EN
登录

ErbB抑制拯救脆性X综合征小鼠模型中的黑质多巴胺神经元多动和重复行为

ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome

Nature 等信源发布 2024-11-15 09:51

可切换为仅中文


AbstractRepetitive stereotyped behaviors are core symptoms of autism spectrum disorders (ASD) and fragile X syndrome (FXS), the prevalent genetic cause of intellectual disability and autism. The nigrostriatal dopamine (DA) circuit rules movement and creation of habits and sequential behaviors; therefore, its dysregulation could promote autistic repetitive behaviors.

摘要重复刻板行为是自闭症谱系障碍(ASD)和脆性X综合征(FXS)的核心症状,这是智力残疾和自闭症的普遍遗传原因。黑质纹状体多巴胺(DA)回路控制运动以及习惯和顺序行为的产生;因此,其失调可能会促进自闭症的重复行为。

Nevertheless, inspection of substantia nigra pars compacta (SNpc) DA neurons in ASD models has been overlooked and specific evidence of their altered activity in ASD and FXS is absent. Here, we show that hyperactivity of SNpc DA neurons is an early feature of FXS. The underlying mechanism relies on an interplay between metabotropic glutamate receptor 1 (mGluR1) and ErbB tyrosine kinases, receptors for the neurotrophic and differentiation factors known as neuregulins.

然而,在ASD模型中对黑质致密部(SNpc)DA神经元的检查被忽视,并且缺乏其在ASD和FXS中活性改变的具体证据。在这里,我们表明SNpc DA神经元的过度活跃是FXS的早期特征。潜在的机制依赖于代谢型谷氨酸受体1(mGluR1)和ErbB酪氨酸激酶之间的相互作用,ErbB酪氨酸激酶是神经营养和分化因子的受体,称为神经调节蛋白。

Up-regulation of ErbB4 and ErbB2 in nigral DA neurons drives neuronal hyperactivity and repetitive behaviors of the FXS mouse, concurrently rescued by ErbB inhibition. In conclusion, beyond providing the first evidence that nigral DA neuron hyperactivity is a signature of FXS and nigral mGluR1 and ErbB4/2 play a relevant role in FXS etiology, we demonstrate that inhibiting ErbB is a valuable pharmacological approach to attenuate stereotyped repetitive behaviors, thus opening an avenue toward innovative therapies for ASD and FXS treatment..

黑质DA神经元中ErbB4和ErbB2的上调驱动FXS小鼠的神经元过度活跃和重复行为,同时通过ErbB抑制来挽救。总之,除了提供第一个证据表明黑质DA神经元过度活跃是FXS的标志,黑质mGluR1和ErbB4/2在FXS病因学中起相关作用外,我们还证明抑制ErbB是一种有价值的药理学方法,可以减轻刻板的重复行为,从而为ASD和FXS治疗的创新疗法开辟了一条途径。。

IntroductionRepetitive behaviors, such as stereotyped movements, repetitive objects handling, and self-injurious behaviors, are core diagnostic signs of autism spectrum disorders (ASD), also overt in fragile X syndrome (FXS), the main genetic cause of autism and intellectual disability caused by Fmr1 silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) [1,2,3].

The nigrostriatal dopamine (DA) circuit, arising from DA neurons of the substantia nigra pars compacta (SNpc), is key to movement control and the creation of habits and sequential behaviors [4, 5]; thus, its dysregulation is posited as a leading substrate of abnormal movements and restricted routines, emerging as compulsive and stereotyped behaviors in patients with ASD and FXS.

黑质纹状体多巴胺(DA)回路由黑质致密部(SNpc)的DA神经元产生,是运动控制和习惯和顺序行为产生的关键[4,5];因此,其失调被认为是异常运动和限制性日常活动的主要基础,在ASD和FXS患者中表现为强迫和刻板行为。

Earlier clues about the role of the SNpc DA nucleus in repetitive behaviors stand up from evidence that pharmacological and genetic manipulations increasing striatal DA transmission in rodents promote stereotyped movements by striatal D1 activation [6,7,8,9,10,11]. The latest demonstration that optogenetic activation of SNpc DA neurons triggers self-grooming (a repetitive behavior) in mice [12] and self-grooming is attenuated by optogenetic inhibition of the SNpc-to-ventromedial striatum circuit [13] has strengthened the idea that hyperactivation of the nigrostriatal DA circuit is instrumental for repetitive behaviors.

关于SNpc DA核在重复行为中的作用的早期线索来自证据,即增加啮齿动物纹状体DA传递的药理学和遗传操作通过纹状体D1激活促进刻板运动[6,7,8,9,10,11]。最新的证据表明,SNpc DA神经元的光遗传激活触发了小鼠的自我修饰(一种重复行为),并且通过SNpc对腹内侧纹状体回路的光遗传抑制减弱了自我修饰,这强化了黑质纹状体DA回路的过度激活有助于重复行为的观点。

However, so far, precise evidence proving altered activity of nigral DA neuron in ASD or FXS models is absent, keeping the involvement of the SNpc DA nucleus in abnormal repetitive behaviors in ASD still rather theoretical [14,15,16,17].Striatal dysfunctions have been recently reported in the Fmr1 KO mouse, a validated model for FXS [18, 19].

