EN
登录

DHX36结合诱导RNA结构体重塑并通过m6A阅读器YTHDF1调节RNA丰度

DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1

Nature 等信源发布 2024-11-15 09:51

可切换为仅中文


AbstractRNA structure constitutes a new layer of gene regulatory mechanisms. RNA binding proteins can modulate RNA secondary structures, thus participating in post-transcriptional regulation. The DEAH-box helicase 36 (DHX36) is known to bind and unwind RNA G-quadruplex (rG4) structure but the transcriptome-wide RNA structure remodeling induced by DHX36 binding and the impact on RNA fate remain poorly understood.

摘要RNA结构构成了一层新的基因调控机制。RNA结合蛋白可以调节RNA二级结构,从而参与转录后调控。已知DEAH盒解旋酶36(DHX36)结合并解开RNA G-四链体(rG4)结构,但DHX36结合诱导的转录组范围的RNA结构重塑以及对RNA命运的影响仍然知之甚少。

Here, we investigate the RNA structurome alteration induced by DHX36 depletion. Our findings reveal that DHX36 binding induces structural remodeling not only at the localized binding sites but also on the entire mRNA transcript most pronounced in 3’UTR regions. DHX36 binding increases structural accessibility at 3’UTRs which is correlated with decreased post-transcriptional mRNA abundance.

在这里,我们研究了DHX36耗竭诱导的RNA结构改变。我们的发现表明,DHX36结合不仅在局部结合位点诱导结构重塑,而且在3'UTR区域最明显的整个mRNA转录本上也诱导结构重塑。DHX36结合增加了3'UTR的结构可及性,这与转录后mRNA丰度降低有关。

Further analyses and experiments uncover that DHX36 binding sites are enriched for N6-methyladenosine (m6A) modification and YTHDF1 binding; and DHX36 induced structural changes may facilitate YTHDF1 binding to m6A sites leading to RNA degradation. Altogether, our findings uncover the structural remodeling effect of DHX36 binding and its impact on RNA abundance through regulating m6A dependent YTHDF1 binding..

进一步的分析和实验发现,DHX36结合位点富含N6-甲基腺苷(m6A)修饰和YTHDF1结合;DHX36诱导的结构变化可能促进YTHDF1与m6A位点的结合,从而导致RNA降解。总之,我们的发现揭示了DHX36结合的结构重塑效应及其通过调节m6A依赖性YTHDF1结合对RNA丰度的影响。。

IntroductionIn recent years, interest in RNA secondary structure has exploded due to its implications in almost all biological functions and its newly appreciated capacity as a therapeutic agent/target1. Examples of secondary structures include long-range interactions, hairpins, R-loops, and G-quadruplexes (G4), and they are formed through interactions of non-adjacent nucleotides.

引言近年来,由于RNA二级结构对几乎所有生物学功能的影响及其作为治疗剂/靶标1的新的被认可的能力,对RNA二级结构的兴趣已经爆发。二级结构的例子包括长程相互作用,发夹,R环和G-四链体(G4),它们是通过非相邻核苷酸的相互作用形成的。

Due to their large size, the structures of mRNAs are challenging to study, but the past decade has seen rapid development in RNA structure-probing methods to capture transcriptome-wide RNA structures (that is, RNA structurome) in many species and across conditions1. For example, structure-seq2 was developed for mapping in vivo RNA structures and interactions by coupling chemical structure probing with deep sequencing.

由于它们的大尺寸,mRNA的结构研究具有挑战性,但在过去的十年中,RNA结构探测方法在许多物种和跨条件下捕获转录组范围的RNA结构(即RNA结构组)方面取得了快速发展1。例如,structure-seq2是通过将化学结构探测与深度测序相结合而开发的,用于绘制体内RNA结构和相互作用。

Chemical modification on the unpaired bases leads to the reverse transcription (RT) stops, which can be read out as a reactivity score and be used to infer RNA structures. It provides quantitative RNA secondary structural information across thousands of transcripts at nucleotide resolution. Several other probing methods have also been developed3,4,5, thus providing tools for systematic interrogation of in vivo RNA structures.The roles of RNA secondary structures in key biological functions can be seen in every type of RNA mainly because of their importance in mediating RNA association with RNA binding proteins (RBPs)6,7,8,9.

