EN
登录

肠道DHA-PA-PG轴通过调节母体沉积的蛋黄脂质的使用来促进消化器官的扩张

Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids

Nature 等信源发布 2024-11-12 11:54

可切换为仅中文


AbstractAlthough the metabolism of yolk lipids such as docosahexaenoic acid (DHA) is pivotal for embryonic development, the underlying mechanism remains elusive. Here we find that the zebrafish hydroxysteroid (17-β) dehydrogenase 12a (hsd17b12a), which encodes an intestinal epithelial-specific enzyme, is essential for the biosynthesis of long-chain polyunsaturated fatty acids in primitive intestine of larval fish.

摘要尽管卵黄脂质(如二十二碳六烯酸(DHA))的代谢对于胚胎发育至关重要,但其潜在机制仍然难以捉摸。。

The deficiency of hsd17b12a leads to severe developmental defects in the primitive intestine and exocrine pancreas. Mechanistically, hsd17b12a deficiency interrupts DHA synthesis from essential fatty acids derived from yolk-deposited triglycerides, and consequently disrupts the intestinal DHA-phosphatidic acid (PA)-phosphatidylglycerol (PG) axis.

hsd17b12a的缺乏会导致原始肠和外分泌胰腺的严重发育缺陷。从机理上讲,hsd17b12a缺乏会中断来自蛋黄沉积的甘油三酯的必需脂肪酸的DHA合成,从而破坏肠道DHA-磷脂酸(PA)-磷脂酰甘油(PG)轴。

This ultimately results in developmental defects of digestive organs, primarily driven by ferroptosis. Our findings indicate that the DHA-PA-PG axis in the primitive intestine facilitates the uptake of yolk lipids and promotes the expansion of digestive organs, thereby uncovering a mechanism through which DHA regulates embryonic development..

这最终导致消化器官的发育缺陷,主要由ferroptosis驱动。。。

IntroductionThe yolk sac stores a large amount of maternal material accumulated during oogenesis, and serves as a nutrient source for embryonic development in both viviparous and oviparous vertebrates1. The metabolism of maternal materials plays an important role in embryonic development2. Unlike viviparous embryos, oviparous embryos depend entirely on yolk nutrients, highlighting the importance of the absorption and utilization of yolk nutrients for their embryonic development3.

引言卵黄囊储存了卵子发生过程中积累的大量母体物质,是胎生和卵生脊椎动物胚胎发育的营养来源1。。与胎生胚胎不同,卵子胚胎完全依赖卵黄营养素,突出了卵黄营养素的吸收和利用对其胚胎发育的重要性3。

Zebrafish, as oviparous organisms, depend solely on a single yolk for nutrition until the endogenous-to-exogenous nutrient source transition (eeNST), which mainly occurs at 5 days post-fertilization (5 dpf)4. In zebrafish, the yolk syncytial layer (YSL) hydrolyzes lipids to release fatty acids and produces lipoproteins that export lipids to the developing embryos until exogenous nutrients are absorbed5.

斑马鱼作为卵生生物,在内源营养源向外源营养源转化(eENT)之前,仅依赖单个卵黄进行营养,这主要发生在受精后5天(5 dpf)4。在斑马鱼中,卵黄合胞体层(YSL)水解脂质释放脂肪酸,并产生脂蛋白,将脂质输出到发育中的胚胎,直到外源营养被吸收5。

Previous studies also suggest that the primitive intestine is involved in the absorption of yolk lipids during embryonic development. For instance, lipid droplets were detected in the intestinal epithelial cells of sea bass during the lecithotrophic period6, and yolk-deposited fatty acids could be transported to the primitive intestine, and participate in lipid synthesis of zebrafish7.

先前的研究还表明,原始肠道参与胚胎发育过程中卵黄脂质的吸收。例如,在卵磷脂营养期间,在鲈鱼的肠上皮细胞中检测到脂滴6,卵黄沉积的脂肪酸可以转运到原始肠道,并参与斑马鱼的脂质合成7。

Dietary phosphatidylcholines (PCs) have been shown to accelerate the metabolism of triglycerides (TAGs) in the intestinal epithelium8. Nevertheless, the regulation of yolk lipid absorption by the primitive intestine has yet to be investigated.Phospholipids (PLs), including phosphatidic acids (PAs), phosphatidylglycerols (PGs), and PCs, can be distinguished based on the variations in the sn-1 and sn-2-linked fatty acid (FA) composition9.