然而,到目前为止,还没有确切的证据证明ASD或FXS模型中黑质DA神经元的活性发生了改变,因此SNpc DA核参与ASD异常重复行为仍然是理论上的[14,15,16,17]。最近在Fmr1 KO小鼠中报道了纹状体功能障碍,Fmr1 KO小鼠是FXS的验证模型[18,19]。

Few other studies described histological and neurochemical DA altera.

很少有其他研究描述组织学和神经化学DA altera。

Data availability

数据可用性

Source data generated in the current study are available from the corresponding author on reasonable request. Supplementary information is available at MP’s website.

当前研究中生成的源数据可根据合理要求从通讯作者处获得。。

ReferencesLeekam SR, Prior MR, Uljarevic M. Restricted and repetitive behaviors in autism spectrum disorders: a review of research in the last decade. Psychol Bull. 2011;137:562–93.PubMed

参考文献Leekam SR,Prior MR,Uljarevic M.自闭症谱系障碍中的限制性和重复性行为:过去十年的研究综述。心理公牛。2011年;137:562-93.PubMed

Google Scholar

谷歌学者

Oakes A, Thurman AJ, McDuffie A, Bullard LM, Hagerman RJ, Abbeduto L. Characterising repetitive behaviours in young boys with fragile X syndrome. J Intellect Disabil Res. 2016;60:54–67.CAS

Oakes A,Thurman AJ,McDuffie A,Bullard LM,Hagerman RJ,Abbeduto L.表征脆性X综合征男孩的重复行为。J Intelligent Disabil Res.2016;60:54–67.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron. 2019;101:1070–88.CAS

Bagni C,Zukin RS.脆弱X综合征和自闭症谱系障碍的突触观点。神经元。2019年;101:1070–88.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Nat Rev Neurosci. 2010;11:760–72.CAS

Redgrave P,Rodriguez M,Smith Y,Rodriguez-Oroz MC,Lehericy S,Bergman H等。Nat Rev Neurosci。2010年;11:

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Howard CD, Li H, Geddes CE, Jin X. Dynamic nigrostriatal dopamine biases action selection. Neuron. 2017;93:1436–1450e1438.CAS

Howard CD,Li H,Geddes CE,Jin X.动态黑质纹状体多巴胺偏向动作选择。神经元。;93:1436–1450e1438.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ernst AM, Smelik PG. Site of action of dopamine and apomorphine on compulsive gnawing behavior in rats. Experientia. 1966;22:837–8.CAS

Ernst AM,Smelik PG.多巴胺和阿扑吗啡对大鼠强迫性啃咬行为的作用部位。体验。1966年;22:837–8.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat Neurosci. 2000;3:377–83.CAS

Canales JJ,Graybiel AM。纹状体功能的测量可预测运动刻板印象。Nat Neurosci。2000年;3: 377–83.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Berridge KC, Aldridge JW. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse. 2000;37:205–15.CAS

贝里奇KC,奥尔德里奇JW。超级刻板印象II:脑室内多巴胺D1激动剂增强复杂的运动序列。突触。2000年;37:205–15.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Presti MF, Mikes HM, Lewis MH. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav. 2003;74:833–9.CAS

Presti MF,Mikes HM,Lewis MH。通过纹状体内药理学操作选择性阻断自发性运动刻板印象。Pharmacol生物化学行为。2003年;74:833–9.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Berridge KC, Aldridge JW, Houchard KR, Zhuang X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol. 2005;3:4.PubMed

Berridge KC,Aldridge JW,Houchard KR,Zhuang X.高多巴胺能突变小鼠本能固定动作模式的顺序超刻板印象:强迫症和图雷特病的模型。BMC生物。2005年;3: 4.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cromwell HC, Berridge KC, Drago J, Levine MS. Action sequencing is impaired in D1A-deficient mutant mice. Eur J Neurosci. 1998;10:2426–32.CAS

Cromwell HC,Berridge KC,Drago J,Levine MS。D1A缺陷突变小鼠的动作测序受损。。1998年;10: 2426–32.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Lee Y, Kim H, Kim J, Park J, Choi J, Lee J, et al. Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors. Mol Neurobiol. 2018;55:5658–71.CAS

Lee Y,Kim H,Kim J,Park J,Choi J,Lee J等。背侧纹状体中过度的D1多巴胺受体激活会促进自闭症样行为。摩尔神经生物学。2018年;

PubMed

PubMed

Google Scholar

谷歌学者

Xue J, Qian D, Zhang B, Yang J, Li W, Bao Y, et al. Midbrain dopamine neurons arbiter OCD-like behavior. Proc Natl Acad Sci USA. 2022;119:e2207545119.CAS

薛J,钱D,张B,杨J,李W,鲍Y,等。中脑多巴胺神经元仲裁强迫症样行为。美国国家科学院院刊2022;119:e2207545119.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pavăl DA. Dopamine hypothesis of autism spectrum disorder. Dev Neurosci. 2017;39:355–60.PubMed