对不成对碱基的化学修饰会导致逆转录(RT)停止,这可以作为反应性评分读出,并用于推断RNA结构。它以核苷酸分辨率提供了数千个转录本的定量RNA二级结构信息。还开发了其他几种探测方法3,4,5,从而为体内RNA结构的系统询问提供了工具。RNA二级结构在关键生物学功能中的作用可以在每种类型的RNA中看到,主要是因为它们在介导RNA与RNA结合蛋白(RBPs)6,7,8,9的结合中的重要性。

During the mRNA lifecycle, RBPs regulate diverse transcriptional and post-transcriptional stages. They can bind to pre-mRNA molecules in the nucleus and regulate its maturation and transportation to the cytoplasm, where they regulate translation and degradation. Emerging evidence from transcriptome wide profiling of RBP binding such as crosslinking immunoprec.

在mRNA生命周期中,RBP调节不同的转录和转录后阶段。它们可以与细胞核中的前mRNA分子结合,并调节其成熟和向细胞质的运输,从而调节翻译和降解。来自RBP结合的转录组范围分析的新证据,例如交联immunoprec。

(1)

(1)

$$\alpha=\min \left(\right. 1,{\sum }_{i}{{{\mathrm{ln}}}}\left(1+{P}_{i}\right)/{\sum }_{i}{{{\mathrm{ln}}}}(1+{M}_{i})$$

$$\ alpha=\ min \ left(\ right.1,{\ sum}{i}{{\ mathrm{ln}}}\ left(1+{P}_{i} \右)/{\ sum}{i}{{\ mathrm{ln}}}(1+{M}_{i} ))$$

(2)

(2)

where \({P}_{i}\) and \({M}_{i}\) respectively represent the RT stops of nucleotide i in NAI/DMS-treated and DMSO-treated samples; L represents transcript length; α is a library size correction factor. The raw reactivity was calculated using log-normalized RT stops and then normalized by 2–8% method to generate the final reactivity.

在哪里\({P}_{i} \)和\({M}_{i} \)分别代表NAI/DMS处理和DMSO处理样品中核苷酸i的RT终止;L代表成绩单长度;α是库大小校正因子。使用对数归一化RT停止计算原始反应性,然后通过2-8%方法归一化以产生最终反应性。

In the normalization process, the top 10% of raw reactivities were extracted. Within this subset, the top 2% of raw reactivities were excluded, and the remaining 8% of reactivities were averaged to generate a normalization scale77. Subsequently, the raw reactivities of both WT and KO samples were divided by the WT normalization scale to generate normalized reactivities.

在归一化过程中,提取了前10%的原始反应性。在这个子集中,前2%的原始反应性被排除在外,其余8%的反应性被平均以产生归一化量表77。随后,将WT和KO样品的原始反应性除以WT归一化标度以产生归一化反应性。

Next, the splice_reacts_by_FASTA.py script was used to splice the reactivity profile of the entire transcript by the designated mRNA regions. The average reactivity and the Gini index of SHAPE reactivity of the entire transcript or the designated region were calculated using the react_statistics.py script.

接下来,使用splice\u reacts\u by\u FASTA.py脚本通过指定的mRNA区域剪接整个转录本的反应性谱。使用react\u statistics.py脚本计算整个转录本或指定区域的平均反应性和SHAPE反应性的基尼指数。

RNA structure folding constrained by reactivity score was performed using the Vienna RNA package41. The base-pairing probability of each nucleotide was extracted from the corresponding structure ensemble “.ps” file. The software dStruct40 (parameter: reps_A = 2, reps_B = 2, min_length = 5, batches=T, check_signal_strength = T, check_nucs = T, check_quality = T) was used to identify the significant DRRs within DHX36 binding sites (FDR < 0.25).

使用维也纳RNA包装41进行受反应性评分约束的RNA结构折叠。从相应的结构集合“.ps”文件中提取每个核苷酸的碱基配对概率。使用软件dStruct40(参数:reps\u A = 2,reps\u B = 2,min\u length = 5,Batch=T,check\u signal\u strength=T,check\u nucs=T,check\u quality=T)来识别DHX36结合位点内的重要DRR(FDR<0.25)。

VARNA78 was used to visualize the selected RNA secondary structures (Figs. 3H,  6B).For 18S rRNA benchmarking, we respectively aligned the reads in HEK293T or C2C12 cells to human and mouse 18S rRNA reference (human: NR_145820.1; mouse: NR_003278.3). The RT stops and reactivity scores were calculated based on the same w.