膳食磷脂酰胆碱(PC)已被证明可加速肠上皮细胞中甘油三酯(TAG)的代谢8。然而,尚未研究原始肠道对卵黄脂质吸收的调节。磷脂(PLs),包括磷脂酸(PA),磷脂酰甘油(PGs)和PC,可以根据sn-1和sn-2连接脂肪酸(FA)组成的变化来区分9。

Saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) are prefe.

饱和脂肪酸(SFAs)和单不饱和脂肪酸(MUFA)是首选。

Data availability

数据可用性

The sequence data that support the findings of this study have been deposited in the Genome Sequence Archive at the National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (CRA018363 [https://ngdc.cncb.ac.cn/gsa/search?searchTerm=CRA018363], CRA018331, and CRA018335) are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

支持这项研究结果的序列数据已保存在中国国家生物信息中心/中国科学院北京基因组研究所国家基因组数据中心的基因组序列档案中(CRA018363[https://ngdc.cncb.ac.cn/gsa/search?searchTerm=CRA018363],CRA018331和CRA018335)可在https://ngdc.cncb.ac.cn/gsa.

The lipidomics data are provided in Supplementary Data 3. Public bulk RNA-seq data are available in the GSA database under the accession numbers CRA005219 and CRA005220. The remaining data are available within the Article, Supplementary Information or Source data file. Source data are provided with this paper..

脂质组学数据在补充数据3中提供。GSA数据库中提供了公共批量RNA-seq数据,登录号为CRA005219和CRA005220。其余数据可在文章,补充信息或源数据文件中找到。本文提供了源数据。。

ReferencesRoss, C. & Boroviak, T. E. Origin and function of the yolk sac in primate embryogenesis. Nat. Commun. 11, 3760 (2020).Article

参考文献Ross,C。&Boroviak,T。E。卵黄囊在灵长类动物胚胎发生中的起源和功能。国家公社。113760(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, J. et al. Metabolic remodelling during early mouse embryo development. Nat. Metab. 3, 1372–1384 (2021).Article

赵,J。等。小鼠早期胚胎发育过程中的代谢重塑。自然代谢。31372-1384(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Quinlivan, V. H. & Farber, S. A. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish. Front. Endocrinol. 8, 319 (2017).Article

Quinlivan,V.H。和Farber,S.A。幼虫斑马鱼的脂质摄取,代谢和运输。正面。内分泌。8319(2017)。文章

Google Scholar

谷歌学者

Verbueken, E., et al. From mRNA Expression of Drug Disposition Genes to In Vivo Assessment of CYP-Mediated Biotransformation during Zebrafish Embryonic and Larval Development. Int. J. Mol. Sci. 19, 3976 (2018).Otis, J. P. et al. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake.

Verbueken,E。等人从药物处置基因的mRNA表达到斑马鱼胚胎和幼虫发育过程中CYP介导的生物转化的体内评估。Int.J.Mol.Sci。193976(2018)。斑马鱼作为载脂蛋白生物学的模型:综合表达分析和载脂蛋白a IV在调节食物摄入中的作用。

Dis. Model Mech. 8, 295–309 (2015).PubMed .

Dis。模型机械。8295-309(2015)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

García, M. P., Elbal, H. M. T. L. M. T. & Agulleiro, B. Development of the digestive tract of sea bass(Dicentrarchus labrax L). Light and electron microscopic studies. Anat. Embryol. 204, 39–57 (2001).Article

García,M.P.,Elbal,H.M.T.L.M.T.&Agulleiro,B。鲈鱼消化道的发育(Dicentrarchus labrax L)。光学和电子显微镜研究。阿纳特。胚胎。204,39-57(2001)。文章

Google Scholar

谷歌学者

Miyares, R. L., de Rezende, V. B. & Farber, S. A. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis. Model Mech. 7, 915–927 (2014).PubMed