Pavăl DA。自闭症谱系障碍的多巴胺假说。Dev Neurosci。;39:355–60.PubMed

Google Scholar

谷歌学者

Pavăl D, Micluția IV. The dopamine hypothesis of autism spectrum disorder revisited: current status and future prospects. Dev Neurosci. 2021;43:73–83.PubMed

Pavăl D,Micluția IV.自闭症谱系障碍的多巴胺假说:现状和未来前景。Dev Neurosci。2021年;43:73–83.PubMed

Google Scholar

谷歌学者

Gandhi T, Lee CC. Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders. Front Cell Neurosci. 2021;14:592710.PubMed

Gandhi T,Lee CC。自闭症谱系障碍啮齿动物模型中重复行为的神经机制。。2021年;14: 592710.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kosillo P, Bateup HS. Dopaminergic dysregulation in syndromic autism spectrum disorders: insights from genetic mouse models. Front Neural Circuits. 2021;15:700968.CAS

科西洛P,贝托普HS。综合征自闭症谱系障碍中的多巴胺能失调:来自遗传小鼠模型的见解。前神经回路。2021年;15: 700968.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Longo F, Aryal S, Anastasiades PG, Maltese M, Baimel C, Albanese F, et al. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice. Cell Rep. 2023;42:112901.CAS

Longo F,Aryal S,Anastasiades PG,Maltese M,Baimel C,Albanese F等。皮质-纹状体回路的细胞类型特异性破坏驱动脆性X综合征模型小鼠的重复行为模式。细胞代表2023;42:112901.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, et al. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron. 2023;111:1760–75.CAS

Mercaldo V,Vidimova B,Gastaldo D,Fernández E,Lo AC,Cencelli G等。纹状体肌动蛋白动力学改变导致脆性X综合征小鼠模型的行为僵化。神经元。2023年;111:1760-75.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, et al. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain. 2020;13:111.CAS

Chao OY,Pathak SS,Zhang H,Dunaway N,Li JS,Mattern C等。在两种不同的自闭症小鼠模型中改变多巴胺能途径和鼻内多巴胺的治疗效果。。2020年;13: 111.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fish EW, Krouse MC, Stringfield SJ, Diberto JF, Robinson JE, Malanga CJ. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One. 2013;8:e77896.CAS

Fish EW,Krouse MC,Stringfield SJ,Diberto JF,Robinson JE,Malanga CJ。脆性X综合征小鼠模型中奖赏和运动行为对多巴胺能,谷氨酸能和胆碱能药物敏感性的变化。PLoS One。2013年;8: e77896.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gruss M, Braun K. Alterations of amino acids and monoamine metabolism in male Fmr1 knockout mice: a putative animal model of the human fragile X mental retardation syndrome. Neural Plast. 2001;8:285–98.CAS

Gruss M,Braun K.雄性Fmr1基因敲除小鼠中氨基酸和单胺代谢的改变:人类脆性X智力低下综合征的推定动物模型。神经质体。2001年;8: 285–98.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sørensen EM, Bertelsen F, Weikop P, Skovborg MM, Banke T, Drasbek KR, et al. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse. Behav Pharmacol. 2015;26:733–40.PubMed

Sørensen EM,Bertelsen F,Weikop P,Skovborg MM,Banke T,Drasbek KR等。青春期Fmr1基因敲除小鼠的多动症和缺乏社会歧视。行为药理学。2015年;26:733–40.PubMed

Google Scholar

谷歌学者

Ventura R, Pascucci T, Catania MV, Musumeci SA, Puglisi-Allegra S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav Pharmacol. 2004;15:433–42.CAS

Ventura R,Pascucci T,Catania MV,Musumeci SA,Puglisi Allegra S.Fmr1基因敲除小鼠的物体识别障碍被苯丙胺逆转:多巴胺参与内侧前额叶皮层。行为药理学。2004年;15: 433–42.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Fulks JL, O’bryhim BE, Wenzel SK, Fowler SC, Vorontsova E, Pinkston JW, et al. Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem. Neurosci. 2010;1:679–90.CAS

Fulks JL,O'bryhim BE,Wenzel SK,Fowler SC,Vorontsova E,Pinkston JW等。在脆性X智力低下综合征模型小鼠中观察到的多巴胺释放和摄取障碍以及行为改变。ACS化学。神经科学。2010年;1:

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 5th Edition - Hardback ISBN: 9780128161579 (2019).Ledonne A, Nobili A, Latagliata EC, Cavallucci V, Guatteo E, Puglisi-Allegra S, et al. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons.

Paxinos G,Franklin KBJ。立体定位坐标中的小鼠大脑。第5版-精装版ISBN:9780128161579(2019)。Ledonne A,Nobili A,Latagliata EC,Cavallucci V,Guatteo E,Puglisi Allegra S等。神经调节蛋白1信号调节中脑多巴胺能神经元中mGluR1的功能。

Mol Psychiatry. 2015;20:959–73.CAS .

