 836058. https://doi.org/10.3389/fonc.2022.836058 (2022).Article

Wang,Y。等人。乙酰辅酶A羧化酶与疾病。正面。Oncol公司。12836058。https://doi.org/10.3389/fonc.2022.836058(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peter, D. M., Vögeli, B., Cortina, N. S. & Erb, T. J. A chemo-enzymatic road map to the synthesis of CoA esters. Molecules. 21, 517. https://doi.org/10.3390/molecules21040517 (2016).Article

Peter,D.M.,Vögeli,B.,Cortina,N.S。&Erb,T.J。CoA酯合成的化学-酶路线图。分子。21517年。https://doi.org/10.3390/molecules21040517(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Steinbüchel, A. & Valentin, H. E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128 (3), 219–228. https://doi.org/10.1016/0378-1097(95)00279-3 (1995).Article

Steinbüchel,A。&Valentin,H.E。细菌多羟基链烷酸的多样性。FEMS微生物。利特。128(3),219-228。https://doi.org/10.1016/0378-1097(95)00279-3(1995)。文章

Google Scholar

谷歌学者

Verlinden, R. A. J., Hill, D. J., Williams, C. D., Hodge, D. J. & Radecka, I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102 (6), 1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03341.x (2007).Article

Verlinden,R.A.J.,Hill,D.J.,Williams,C.D.,Hodge,D.J。&Radecka,I。生物可降解聚羟基烷酸酯的细菌合成。J、 应用。微生物。102(6),1437-1449。https://doi.org/10.1111/j.1365-2672.2007.03341.x(2007年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Riechmann, J. L. & Meyerowitz, E. M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 381 (9–10), 937–950. https://doi.org/10.1515/BC.2000.124 (2000).Article

Riechmann,J.L。和Meyerowitz,E.M。植物转录因子的AP2/EREBP家族。生物化学。381(9-10),937-950。https://doi.org/10.1515/BC.2000.124(2000年)。文章

Google Scholar

谷歌学者

Ohler, U. & Niemann, H. Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet. 18 (2), 50–56. https://doi.org/10.1016/S0168-9525(01)02431-2 (2002).Article

Ohler,U。&Niemann,H。真核启动子的鉴定和分析:最近的计算方法。趋势Genet。18(2),50-56。https://doi.org/10.1016/S0168-9525(01)02431-2(2002)。文章

Google Scholar

谷歌学者

Bird, A. P. DNA methylation patterns and epigenetic memory. Genes Dev. 16 (1), 6–21. https://doi.org/10.1101/gad.947102 (2002).Article

Bird,A.P。DNA甲基化模式和表观遗传记忆。基因发展16(1),6-21。https://doi.org/10.1101/gad.947102(2002年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was conducted at the Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications, New Burelarab, Alexandria, Egypt.FundingOpen access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

下载参考文献致谢这项工作是在埃及亚历山大市新布雷拉布科学研究与技术应用城基因工程与生物技术研究所环境生物技术部进行的。基金科学、技术与创新基金管理局(STDF)与埃及知识银行(EKB)合作提供的开放获取资金。

Not applicable.Author informationAuthors and AffiliationsEnvironmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, EgyptDesouky A.M. Abd-El-Haleem & Gadallah M. Abu-ElreeshAdvanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, EgyptMarwa R.

不适用。作者信息作者和所属机构环境生物技术部,基因工程和生物技术研究所,科学研究和技术应用城市SRTA市,亚历山大,21934,New Burelarab,EgyptDesouky A.M.Abd El Haleem&Gadallah M.Abu ElreeshAdvanced Technology and New Materials Research Institute,科学研究和技术应用城市SRTA市,New Borg El Arab City,21934,Alexandria,EgyptMarwa R。

ElkatoryAuthorsDesouky A.M. Abd-El-HaleemView author publicationsYou can also search for this author in.

ElkatoryAuthorsDesouky A.M.Abd El HaleemView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarMarwa R. ElkatoryView author publicationsYou can also search for this author in

PubMed Google ScholarMarwa R.ElkatoryView作者出版物您也可以在

PubMed Google ScholarGadallah M. Abu-ElreeshView author publicationsYou can also search for this author in

PubMed Google ScholarGadallah M.Abu ElreeshView作者出版物您也可以在

PubMed Google ScholarContributionsAs a corresponding aouthor i confirm that: (A) Dr. Abd-El-Haleem initiated the study, contributed to the ideation of the research study, formulated the research plan, outlined the experimental design, and supervised the overall progress of the study.

PubMed Google ScholarContributions作为相应的作者,我确认:(a)Abd El Haleem博士发起了这项研究,为研究的构思做出了贡献,制定了研究计划,概述了实验设计,并监督了研究的总体进展。

Dr. Abd-El-Haleem wrote the full manuscript and integrated the results obtained from the experiments conducted by Dr. Elkatory. (B) Dr. Elkatory conducted all experiments, performed laboratory work, executed experimental procedures outlined in the research plan, including screening for PHA-producing yeasts, conducting analytical techniques such as Nile red staining, TEM, FTIR spectroscopy, and molecular genetic analyses.

Abd El Haleem博士撰写了完整的手稿,并整合了Elkatory博士进行的实验结果。(B) Elkatory博士进行了所有实验,进行了实验室工作,执行了研究计划中概述的实验程序,包括筛选产生PHA的酵母,进行尼罗红染色,TEM,FTIR光谱和分子遗传学分析等分析技术。

Dr. Elkatory meticulously carried out the genomic library construction and screening, as well as the isolation and identification of putative genes involved in PHA biosynthesis. (C) Dr. Abu-Elreesh supervised the laboratory work, provided guidance and oversight throughout the research process, and managed logistics related to the study, including resource allocation and procurement of necessary materials.Corresponding authorCorrespondence to.

Elkatory博士精心进行了基因组文库的构建和筛选,以及与PHA生物合成有关的推定基因的分离和鉴定。(C) Abu Elreesh博士监督实验室工作,在整个研究过程中提供指导和监督,并管理与研究相关的后勤,包括资源分配和必要材料的采购。对应作者对应。

Desouky A.M. Abd-El-Haleem.Ethics declarations

。道德宣言

Ethics approval and consent to participate

道德批准和同意参与

Not applicable.

不适用。

Consent for publication

同意出版

This research paper is original and has the consent of all authors associated with it.

这篇研究论文是原创的,并得到了所有相关作者的同意。

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleAbd-El-Haleem, D.A., Elkatory, M.R. & Abu-Elreesh, G.M. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production.

转载和许可本文引用本文Abd El Haleem,D.A.,Elkatory,M.R。&Abu Elreesh,G.M。揭示了酵母hanseniaspora valbyensis中新的聚羟基链烷酸酯生物合成基因和独特途径,用于可持续生物塑料生产。

Sci Rep 14, 27162 (2024). https://doi.org/10.1038/s41598-024-77382-xDownload citationReceived: 09 June 2024Accepted: 22 October 2024Published: 08 November 2024DOI: https://doi.org/10.1038/s41598-024-77382-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1427162(2024)。https://doi.org/10.1038/s41598-024-77382-xDownload引文收到日期:2024年6月9日接受日期:2024年10月22日发布日期:2024年11月8日OI:https://doi.org/10.1038/s41598-024-77382-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsPolyhydroxyalkanoates (PHAs)Budding yeast

关键词聚羟基烷酸酯(PHAs)芽殖酵母

Hanseniaspora valbyensis

瓦尔贝氏汉生孢子虫

Biosynthesis genes

生物合成基因