Miyares,R.L.,de Rezende,V.B。和Farber,S.A。斑马鱼卵黄脂质加工:研究脊椎动物脂质运输和代谢的易处理工具。Dis。模型机械。7915-927(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saele, O., Rod, K. E. L., Quinlivan, V. H., Li, S. & Farber, S. A. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1863, 948–957 (2018).Article

Saele,O.,Rod,K.E.L.,Quinlivan,V.H.,Li,S。&Farber,S.A。一种量化肠道脂质消化和运输的新型系统。Biochim Biophys公司。分子细胞生物学学报。脂质1863948-957(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, B. & Tontonoz, P. Phospholipid Remodeling in Physiology and Disease. Annu. Rev. Physiol. 81, 165–188 (2019).Article

Wang,B。&Tontonoz,P。生理学和疾病中的磷脂重塑。年。生理学评论。81165-188(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Q. et al. The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat. Commun. 12, 6869 (2021).Article

Zhang,Q。等人。溶血磷脂酰胆碱酰基转移酶磷脂重塑的结构基础3。国家公社。126869(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fraher, D. et al. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep. 14, 1317–1329 (2016).Article

斑马鱼胚胎脂质组学分析表明,卵黄细胞在加工脂质方面具有代谢活性。Cell Rep.141317–1329(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Monroig, O., Rotllant, J., Sanchez, E., Cerda-Reverter, J. M. & Tocher, D. R. Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. Biochim. Biophys. Acta 1791, 1093–1101 (2009).Article

Monroig,O.,Rotllant,J.,Sanchez,E.,Cerda Reverter,J.M。和Tocher,D.R。斑马鱼Danio rerio早期胚胎发生过程中长链多不饱和脂肪酸(LC-PUFA)生物合成基因的表达。生物化学。生物物理。Acta 17911993–1101(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pang, S. C. et al. Double Transgenesis of Humanized fat1 and fat2 Genes Promotes Omega-3 Polyunsaturated Fatty Acids Synthesis in a Zebrafish Model. Mar. Biotechnol. 16, 580–593 (2014).Article

Pang,S.C.等人。人源化fat1和fat2基因的双重转基因促进斑马鱼模型中ω-3多不饱和脂肪酸的合成。3月生物技术。16580-593(2014)。文章

Google Scholar

谷歌学者

Kemilainen, H. et al. The Hydroxysteroid (17beta) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology 157, 3719–3730 (2016).Article

羟基类固醇(17beta)脱氢酶家族基因HSD17B12参与前列腺素合成途径、卵巢功能和生育调节。内分泌学1573719-3730(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Moon, Y. A. & Horton, J. D. Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade. J. Biol. Chem. 278, 7335–7343 (2003).Article

Moon,Y.A。&Horton,J.D。鉴定涉及双碳脂肪酰基延伸级联反应的两种哺乳动物还原酶。J、 生物。化学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sakurai, N. et al. Systemic distribution and tissue localizations of human 17beta-hydroxysteroid dehydrogenase type 12. J. Steroid Biochem. Mol. Biol. 99, 174–181 (2006).Article

Sakurai,N。等人。人类17β-羟基类固醇脱氢酶12型的系统分布和组织定位。J、 类固醇生物化学。分子生物学。99174-181(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rantakari, P. et al. Hydroxysteroid (17{beta}) dehydrogenase 12 is essential for mouse organogenesis and embryonic survival. Endocrinology 151, 1893–1901 (2010).Article

Rantakari,P。等人。羟基类固醇(17{β})脱氢酶12对于小鼠器官发生和胚胎存活至关重要。内分泌学1511893-1901(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Heikela, H. et al. Hydroxysteroid (17beta) dehydrogenase 12 is essential for metabolic homeostasis in adult mice. Am. J. Physiol. Endocrinol. Metab. 319, E494–E508 (2020).Article