摩尔精神病学。2015年;20: 959年至73年。

PubMed

PubMed

Google Scholar

谷歌学者

Ledonne A, Mango D, Latagliata EC, Chiacchierini G, Nobili A, Nisticò R, et al. Neuregulin 1/ErbB signalling modulates hippocampal mGluRI-dependent LTD and object recognition memory. Pharmacol Res. 2018;130:12–24.CAS

Ledonne A,Mango D,Latagliata EC,Chiacchierini G,Nobili A,NisticòR等。神经调节蛋白1/ErbB信号调节海马mGluRI依赖性LTD和物体识别记忆。Pharmacol Res.2018;130:12–24.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Gu Y, Tran T, Murase S, Borrell A, Kirkwood A, Quinlan EM. Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period. J Neurosci. 2016;36:10285–95.CAS

。J神经科学。2016年;36:10285–95.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Price R, Ferrari E, Gardoni F, Mercuri NB, Ledonne A. Protease-activated receptor 1 (PAR1) inhibits synaptic NMDARs in mouse nigral dopaminergic neurons. Pharmacol Res. 2020;160:105185.CAS

Price R,Ferrari E,Gardoni F,Mercuri NB,Ledonne A.蛋白酶激活受体1(PAR1)抑制小鼠黑质多巴胺能神经元中的突触NMDAR。Pharmacol Res.2020;160:105185.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Ledonne A, Massaro Cenere M, Paldino E, D’Angelo V, D’Addario SL, Casadei N, et al. Morpho-functional changes of nigral dopamine neurons in an α-synuclein model of Parkinson’s disease. Mov Disord. 2023;38:256–66.CAS

Ledonne A,Massaro-Cenere M,Paldino E,D'Angelo V,D'Addario SL,Casadei N等。帕金森病α-突触核蛋白模型中黑质多巴胺神经元的形态功能变化。Mov不一致。2023年;38:256–66.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp. 2013;24:50978.

Angoa-Pérez M,Kane MJ,Briggs DI,Francescutti DM,Kuhn DM。大理石掩埋和雀巢切碎作为小鼠重复性强迫行为的测试。J Vis Exp.2013;24:50978。

Google Scholar

谷歌学者

Gantz SC, Ford CP, Morikawa H, Williams JT. The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area. Annu Rev Physiol. 2018;80:219–41.CAS

甘茨SC,福特CP,森川H,威廉姆斯JT。对黑质和腹侧被盖区多巴胺神经元的不断发展的理解。Annu Rev Physiol。2018年;80:219–41.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Deng PY, Klyachko VA. Channelopathies in fragile X syndrome. Nat Rev Neurosci. 2021;22:275–89.CAS

Deng PY,Klyachko VA.脆性X综合征的通道病。。2021年;22:275–89.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ledonne A, Mercuri NB. Insights on the functional interaction between group 1 metabotropic glutamate receptors (mGluRI) and ErbB receptors. Int J Mol Sci. 2020;21:7913.CAS

Ledonne A,Mercuri NB。关于第1组代谢型谷氨酸受体(mGluRI)和ErbB受体之间功能相互作用的见解。。2020年;21:7913.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mango D, Ledonne A. Updates on the physiopathology of group I metabotropic glutamate receptors (mGluRI)-dependent long-term depression. Cells. 2023;12:1588.CAS

Mango D,Ledonne A.关于I组代谢型谷氨酸受体(mGluRI)依赖性长期抑郁症的病理生理学更新。细胞。2023年;12: 1588.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mercuri NB, Stratta F, Calabresi P, Bonci A, Bernardi G. Activation of metabotropic glutamate receptors induces an inward current in rat dopamine mesencephalic neurons. Neuroscience. 1993;56:399–407.CAS

Mercuri NB,Stratta F,Calabresi P,Bonci A,Bernardi G.代谢型谷氨酸受体的激活诱导大鼠多巴胺中脑神经元的内向电流。神经科学。1993年;56:399–407.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Guatteo E, Mercuri NB, Bernardi G, Knöpfel T. Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. J Neurophysiol. 1999;82:1974–81.CAS

Guatteo E,Mercuri NB,Bernardi G,Knöpfel T.I组代谢型谷氨酸受体介导大鼠黑质多巴胺神经元的内向电流,该电流与钙动员无关。神经生理学杂志。1999年;82:1974-81.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Prisco S, Natoli S, Bernardi G, Mercuri NB. Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology. 2002;42:289–96.CAS

Prisco S,Natoli S,Bernardi G,Mercuri NB。。神经药理学。2002年;42:289–96.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Ledonne A, Mercuri NB. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling. Front Mol Neurosci. 2018;11:346.CAS

Ledonne A,Mercuri NB。啮齿动物中脑多巴胺神经元中mGluR1依赖性长期抑郁受神经调节蛋白1/ErbB信号调节。前摩尔神经科学。2018年;11: 346.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71:877–92.PubMed

Stefansson H,Sigurdsson E,Steinthorsdottir V,Bjornsdottir S,Sigmundsson T,Ghosh S等。神经调节蛋白1与精神分裂症的易感性。我是J Hum Genet。2002年;71:877–92.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006;60:132–40.CAS