VARNA78用于可视化所选的RNA二级结构(图3H,6B)。对于18S rRNA基准测试,我们分别将HEK293T或C2C12细胞中的读数与人和小鼠18S rRNA参考(人:NR\u 145820.1;小鼠:NR\u 003278.3)进行比对。RT停止和反应性评分是基于相同的w计算的。

Data availability

数据可用性

The data supporting the findings of this study are available from the corresponding authors upon request. Structure-seq and RBNS data used in this study have been deposited in Gene Expression Omnibus (GEO) database under the accession codes GSE237160 (WT and DHX36/Dhx36 Structure-seq), GSE237161 (RBNS), GSE264498 (YTHDF1 CLIP-seq), and GSE264642 (Control and m6A-inhibited Structure-seq).

支持本研究结果的数据可应要求从通讯作者处获得。本研究中使用的Structure-seq和RBNS数据已保存在Gene Expression Omnibus(GEO)数据库中,登录号为GSE237160(WT和DHX36/DHX36 Structure-seq),GSE237161(RBNS),GSE264498(YTHDF1 CLIP-seq)和GSE264642(对照和m6A抑制的Structure-seq)。

Source data for the figures and Supplementary Figs. are provided as a Source Data file. Source data are provided with this paper..

图和补充图的源数据作为源数据文件提供。本文提供了源数据。。

Code availability

代码可用性

The code used in this study is available at Zenodo97 and the GitHub repository (https://github.com/zhangyw0713/Scripts_for_DHX36_paper).

这项研究中使用的代码可以在Zenodo97和GitHub存储库中找到(https://github.com/zhangyw0713/Scripts_for_DHX36_paper)。

ReferencesWang, X. W., Liu, C. X., Chen, L. L. & Zhang, Q. C. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17, 755–766 (2021).Article

参考文献Wang,X.W.,Liu,C.X.,Chen,L.L。&Zhang,Q.C。RNA结构探测揭示了RNA结构依赖性生物学功能。自然化学。生物学17755-766(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).Article

Ding,Y。等人。RNA二级结构的体内全基因组分析揭示了新的调控特征。《自然》505696-700(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).Article

Spitale,R.C.等人。体内结构印迹解码RNA调控机制。自然519486-490(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weng, X. et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat. Chem. Biol. 16, 489–492 (2020).Article

Weng,X。等人。Keth-seq用于转录组范围的RNA结构作图。自然化学。生物学16489-492(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Incarnato, D., Neri, F., Anselmi, F. & Oliviero, S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol. 15, 491 (2014).Article

。基因组生物学。15491(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).Article

Corley,M.,Burns,M.C。&Yeo,G.W。RNA结合蛋白如何与RNA相互作用:分子和机制。分子细胞78,9-29(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Georgakopoulos-Soares, I., Parada, G. E. & Hemberg, M. Secondary structures in RNA synthesis, splicing and translation. Comput. Struct. Biotechnol. J. 20, 2871–2884 (2022).Article

Georgakopoulos Soares,I.,Parada,G.E。和Hemberg,M。RNA合成,剪接和翻译中的二级结构。计算机。结构。生物技术。J、 202871-2884(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).Article

Spitale,R.C。&Inchanato,D。探索动态RNA结构组及其功能。。24178-196(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, J. et al. Genome-wide RNA structure changes during human neurogenesis modulate gene regulatory networks. Mol. Cell 81, 4942–4953.e4948 (2021).Article

Wang,J。等人。人类神经发生过程中全基因组RNA结构的变化调节基因调控网络。分子细胞814942-4953.e4948(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jin, Y., Yang, Y. & Zhang, P. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs. RNA Biol. 8, 450–457 (2011).Article

Jin,Y.,Yang,Y。&Zhang,P。对前mRNA选择性剪接中RNA二级结构的新见解。RNA生物学。8450-457(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shepard, P. J. & Hertel, K. J. Conserved RNA secondary structures promote alternative splicing. RNA 14, 1463–1469 (2008).Article