Heikela,H。等人。羟基类固醇(17beta)脱氢酶12对于成年小鼠的代谢稳态至关重要。Am.J.Physiol。内分泌。代谢。319,E494–E508(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gao, Y., et al. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 11, 3290 (2022).Lands, W. E. M. Metabolism of Glycerolipides: A Comparison of Lecithin and Triglyceride Synthesis. J. Biol. Chem. 231, 883–888 (1958).Article

Gao,Y。等人揭示了斑马鱼幼虫肠道和肝脏中的差异转录组和细胞类型。细胞113290(2022)。Lands,W.E.M。甘油脂的代谢:卵磷脂和甘油三酯合成的比较。J、 生物。化学。231883-888(1958)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918 (2023).Article

Wang,X.等人通过种质因素诱导斑马鱼卵裂球形成原始生殖细胞。国家公社。147918(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, C. et al. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J. Mol. Cell Biol. 11, 448–462 (2019).Article

Gao,C。等人。斑马鱼hhex-null突变体由于cdx1b和pdx1的去阻遏而形成肝内肠管。J、 分子细胞生物学。11448-462(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Winata, C. L. et al. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev. Biol. 331, 222–236 (2009).Article

Winata,C.L.等人。斑马鱼游泳梯的发展:刺猬信号在三个组织层的规格和组织中的要求。开发生物。331222-236(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hostelley, T. L., et al. Exocrine pancreas proteases regulate β-cell proliferation in zebrafish ciliopathy models and in murine systems. Biol Open 10, bio046839 (2021).Singh, S. P., et al. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish.

Hostelley,T.L。等人。外分泌胰腺蛋白酶调节斑马鱼纤毛病模型和小鼠系统中的β细胞增殖。Biol Open 10,bio046839(2021)。Singh,S.P。等人,《从头β细胞再生的单细胞图谱》揭示了杂交β/δ细胞对斑马鱼糖尿病恢复的贡献。

Development 149, dev199853 (2022).Field, H. A., Ober, E. A., Roeser, T. & Stainier, D. Y. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 279–290 (2003).Article .

开发149,dev199853(2022)。Field,H.A.,Ober,E.A.,Roeser,T。&Stainier,D.Y。斑马鱼消化系统的形成。一、 肝脏形态发生。开发生物。。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Field, H. A., Dong, P. D., Beis, D. & Stainier, D. Y. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev. Biol. 261, 197–208 (2003).Article

Field,H.A.,Dong,P.D.,Beis,D。和Stainier,D.Y。斑马鱼消化系统的形成。。胰腺形态发生。开发生物。261197-208(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ng, A. N. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114–135 (2005).Article

Ng,A.N.等人。斑马鱼消化系统的形成:III。肠上皮形态发生。开发生物。286114-135(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gut, P. et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).Article

Gut,P。等人。糖异生的全生物体筛选确定了空腹代谢的激活剂。自然化学。生物学杂志9,97-104(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dong, P. D. et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat. Genet 39, 397–402 (2007).Article

Dong,P.D。等人,Fgf10调节肝胰腺导管系统的模式和分化。《自然遗传学》39397-402(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Brannon, P. M. Adaptation of the exocrine pancreas to diet. Annu Rev. Nutr. 10, 85–105 (1990).Article

Brannon,P.M。外分泌胰腺对饮食的适应。年度修订营养。10,85-105(1990)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wilson, M. H. et al. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 16, e1008941 (2020).Article

Wilson,M.H。等人。点突变使微粒体甘油三酯转移蛋白的脂质转移活性解耦。PLoS Genet 16,e1008941(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat. Med. 18, 967–973 (2012).Article

Avraham Davidi,I。等人。含ApoB的脂蛋白通过调节VEGF受体1的表达来调节血管生成。《自然医学》18967-973(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Templehof, H., Moshe, N., Avraham-Davidi, I., Yaniv, K. Zebrafish mutants provide insights into Apolipoprotein B functions during embryonic development and pathological conditions. JCI Insight 6, e130399 (2021).Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism.

Templehof,H.,Moshe,N.,Avraham Davidi,I.,Yaniv,K。斑马鱼突变体提供了对胚胎发育和病理条件下载脂蛋白B功能的见解。JCI Insight 6,e130399(2021)。Pepino,M.Y.,Kuda,O.,Samovski,D。&Abumrad,N.A。CD36的结构功能和脂肪酸信号转导在脂肪代谢中的重要性。

Annu Rev. Nutr. 34, 281–303 (2014).Article .