哈里森PJ,法律AJ。神经调节蛋白1和精神分裂症:遗传学,基因表达和神经生物学。生物精神病学。2006年;60:132–40.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Li D, Collier DA, He L. Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet. 2006;15:1995–2002.CAS

Li D,Collier DA,He L.荟萃分析显示神经调节蛋白1(NRG1)基因与精神分裂症有很强的正相关。。2006年;15: 1995年至2002年

PubMed

PubMed

Google Scholar

谷歌学者

Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry. 2010;67:991–1001.CAS

Nicodemus KK,Law AJ,Radulescu E,Luna A,Kolachana B,Vakkalanka R等。通过功能性神经影像学在健康对照中对NRG1,ERBB4和AKT1上位性精神分裂症风险增加的生物学验证。。2010年;67:991–1001.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo HJ, Woo RS, Cho SC, Kim BN, Kim JW, Shin MS, et al. Genetic association analyses of neuregulin 1 gene polymorphism with endopheontype for sociality of Korean autism spectrum disorders family. Psychiatry Res. 2015;227:366–8.CAS

Yoo HJ,Woo RS,Cho SC,Kim BN,Kim JW,Shin MS等。神经调节蛋白1基因多态性与韩国自闭症谱系障碍家庭社会性内表型的遗传关联分析。精神病学研究2015;227:366-8.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, et al. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: the joint effect of NRG1-ErbB genes. World J Biol Psychiatry. 2022;23:208–18.CAS .

Prats C,Fatjó-Vilas M,Penzol MJ,Kebir O,Pina Camacho L,Demontis D等。跨连续性精神分裂症和自闭症谱系障碍的白质相关基因的关联和上位性分析:NRG1-ErbB基因的联合作用。世界J生物精神病学。2022年;23:208-18。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Ikawa D, Makinodan M, Iwata K, Ohgidani M, Kato TA, Yamashita Y, et al. Microglia-derived neuregulin expression in psychiatric disorders. Brain Behav Immun. 2017;61:375–85.CAS

Ikawa D,Makinodan M,Iwata K,Ohgidani M,Kato TA,Yamashita Y等。小胶质细胞衍生的神经调节蛋白在精神疾病中的表达。大脑行为免疫。;61:375–85.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Esnafoglu E. Levels of peripheral Neuregulin 1 are increased in non-medicated autism spectrum disorder patients. J Clin Neurosci. 2018;57:43–45.CAS

Esnafoglu E.非药物自闭症谱系障碍患者的外周神经调节蛋白1水平升高。J临床神经科学。2018年;57:43–45.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Abbasy S, Shahraki F, Haghighatfard A, Qazvini GM, Rafiei ST, Noshadirad E, et al. Neuregulin1 types mRNA level changes in autism spectrum disorder, and is associated with deficit in executive functions. EBioMedicine. 2018;37:483–8.PubMed

Abbasy S,Shahraki F,Haghighatfard A,Qazvini GM,Rafiei ST,Noshadirad E等。Neuregulin1类型自闭症谱系障碍的mRNA水平变化,并与执行功能缺陷有关。EBioMedicine。2018年;37:483–8.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.CAS

Darnell JC,Van Driesche SJ,Zhang C,Hung KY,Mele A,Fraser CE等。FMRP阻止与突触功能和自闭症相关的mRNA上的核糖体易位。细胞。2011年;

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ascano, MJr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492:382–6.CAS

Ascano,MJr,Mukherjee N,Bandaru P,Miller JB,Nusbaum JD等。FMRP靶向不同的mRNA序列元件以调节蛋白质表达。自然。2012年;492:382–6.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maurin T, Lebrigand K, Castagnola S, Paquet A, Jarjat M, Popa A, et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 2018;46:6344–55.CAS

。核酸研究2018;46:6344–55.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, et al. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. Elife. 2021;10:e71892.CAS

Hale CR,Sawicka K,Mora K,Fak JJ,Kang JJ,Cutrim P等。FMRP调节在CA1锥体神经元的细胞体和树突中编码不同功能的mRNA。埃利夫。2021年;10: e71892.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bakker C, Verheij C, Willemsen R, Vanderhelm R, Oerlemans F, Vermey M, et al. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell. 1994;78:23–33.