Shepard,P.J。&Hertel,K.J。保守的RNA二级结构促进选择性剪接。RNA 141463-1469(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e76 (2020).Article

。分子细胞78,70-84.e76(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).Article

Liu,N。等人。N(6)-甲基腺苷依赖性RNA结构开关调节RNA-蛋白质相互作用。自然518560-564(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sloan, K. E. & Bohnsack, M. T. Unravelling the mechanisms of RNA helicase regulation. Trends Biochem. Sci. 43, 237–250 (2018).Article

Sloan,K.E。&Bohnsack,M.T。揭示了RNA解旋酶调控的机制。趋势生物化学。科学。43237-250(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Srinivasan, S., Liu, Z., Chuenchor, W., Xiao, T. S. & Jankowsky, E. Function of auxiliary domains of the DEAH/RHA helicase DHX36 in RNA remodeling. J. Mol. Biol. 432, 2217–2231 (2020).Article

Srinivasan,S.,Liu,Z.,Chuenchor,W.,Xiao,T.S。&Jankowsky,E。DEAH/RHA解旋酶DHX36辅助结构域在RNA重塑中的功能。J、 分子生物学。4322217-2231(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, M. C. et al. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558, 465–469 (2018).Article

Chen,M.C.等人。DEAH/RHA解旋酶DHX36展开G-四链体的结构基础。自然558465-469(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kharel, P., Becker, G., Tsvetkov, V. & Ivanov, P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res. 48, 12534–12555 (2020).Article

Kharel,P.,Becker,G.,Tsvetkov,V。&Ivanov,P。RNA G-四链体的性质和生物学影响:从有序到混乱再回到。核酸研究4812534-12555(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Herviou, P. et al. hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat. Commun. 11, 2661 (2020).Article

Herviou,P。等人。hnRNP H/F驱动RNA G-四链体介导的翻译与胶质母细胞瘤的基因组不稳定性和治疗耐药性有关。国家公社。112661(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simko, E. A. J. et al. G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res. 48, 7421–7438 (2020).CAS

Simko,E.A.J.等人的G-四链体为NEAT1结构lncRNA的NONO募集提供了保守的结构基序。核酸研究487421-7438(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schult, P. & Paeschke, K. The DEAH helicase DHX36 and its role in G-quadruplex-dependent processes. Biol. Chem. 402, 581–591 (2021).Article

Schult,P。&Paeschke,K。DEAH解旋酶DHX36及其在G-四链体依赖性过程中的作用。生物化学。402581-591(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Murat, P. et al. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol. 19, 229 (2018).Article

Murat,P。等人。上游开放阅读框处的RNA G-四链体导致人mRNA的DHX36和DHX9依赖性翻译。基因组生物学。19229(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, X. et al. Translational control by DHX36 binding to 5’UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat. Commun. 12, 5043 (2021).Article

Chen,X。等人。DHX36与5'UTR G-四联体结合的翻译控制对于肌肉干细胞再生功能至关重要。国家公社。125043(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Newman, M. et al. The G-quadruplex-specific RNA helicase DHX36 regulates p53 pre-mRNA 3’-end processing following UV-induced DNA damage. J. Mol. Biol. 429, 3121–3131 (2017).Article

Newman,M。等人。G-四链体特异性RNA解旋酶DHX36调节紫外线诱导的DNA损伤后p53前mRNA 3'末端的加工。J、 分子生物学。4293121–3131(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).Article

Yang,Y.,Hsu,P.J.,Chen,Y.S.&Yang,Y.G.动态转录组学m(6)装饰:作家,橡皮擦,读者和RNA代谢中的功能。Cell Res.28616-624(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li J. et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 55, e13157 (2021).Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181, 1582–1595.e1518 (2020).Article

Li J.等人。YTHDF1通过YTHDF1-AGO2相互作用和相分离促进mRNA降解。细胞增殖。55,e13157(2021)。Zaccara,S。和Jaffrey,S。R。YTHDF蛋白在调节m(6)A修饰的mRNA中的功能的统一模型。Cell 1811582–1595.e1518(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, S. et al. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162, 1183–1196 (2022).Article