年度修订营养。34281-303(2014)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sakaguchi, T., Kikuchi, Y., Kuroiwa, A., Takeda, H. & Stainier, D. Y. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 133, 4063–4072 (2006).Article

Sakaguchi,T.,Kikuchi,Y.,Kuroiwa,A.,Takeda,H。&Stainier,D.Y。卵黄合胞体层通过影响斑马鱼细胞外基质的组装来调节心肌迁移。发展1334063-4072(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Horowitz, A., Chanez-Paredes, S. D., Haest, X. & Turner, J. R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 20, 417–432 (2023).Article

Horowitz,A.,Chanez-Paredes,S.D.,Haest,X。&Turner,J.R。肠道健康和疾病中的细胞旁通透性和紧密连接调节。胃肠病学国家修订版。肝病。20417-432(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Köhler, K., Louvard, D. & Zahraoui, A. Rab13 regulates PKA signaling during tight junction assembly. J. Cell Biol. 165, 175–180 (2004).Article

Köhler,K.,Louvard,D。&Zahraoui,A。Rab13在紧密连接组装过程中调节PKA信号传导。J、 细胞生物学。165175-180(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Endale, H. T., Tesfaye, W. & Mengstie, T. A. ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev. Biol. 11, 1226044 (2023).Article

Endale,H.T.,Tesfaye,W。&Mengstie,T.A。ROS诱导的脂质过氧化及其在ferroptosis中的作用。前细胞发育生物学。111226044(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Askari, B. et al. Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-gamma-independent mechanism in human arterial smooth muscle cells and macrophages. Diabetes 56, 1143–1152 (2007).Article .

。糖尿病561143-1152(2007)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Li, X., et al. Biosynthetic deficiency of docosahexaenoic acid causes nonalcoholic fatty liver disease and ferroptosis-mediated hepatocyte injury. J. Biological Chem., 300, 107405 (2024).Miotto, G. et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol.

Li,X。等人。二十二碳六烯酸的生物合成缺乏会导致非酒精性脂肪肝和铁蛋白沉积介导的肝细胞损伤。J、 生物化学。,300107405(2024)。Miotto,G。等人。深入了解铁抑素-1抑制铁浓化的机制。氧化还原生物。

28, 101328 (2020).Article .

28101328(2020)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Peron, M., et al. The stem-like Stat3-responsive cells of zebrafish intestine are Wnt/β-catenin dependent. Development 147, dev188987 (2020).Han, L. et al. Osr1 functions downstream of Hedgehog pathway to regulate foregut development. Dev. Biol. 427, 72–83 (2017).Article

Peron,M。等人。斑马鱼肠道的干样Stat3反应细胞是Wnt/β-连环蛋白依赖性的。发展147,dev188987(2020)。Han,L.等人,Osr1在刺猬通路的下游起作用,调节前肠的发育。开发生物。427,72-83(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, H. et al. Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. EMBO Rep. 22, e52122 (2021).Article

Yan,H。等人。代谢应激期间胚胎干细胞存活需要脂肪酸氧化。EMBO代表22,e52122(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Neto, A., Mercader, N. & Gomez-Skarmeta, J. L. The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development 139, 301–311 (2012).Article

Neto,A.,Mercader,N。&Gomez-Skarmeta,J.L。Osr1和Osr2基因在视黄酸信号传导下游和Wnt2b上游的前肾原基中起作用,以维持胸鳍的发育。发展139301-311(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mak, H. Y. et al. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nat. Commun. 12, 6877 (2021).Article

。国家公社。126877(2021年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, R. S. et al. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev. Cell 46, 112–125.e114 (2018).Article

Wu,R.S.等人。用于筛选G0斑马鱼的定向基因敲除的快速方法。Dev.Cell 46112–125.e114(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Goh, I. et al. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 381, eadd7564 (2023).Article