Bakker C,Verheij C,Willemsen R,Vanderhelm R,Oerlemans F,Vermey M等。Fmr1基因敲除小鼠:研究脆性X智力低下的模型。荷兰-比利时脆性X财团。细胞。1994年;78:23-33。

Google Scholar

谷歌学者

Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE. Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus. 2002;12:39–46.PubMed

米努尔YS,斯卢伊特F,德维特S,奥斯特拉BA,克鲁西奥WE。Fmr1基因敲除小鼠的行为和神经解剖学特征。海马。2002年;12: 39-46.PubMed

Google Scholar

谷歌学者

Pietropaolo S, Guilleminot A, Martin B, D’Amato F, Crusio W. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS One. 2011;6:e17073.CAS

Pietropaolo S,Guilleminot A,Martin B,D'Amato F,Crusio W.Fmr1基因敲除小鼠核心和可变自闭症样症状的遗传背景调节。PLoS One。2011年;6: e17073.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, et al. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res. 2011;4:40–56.PubMed

Spencer CM,Alekseyenko O,Hamilton SM,Thomas AM,Serysheva E,Yuva Paylor LA等。改变Fmr1KO小鼠的行为表型:遗传背景差异揭示了自闭症样反应。自闭症研究2011;4: 40-56.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Veeraragavan S, Graham D, Bui N, Yuva-Paylor LA, Wess J, Paylor R. Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS). Behav Brain Res. 2012;228:1–8.CAS

Veeraragavan S,Graham D,Bui N,Yuva-Paylor LA,Wess J,Paylor R.毒蕈碱M4受体的遗传减少调节脆性X综合征(FXS)小鼠模型中的镇痛反应和声音惊吓反应。Behav Brain Res.2012;228:1-8.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Dolan BM, Duron SG, Campbell DA, Vollrath B, Rao BSS, Ko H-Y, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci USA. 2013;110:5671–6.CAS

Dolan BM,Duron SG,Campbell DA,Vollrath B,Rao BSS,Ko H-Y等。小分子PAK抑制剂FRAX486对Fmr1 Ko小鼠脆性X综合征表型的拯救。美国国家科学院院刊2013;110:5671–6.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23:674–7.CAS

Gantois I,Khoutorsky A,Popic J,Aguilar Valles A,Freemantle E,Cao R等。二甲双胍改善脆性X综合征小鼠模型的核心缺陷。Nat Med。2017;23:674–7.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics. 2017;139:S194–S206.PubMed

Kaufmann WE,Kidd SA,Andrews HF,Budimirovic DB,Esler A,Haas Givler B等。脆性X综合征中的自闭症谱系障碍:共现条件和当前治疗。儿科。;139:S194–S206.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey JrDB, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Primers. 2017;3:17065.PubMed

Hagerman RJ,Berry Kravis E,Hazlett HC,Bailey JrDB,Moine H,Kooy RF等。脆性X综合征。Nat Rev Dis引物。;3: 17065.PubMed

Google Scholar

谷歌学者

Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol. 2008;100:2615–26.PubMed

Gibson JR,Bartley AF,Hays SA,Huber KM。新皮层兴奋和抑制的不平衡以及UP状态的改变反映了脆性X综合征小鼠模型中的网络过度兴奋。神经生理学杂志。2008年;100:2615–26.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goncalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing neocortex of fragile X mice. Nat Neurosci. 2013;16:903–9.CAS

Goncalves JT,Anstey JE,Golshani P,Portera Cailliau C.脆弱X小鼠发育中新皮层的电路水平缺陷。Nat Neurosci。2013年;16: 903–9.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Domanski APF, Booker SA, Wyllie DJA, Isaac JTR, Kind PC. Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nat Commun. 2019;10:4814.PubMed

Domanski APF,Booker SA,Wyllie DJA,Isaac JTR,Kind PC.细胞和突触表型导致Fmr1 KO小鼠第4层桶状皮层的信息处理中断。纳特公社。2019年;10: 4814.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng PY, Klyachko VA. Increased persistent sodium current causes neuronal hyperexcitability in the entorhinal cortex of Fmr1 knockout mice. Cell Rep. 2016;16:3157–66.CAS

Deng PY,Klyachko VA。持续性钠电流增加会导致Fmr1基因敲除小鼠内嗅皮层神经元过度兴奋。Cell Rep.2016;16: 3157–66.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng PY, Carlin D, Oh YM, Myrick LK, Warren ST, Cavalli V, et al. Voltage-independent SK-channel dysfunction causes neuronal hyperexcitability in the hippocampus of Fmr1 knock- out mice. J Neurosci. 2019;39:28–43.CAS

Deng PY,Carlin D,Oh YM,Myrick LK,Warren ST,Cavalli V等。电压非依赖性SK通道功能障碍导致Fmr1基因敲除小鼠海马神经元过度兴奋。J神经科学。2019年;39:28–43.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Routh BN, Rathour RK, Baumgardner ME, Kalmbach BE, Johnston D, Brager DH. Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1–/y mouse. J Physiol. 2017;595:4431–48.CAS

劳斯BN,Rathour RK,鲍姆加德纳ME,卡尔姆巴赫BE,约翰斯顿D,布拉格DH。。J生理学。;595:4431–48.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

El-Hassar L, Song L, Tan WJT, Large CH, Alvaro G, Santos-Sacchi J, et al. Modulators of Kv3 potassium channels rescue the auditory function of fragile X mice. J Neurosci. 2019;39:4797–813.PubMed

El Hassar L,Song L,Tan WJT,Large CH,Alvaro G,Santos Sacchi J等。Kv3钾通道调节剂可挽救脆弱X小鼠的听觉功能。J神经科学。2019年;39:4797–813.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chuang S-C, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RKS. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. Comparative Study J Neurosci. 2005;25:8048–55.CAS