Wang,S。等人。N6-甲基腺苷读取器YTHDF1促进结直肠癌中的ARHGEF2翻译和RhoA信号传导。胃肠病学1621183-1196(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).Article

Wang,X。等人。N(6)-甲基腺苷调节信使RNA翻译效率。细胞1611388-1399(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).Article

Liu,N。等人。N6-甲基腺苷改变RNA结构以调节低复杂度蛋白质的结合。核酸研究456051-6063(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meiser, N., Mench, N. & Hengesbach, M. RNA secondary structure dependence in METTL3-METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biol. Chem. 402, 89–98 (2020).Article

Meiser,N.,Mench,N。&Hengesbach,M。METTL3-METTL14 mRNA甲基化中的RNA二级结构依赖性受METTL3的N端结构域调节。生物化学。402,89-98(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Han, Z. et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464, 1205–1209 (2010).Article

Han,Z。等人。FTO蛋白的晶体结构揭示了其底物特异性的基础。《自然》4641205–1209(2010)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feng, C. et al. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 289, 11571–11583 (2014).Article

人RNA去甲基化酶Alkbh5的晶体结构揭示了底物识别的基础。J、 生物。化学。28911571-11583(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Z. et al. The YTH domain is a novel RNA binding domain. J. Biol. Chem. 285, 14701–14710 (2010).Article

Zhang,Z。等人。YTH结构域是一种新型的RNA结合结构域。J、 生物。化学。28514701–14710(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C. & Assmann, S. M. Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc. 10, 1050–1066 (2015).Article

Ding,Y.,Kwok,C.K.,Tang,Y.,Bevilacqua,P.C。&Assmann,S.M。使用structure-seq在单核苷酸分辨率下对体内RNA结构进行全基因组分析。自然协议。101050-1066(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tack, D. C., Tang, Y., Ritchey, L. E., Assmann, S. M. & Bevilacqua, P. C. StructureFold2: bringing chemical probing data into the computational fold of RNA structural analysis. Methods 143, 12–15 (2018).Article

Tack,D.C.,Tang,Y.,Ritchey,L.E.,Assmann,S.M。和Bevilacqua,P.C。StructureFold2:将化学探测数据带入RNA结构分析的计算折叠中。方法143,12-15(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).Article

Sun,L。等人。RNA结构图跨越哺乳动物细胞区室。自然结构。分子生物学。26322-330(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sauer, M. et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 10, 2421 (2019).Article

Sauer,M。等人,DHX36阻止非翻译区中具有G4结构的翻译失活mRNA的积累。国家公社。102421(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. & Zhang, C. CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics 33, 566–567 (2017).Article

Shah,A.,Qian,Y.,Weyn Vanhentenryck,S.M。和Zhang,C。CLIP工具包(CTK):一种灵活而强大的管道,用于分析CLIP测序数据。生物信息学33566-567(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).Article

Lu,Z.等人。活细胞中的RNA双链图谱揭示了高阶转录组结构。细胞1651267-1279(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Choudhary, K., Lai, Y. H., Tran, E. J. & Aviran, S. dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biol. 20, 40 (2019).Article

Choudhary,K.,Lai,Y.H.,Tran,E.J。和Aviran,S.dStruct:从RNA结构组分析数据中识别差异反应区域。基因组生物学。20,40(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011).Article

Lorenz,R.等人,ViennaRNA软件包2.0。算法分子生物学。6,26(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peeri, M. & Tuller, T. High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life. Genome Biol. 21, 63 (2020).Article

Peeri,M。&Tuller,T。生命树编码序列中局部mRNA折叠强度选择的高分辨率建模。基因组生物学。21,63(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krishnan, N. M., Seligmann, H. & Rao, B. J. Relationship between mRNA secondary structure and sequence variability in chloroplast genes: possible life history implications. BMC Genomics 9, 48 (2008).Article

Krishnan,N.M.,Seligmann,H。&Rao,B.J。mRNA二级结构与叶绿体基因序列变异性之间的关系:可能的生活史意义。BMC基因组学9,48(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldron, J. A. et al. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol. 20, 300 (2019).Article