Goh,I.等人,《卵黄囊细胞图谱》揭示了人类早期发育过程中的多器官功能。科学381,eadd7564(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cindrova-Davies, T. et al. RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc. Natl Acad. Sci. USA 114, E4753–e4761 (2017).Article

Cindrova-Davies,T。等人的RNA-seq揭示了人,小鼠和鸡的卵黄囊之间的功能保守性。程序。国家科学院。科学。美国114,E4753–e4761(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bass, L. & Wershil, B. K. Anatomy, histology, embryology, and developmental anomalies of the small and large intestine. In Sleisenger and Fordtran’s gastrointestinal and liver disease 10th ed Philadelphia, PA: Saunders, 1649 (Elsevier Inc, 2016).He, J. et al. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish.

Bass,L。&Wershil,B.K。小肠和大肠的解剖学,组织学,胚胎学和发育异常。在Sleisenger和Fordtran的胃肠道和肝病第10版费城,宾夕法尼亚州:桑德斯,1649(Elsevier Inc,2016)。He,J。等人。核糖体生物发生蛋白Urb1在mTOR复合物1的下游起作用,以调节斑马鱼的消化器官发育。

J. Genet Genomics 44, 567–576 (2017).Article .

《基因基因组学杂志》44567-576(2017)。第[UNK]条。

PubMed

PubMed

Google Scholar

谷歌学者

Li, Y. F. et al. Mycn regulates intestinal development through ribosomal biogenesis in a zebrafish model of Feingold syndrome 1. PLoS Biol. 20, e3001856 (2022).Article

Li,Y。F。等人。Mycn在Feingold综合征1的斑马鱼模型中通过核糖体生物发生调节肠道发育。《公共科学图书馆·生物学》。20,e3001856(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cox, A. G., et al. Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J. 37, e100294 (2018).Susila, H. et al. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373, 1137–1142 (2021).Article

Yap调节葡萄糖的利用并维持核苷酸合成以促进器官生长。EMBO J.37,e100294(2018)。Susila,H.等人,《细胞膜中的成花素螯合调节温度响应性开花》,《科学》3731137-1142(2021)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X. et al. Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction to Hepatosteatosis. Cell. Mol. Gastroenterol. Hepatol. 7, 763–781 (2019).Article

Zhang,X。等人。磷脂酰甘油重塑缺陷导致肝病,将线粒体功能障碍与肝脂肪变性联系起来。细胞。胃肠病学分子。肝病。7763-781(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Díaz, P., Powell, T. L. & Jansson, T. The role of placental nutrient sensing in maternal-fetal resource allocation. Biol. Reprod. 91, 82 (2014).Article

Díaz,P.,Powell,T.L。&Jansson,T。胎盘营养感应在母胎资源分配中的作用。生物修复。91,82(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Napso, T., Yong, H. E. J., Lopez-Tello, J. & Sferruzzi-Perri, A. N. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front. Physiol. 9, 1091 (2018).Article

Napso,T.,Yong,H.E.J.,Lopez-Tello,J。&Sferruzzi-Perri,A.N。胎盘激素在介导母体适应以支持妊娠和哺乳中的作用。正面。生理学。91091(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lopez-Tello, J. et al. Fetal manipulation of maternal metabolism is a critical function of the imprinted Igf2 gene. Cell Metab. 35, 1195–1208.e1196 (2023).Article

Lopez-Tello,J。等人。胎儿对母体代谢的操纵是印迹Igf2基因的关键功能。细胞代谢。351195-1208.e1196(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Korzh, S. et al. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev. Biol. 8, 84 (2008).Article

Korzh,S.等人。斑马鱼肝脏生长后期对血管生成和血液循环的要求。BMC开发生物学。8,84(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).Article

Moreno-Mateos,M.A。等人CRISPRscan:设计用于体内靶向CRISPR-Cas9的高效sgRNA。自然方法12982-988(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Q. et al. Inhibition of SLC7A11-GPX4 signal pathway is involved in aconitine-induced ferroptosis in vivo and in vitro. J. Ethnopharmacol. 303, 116029 (2023).Article