Chuang S-C,Zhao W,Bauchwitz R,Yan Q,Bianchi R,Wong RKS。。比较研究J Neurosci。2005年;25:8048–55.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Thomas AM, Bui N, Graham D, Perkins JR, Yuva-Paylor LA, Paylor R. Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome. Behav Brain Res. 2011;223:310–21.CAS

Thomas AM,Bui N,Graham D,Perkins JR,Yuva Paylor LA,Paylor R.第1组代谢型谷氨酸受体的遗传减少改变了脆性X综合征小鼠模型中的选择行为。Behav Brain Res.2011;223:310–21.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thomas AM, Bui N, Perkins JR, Yuva-Paylor LA, Paylor R. Group I metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for fragile X syndrome. Psychopharmacology (Berl). 2012;219:47–58.CAS

Thomas AM,Bui N,Perkins JR,Yuva Paylor LA,Paylor R.I组代谢型谷氨酸受体拮抗剂改变脆性X综合征小鼠模型中的选择行为。心理药理学(Berl)。2012年;219:47-58.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Review Trends Neurosci. 2004;27:370–7.CAS

。回顾趋势神经科学。2004年;27:370–7.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005;49:1053–66.CAS

Yan QJ,Rammal M,Tranfaglia M,Bauchwitz RP.mGluR5拮抗剂MPEP抑制两种主要的脆性X综合征小鼠模型表型。神经药理学。2005年;49:1053–66.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62.PubMed

Dölen G,Osterweil E,Rao BS,Smith GB,Auerbach BD,Chattarji S等。小鼠脆性X综合征的矫正。神经元。2007年;56:955–62.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, et al. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis. 2008;31:127–32.PubMed

de Vrij FM,Levenga J,van der Linde HC,Koekkoek SK,de Zeeuw CI,Nelson DL等。Fmr1 KO小鼠行为表型和神经元突起形态的拯救。。2008年;31:127–32.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, et al. Drug development for neurodevelopmental disorders: Lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17:280–99.CAS

Berry Kravis EM,Lindemann L,Jønch AE,Apostol G,Bear MF,Carpenter RL等。神经发育障碍的药物开发:从脆性X综合征中吸取的教训。Nat Rev Drug Discov公司。2018年;17: 280–99.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.CAS

Trubetskoy V,Pardiñas AF,Qi T,Panagiotaropoulou G,Awasthi S,Bigdeli TB等。绘制基因组位点涉及精神分裂症的基因和突触生物学。自然。2022年;604:502–8.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ledonne A, Mercuri NB. On the modulatory roles of neuregulins/ErbB signaling on synaptic plasticity. Int J Mol Sci. 2019;21:275.PubMed

Ledonne A,Mercuri NB。关于神经调节蛋白/ErbB信号传导对突触可塑性的调节作用。。2019年;21:275.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83:27–49.CAS

梅L,中堂KA。神经系统和神经精神疾病中的神经调节蛋白ERBB信号传导。神经元。2014年;83:27–49.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaphzan H, Hernandez P, Jung JI, Cowansage KK, Deinhardt K, Chao MV, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry. 2012;72:182–90.CAS

Kaphzan H,Hernandez P,Jung JI,Cowansage KK,Deinhardt K,Chao MV等。ErbB抑制剂逆转Angelman综合征模型小鼠海马长时程增强受损和情境恐惧记忆缺陷。生物精神病学。2012年;72:182–90.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharghi S, Flunkert S, Daurer M, Rabl R, Chagnaud BP, Leopoldo M, et al. Evaluating the effect of R-Baclofen and LP-211 on autistic behavior of the BTBR and Fmr1-KO mouse models. Front Neurosci. 2023;17:1087788.PubMed

Sharghi S,Flunkert S,Daurer M,Rabl R,Chagnaud BP,Leopoldo M等。评估R-巴氯芬和LP-211对BTBR和Fmr1 KO小鼠模型自闭症行为的影响。前神经科学。2023年;17: 1087788.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Namba H, Okubo T, Nawa H. Perinatal exposure to neuregulin-1 results in disinhibition of adult midbrain dopaminergic neurons: implication in schizophrenia modeling. Sci Rep. 2016;6:22606.CAS

Namba H,Okubo T,Nawa H.围产期暴露于神经调节蛋白-1导致成年中脑多巴胺能神经元的去抑制:对精神分裂症建模的意义。Sci代表2016;6: 22606.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2022;19:248–62.CAS

Aishworiya R,Valica T,Hagerman R,Restrepo B.自闭症谱系障碍心理药理学治疗的最新进展。神经治疗学。2022年;19: 248–62.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci. 2016;17:45–59.CAS

卡卢夫AV,斯图尔特AM,宋C,贝里奇KC,格雷比尔AM,芬特雷斯JC。啮齿动物自我修饰的神经生物学及其对转化神经科学的价值。。2016年;17: 45–59.CAS

PubMed

PubMed

Google Scholar

谷歌学者

Caldwell-Harris CL. An explanation for repetitive motor behaviors in autism: facilitating inventions via trial-and-error discovery. Front Psychiatry. 2021;12:657774.PubMed

考德威尔·哈里斯(Caldwell-HarrisCl.)。自闭症中重复运动行为的解释:通过反复试验发现促进发明。前沿精神病学。2021年;12: 657774.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was partially supported by Il Fulcro Foundation (AL) and MNESYS (PE0000006)—A Multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022) (AL, NBM, CB). CB group work was also supported by Telethon Foundation GGP20137, PRIN 20227JA8R3 MUR Next Generation EU and SNSF 310030—215706.Author informationAuthors and AffiliationsDepartment of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, ItalySebastian L.