Waldron,J.A。等人。起始密码子上游的mRNA结构元件决定了对eIF4A解旋酶活性的依赖性。基因组生物学。20300(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holmqvist, E., Li, L., Bischler, T., Barquist, L. & Vogel, J. Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3’ ends. Mol. Cell 70, 971–982.e976 (2018).Article

Holmqvist,E.,Li,L.,Bischler,T.,Barquist,L。&Vogel,J。体内ProQ结合的全球图谱揭示了通过RNA结构和mRNA 3'末端的稳定性控制的靶标识别。分子细胞70971-982.e976(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rasekhian, M., Roohvand, F., Habtemariam, S., Marzbany, M. & Kazemimanesh, M. The role of 3’UTR of RNA viruses on mRNA stability and translation enhancement. Mini Rev. Med Chem. 21, 2389–2398 (2021).Article

Rasekhian,M.,Roohvand,F.,Habtemariam,S.,Marzbany,M。&Kazemimanesh,M。RNA病毒3'UTR对mRNA稳定性和翻译增强的作用。迷你版医学化学。212389-2398(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schwerk, J. & Savan, R. Translating the untranslated region. J. Immunol. 195, 2963–2971 (2015).Article

Schwerk,J。&Savan,R。翻译非翻译区。J、 免疫。1952963-2971(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).Article

Linder,B。等人。整个转录组中m6A和m6Am的单核苷酸分辨率作图。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patil, D. P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).Article

Patil,D.P。等人m(6)RNA甲基化促进XIST介导的转录抑制。自然537369-373(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fleming, A. M., Nguyen, N. L. B. & Burrows, C. J. Colocalization of m(6)A and G-quadruplex-forming sequences in viral RNA (HIV, Zika, Hepatitis B, and SV40) suggests topological control of adenosine N (6)-methylation. ACS Cent. Sci. 5, 218–228 (2019).Article

Fleming,A.M.,Nguyen,N.L.B。&Burrows,C.J。病毒RNA(HIV,寨卡病毒,乙型肝炎和SV40)中M(6)A和G-四链体形成序列的共定位表明腺苷N(6)-甲基化的拓扑控制。ACS分。科学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jara-Espejo, M., Fleming, A. M. & Burrows, C. J. Potential G-quadruplex forming sequences and N(6)-methyladenosine colocalize at human pre-mRNA intron splice sites. ACS Chem. Biol. 15, 1292–1300 (2020).Article

Jara-Espejo,M.,Fleming,A.M。和Burrows,C.J。潜在的G-四链体形成序列和N(6)-甲基腺苷共定位于人前mRNA内含子剪接位点。ACS化学。生物学第15期,1292-1300(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, C. et al. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290, 24902–24913 (2015).Article

Xu,C.等人。人类YT521-B同源结构域蛋白家族对N6-甲基腺苷RNA进行鉴别识别的结构基础。J、 生物。化学。29024902–24913(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, J. et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 55, e13157 (2022).Article

Li,J。等人。YTHDF1通过YTHDF1-AGO2相互作用和相分离促进mRNA降解。细胞增殖。55,e13157(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Varshney, D. et al. RNA G-quadruplex structures control ribosomal protein production. Sci. Rep. 11, 22735 (2021).Article

Varshney,D。等人。RNA G-四链体结构控制核糖体蛋白质的产生。科学。代表1122735(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nie, J. et al. Post-transcriptional regulation of Nkx2-5 by RHAU in heart development. Cell Rep. 13, 723–732 (2015).Article

Nie,J.等人。RHAU在心脏发育中对Nkx2-5的转录后调控。Cell Rep.13723–732(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, W. et al. Yin Yang 1 contains G-quadruplex structures in its promoter and 5’-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res. 40, 1033–1049 (2012).Article

Huang,W。等人。阴阳1在其启动子和5'-UTR中含有G-四联体结构,其表达受G4分解酶1调节。核酸研究401033-1049(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Maltby, C. J. et al. A 5’ UTR GGN repeat controls localisation and translation of a potassium leak channel mRNA through G-quadruplex formation. Nucleic Acids Res. 48, 9822–9839 (2020).Article

Maltby,C.J。等人,5'UTR GGN重复序列通过G-四链体形成控制钾泄漏通道mRNA的定位和翻译。核酸研究489822-9839(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, J. et al. Genome-wide RNA structure changes during human neurogenesis modulate gene regulatory networks. Mol Cell 81, 4942–4953.e8(2021).Lai, Y. H. et al. Genome-wide discovery of DEAD-Box RNA helicase targets reveals RNA structural remodeling in transcription termination. Genetics 212, 153–174 (2019).Article .