Li,Q。等人。抑制SLC7A11-GPX4信号通路与乌头碱诱导的体内和体外铁浓化有关。J、 民族药理学。303116029(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Qiu, Y. et al. Carboxyl ester lipase is highly conserved in utilizing maternal supplied lipids during early development of zebrafish and human. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158663 (2020).Article

Qiu,Y。等人。羧酸酯脂肪酶在斑马鱼和人类早期发育过程中利用母体提供的脂质是高度保守的。生物化学。生物物理。分子细胞生物学学报。脂质1865158663(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).Article

Thisse,C。&Thisse,B。与整个斑马鱼胚胎的高分辨率原位杂交。自然协议。3,59-69(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Q., et al. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology 161, bqaa048 (2020).Wang, Y., et al. Cyp11a2 Is Essential for Oocyte Development and Spermatogonial Stem Cell Differentiation in Zebrafish.

Zhang,Q。等人。斑马鱼cyp11c1基因敲除揭示了11-酮睾酮和皮质醇在性发育和生殖中的作用。内分泌学161,bqaa048(2020)。Wang,Y。等人。Cyp11a2对于斑马鱼的卵母细胞发育和精原干细胞分化至关重要。

Endocrinology 163, bqab258 (2022).Thierer, J. H., Ekker, S. C. & Farber, S. A. The LipoGlo reporter system for sensitive and specific monitoring of atherogenic lipoproteins. Nat. Commun. 10, 3426 (2019).Article .

内分泌学163,bqab258(2022)。。国家公社。103426(2019)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lam, S. M., et al. Quantitative Lipidomics and Spatial MS-Imaging Uncovered Neurological and Systemic Lipid Metabolic Pathways Underlying Troglomorphic Adaptations in Cave-Dwelling Fish. Mol. Biol. Evol. 39, msac050 (2022).Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19.

定量脂质组学和空间质谱成像揭示了洞穴鱼类穴居适应的神经和全身脂质代谢途径。分子生物学。进化。39,msac050(2022)。Lam,S.M.等人。对COVID-19时间轨迹上细胞外囊泡组成和功能的多组学研究。

Nat. Metab. 3, 909–922 (2021).Article .

自然代谢。3909-922(2021)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Ye, D., et al. A landscape of differentiated biological processes involved in the initiation of sex differentiation in zebrafish. Water Biol. Security 1, 100059 (2022).Download referencesAcknowledgementsWe thank Dr. Jingjing Zhang at Guangdong Medical University for providing the antibodies (Rab13, Claudin3, and Claudin4), and the Tg(ET33J1:EGFP) reporter fish.

Ye,D。等人。涉及斑马鱼性别分化起始的分化生物过程的景观。。安全1100059(2022)。下载参考文献致谢我们感谢广东医科大学的张晶晶博士提供了抗体(Rab13,Claudin3和Claudin4)和Tg(ET33J1:EGFP)报告鱼。

We would like to thank Kuoyu Li and Luyuan Pan at the China Zebrafish Resource Center, National Aquatic Biological Resource Center (CZRC, NABRC, http://zfish.cn) for raising the zebrafish, Zhixian Qiao, Xiaocui Chai, Fang Zhou, Yuan Xiao, and Zhenfei Xing at the Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, for their assistance with experiments.

我们要感谢中国斑马鱼资源中心,国家水生生物资源中心(CZRC,NABRC,http://zfish.cn)。

This work was funded by the National Natural Science Foundation of China (32025037), Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB0730300), National Key R&D Program of China (2023YFD2401603), Ministry of Agriculture and Rural Affairs (NK2022010207), Natural Science Foundation of Wuhan, Science and Technology Special Fund of Hainan Province (ZDYF2024XDNY256), and the Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS) to Y.S., and by the National Natural Science Foundation of China (grant No 32273134) and the Youth Innovation Promotion Association CAS (grant No.

这项工作由国家自然科学基金(32025037)、中国科学院战略重点研究计划(XDB0730300)、国家重点研发计划(2023YFD2401603)、农业和农村事务部(NK2022010207)、武汉市自然科学基金、海南省科学技术专项基金(ZDYF2024XDNY256)和Y.S育种生物技术与可持续水产养殖(CAS)重点实验室以及国家自然科学基金(批准号32273134)和中国科学院青年创新促进会(批准号:。

2023353) to M.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author informationAuthors and AffiliationsKey Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, ChinaZhengfang Che.