下载参考文献致谢这项工作得到了Il-Fulcro基金会(AL)和MNESYS(PE0000006)的部分支持,这是一种多尺度综合方法,用于研究健康和疾病中的神经系统(DN。1553 11.10.2022)(AL,NBM,CB)。CB小组的工作也得到了Telethon基金会GGP20137,PRIN 20227JA8R3 MUR下一代欧盟和SNSF 310030-215706的支持。作者信息作者和附属机构圣卢西亚基金会IRCCS实验神经科学系,罗马,意大利伊斯巴斯蒂安L。

D’Addario, Mariangela Massaro Cenere, Nicola B. Mercuri & Ada LedonneDepartment of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, ItalyEleonora Rosina & Claudia BagniDepartment of Fundamental Neurosciences, University of Lausanne, Lausanne, SwitzerlandClaudia BagniNeurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, ItalyNicola B.

D'Addario,Mariangela Massaro Cenere,Nicola B.Mercuri&Ada LedonneRome Tor Vergata大学生物医学与预防系,Italyelonora Rosina&Claudia Bagnide洛桑大学洛桑分校基础神经科学系,Switzerlandcraudia BagniNeurology Unit,罗马Tor Vergata大学系统医学系,ItalyNicola B。

MercuriPharmacology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, ItalyAda LedonneAuthorsSebastian L. D’AddarioView author publicationsYou can also search for this author in.

罗马大学系统医学系MercuriPharmacology部门,罗马托尔维加塔,意大利莱顿作者Sebastian L.D'AddarioView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarEleonora RosinaView author publicationsYou can also search for this author in

PubMed Google ScholareLeonoraRosinaview作者出版物您也可以在

PubMed Google ScholarMariangela Massaro CenereView author publicationsYou can also search for this author in

PubMed Google ScholarMariangela Massaro CenereView作者出版物您也可以在

PubMed Google ScholarClaudia BagniView author publicationsYou can also search for this author in

PubMed Google ScholarClaudia BagniView作者出版物您也可以在

PubMed Google ScholarNicola B. MercuriView author publicationsYou can also search for this author in

PubMed Google ScholarNicola B.MercuriView作者出版物您也可以在

PubMed Google ScholarAda LedonneView author publicationsYou can also search for this author in

PubMed Google ScholarAda LedonneView作者出版物您也可以在

PubMed Google ScholarContributionsSLD performed mouse surgeries and intracerebral drug injections; performed and analyzed behavioral experiments. ER performed and analyzed western blot experiments. MMC performed and analyzed immunofluorescence experiments. CB supervised western blot experiments.

PubMed谷歌学术贡献SLD进行了小鼠手术和脑内药物注射;进行并分析了行为实验。ER进行并分析了蛋白质印迹实验。MMC进行并分析了免疫荧光实验。CB监督蛋白质印迹实验。

NBM provided devices and resources. AL conceived the project, designed the experiments, performed and analyzed all electrophysiological recordings, dissected brain samples for western blot and immunofluorescence experiments, supervised the project, prepared the figures, and wrote the manuscript. All authors discussed the results, commented on the manuscript and approved the final version.Corresponding authorCorrespondence to.

NBM提供了设备和资源。AL构思了该项目,设计了实验,执行并分析了所有电生理记录,解剖了用于蛋白质印迹和免疫荧光实验的大脑样本,监督了该项目,准备了数字并撰写了手稿。所有作者都讨论了结果,评论了手稿并批准了最终版本。对应作者对应。

Ada Ledonne.Ethics declarations

艾达·莱东。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary MaterialRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料权利和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleD’Addario, S.L., Rosina, E., Massaro Cenere, M. et al. ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome.

转载和许可本文引用本文D'Addario,S.L.,Rosina,E.,Massaro-Cenere,M。等人。ErbB抑制可挽救脆性X综合征小鼠模型中的黑质多巴胺神经元过度活跃和重复行为。

Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02831-yDownload citationReceived: 16 April 2024Revised: 02 November 2024Accepted: 05 November 2024Published: 15 November 2024DOI: https://doi.org/10.1038/s41380-024-02831-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

摩尔精神病学(2024)。https://doi.org/10.1038/s41380-024-02831-yDownload引文收到日期:2024年4月16日修订日期:2024年11月2日接受日期:2024年11月5日发布日期:2024年11月15日OI:https://doi.org/10.1038/s41380-024-02831-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Autism spectrum disordersNeuroscience

自闭症谱系障碍神经科学