2023353)给M.H。资助者在研究设计,数据收集和分析,决定发表或准备手稿方面没有任何作用。作者信息作者和附属机构育种生物技术与可持续水产养殖实验室,湖北洪山实验室,中国科学院种子设计创新研究院水生生物研究所,武汉,430072,中国郑方车。

PubMed Google ScholarMudan HeView author publicationsYou can also search for this author in

PubMed Google ScholarMudan HeView作者出版物您也可以在

PubMed Google ScholarHoupeng WangView author publicationsYou can also search for this author in

PubMed谷歌学者Houpeng WangView作者出版物您也可以在

PubMed Google ScholarXuehui LiView author publicationsYou can also search for this author in

PubMed Google ScholarXuehui LiView作者出版物您也可以在

PubMed Google ScholarRuirui QinView author publicationsYou can also search for this author in

PubMed Google ScholarRuirui QinView作者出版物您也可以在

PubMed Google ScholarDing YeView author publicationsYou can also search for this author in

PubMed Google ScholarDing YeView作者出版物您也可以在

PubMed Google ScholarXue ZhaiView author publicationsYou can also search for this author in

PubMed Google ScholarXue ZhaiView作者出版物您也可以在

PubMed Google ScholarJunwen ZhuView author publicationsYou can also search for this author in

PubMed Google ScholarJunwen ZhuView作者出版物您也可以在

PubMed Google ScholarQuanqing ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张全青查看作者出版物您也可以在

PubMed Google ScholarPeng HuView author publicationsYou can also search for this author in

PubMed Google ScholarPeng HuView作者出版物您也可以在

PubMed Google ScholarGuanghou ShuiView author publicationsYou can also search for this author in

PubMed Google ScholarGuanghou ShuiView作者出版物您也可以在

PubMed Google ScholarYonghua SunView author publicationsYou can also search for this author in

PubMed Google ScholaryYonghua SunView作者出版物您也可以在

PubMed Google ScholarContributionsZ.C. designed the research, performed experiments, analyzed data, and wrote the manuscript. M.H., H.W., X.L., R.Q., D.Y., X.Z., J.Z., and Q.Z. provided assistance with experiments. P.H. provided assistance with single-cell RNA-seq analyses. G.S.

PubMed谷歌学术贡献。C、 。M、 H.,H.W.,X.L.,R.Q.,D.Y.,X.Z.,J.Z。和Q.Z.为实验提供了帮助。P、 H.为单细胞RNA-seq分析提供了帮助。G、 S。

provided assistance with lipidomic analyses. Y.S. designed the research, analyzed data, wrote and revised the manuscript.Corresponding authorCorrespondence to.

提供了脂质组学分析的帮助。Y、 美国设计了这项研究,分析了数据,撰写并修改了手稿。对应作者对应。

Yonghua Sun.Ethics declarations

孙永华。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

Peer review information

同行评审信息

Nature Communications thanks Yann Gibert, and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Yann Gibert和其他匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of additional supplementary filesSupplementary Data 1Supplementary Data 2Supplementary Data 3Reporting summarySource dataSource dataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleChen, Z., He, M., Wang, H. et al. Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids.

转载和许可本文引用本文Chen,Z.,He,M.,Wang,H。等人。肠道DHA-PA-PG轴通过介导母体沉积的卵黄脂质的使用来促进消化器官的扩张。

Nat Commun 15, 9769 (2024). https://doi.org/10.1038/s41467-024-54258-2Download citationReceived: 30 January 2024Accepted: 01 November 2024Published: 12 November 2024DOI: https://doi.org/10.1038/s41467-024-54258-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159769(2024)。https://doi.org/10.1038/s41467-024-54258-2Download引文接收日期:2024年1月30日接受日期:2024年11月1日发布日期:2024年11月12日OI:https://doi.org/10.1038/s41467-024-54258-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供