Wang,J。等人。人类神经发生过程中全基因组RNA结构的变化调节基因调控网络。摩尔细胞814942-4953。e8(2021)。Lai,Y.H.等人。全基因组发现DEAD-Box RNA解旋酶靶标揭示了转录终止中的RNA结构重塑。遗传学212153-174(2019)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tippana, R., Chen, M. C., Demeshkina, N. A., Ferre-D’Amare, A. R. & Myong, S. RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat. Commun. 10, 1855 (2019).Article

Tippana,R.,Chen,M.C.,Demeshkina,N.A.,Ferre-D'Amare,A.R。&Myong,S。RNA G-四链体通过DHX36的重复和ATP依赖性机制得以解决。国家公社。101855(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, M. C., Murat, P., Abecassis, K., Ferre-D’ Amare, A. R. & Balasubramanian, S. Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase. Nucleic Acids Res. 43, 2223–2231 (2015).Article

Chen,M.C.,Murat,P.,Abecassis,K.,Ferre-D'Amare,A.R。&Balasubramanian,S。对G-四链体解旋DEAH盒解旋酶机制的见解。核酸研究432223-2231(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 e511 (2018).Article

Youn,J.Y.等人。高密度邻近作图揭示了mRNA相关颗粒和体的亚细胞组织。分子细胞69517-532 e511(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, X. et al. Lockd promotes myoblast proliferation and muscle regeneration via binding with DHX36 to facilitate 5’ UTR rG4 unwinding and Anp32e translation. Cell Rep. 39, 110927 (2022).Article

Chen,X。等人,Lockd通过与DHX36结合促进成肌细胞增殖和肌肉再生,以促进5'UTR rG4解旋和Anp32e翻译。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yeung, P. Y. et al. Systematic evaluation and optimization of the experimental steps in RNA G-quadruplex structure sequencing. Sci. Rep. 9, 8091 (2019).Article

Yeung,P.Y.等人。RNA G-四链体结构测序实验步骤的系统评估和优化。科学。代表98091(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, J. et al. Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0. BMC Biol. 20, 257 (2022).Blue, S. M. et al. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq. Nat. Protoc. 17, 1223–1265 (2022).Article .

Zhao,J。等人。用rG4-seq 2.0增强低RNA输入样品的转录组范围RNA G-四链体测序。BMC生物。20257(2022)。Blue,S.M.等人。使用seCLIP-seq在转录组范围内鉴定RNA结合蛋白结合位点。自然协议。171223-1265(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, Y. et al. MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation. Nat. Commun. 10, 5787 (2019).Article

Zhao,Y。等人。MyoD诱导的增强子RNA与hnRNPL相互作用,在肌原性分化过程中激活靶基因转录。国家公社。105787(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).Article

Van Nostrand,E.L.等人。通过增强CLIP(eCLIP)在转录组范围内发现RNA结合蛋白结合位点。《自然方法》13508-514(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moore, M. J. et al. Mapping argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc. 9, 263–293 (2014).Article

Moore,M.J.等人使用HITS-CLIP和CIMS分析以单核苷酸分辨率绘制argonaute和常规RNA结合蛋白与RNA的相互作用。自然协议。9263-293(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goering, R. et al. FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. Elife 9, e52621 (2020).Dominguez, D. et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell 70, 854–867.e859 (2018).Article .

FMRP通过其RGG结构域和G-四链体RNA序列之间的相互作用促进RNA定位于神经元投射。Elife 9,e52621(2020)。Dominguez,D。等人。人类RNA结合蛋白的序列,结构和背景偏好。分子细胞70854-867.e859(2018)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiao, Y. et al. Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export. Elife 12, e82703 (2023).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 (2011).Langmead, B.

Qiao,Y。等人。核m6A读取器YTHDC1通过调节mRNA剪接和核输出来促进肌肉干细胞活化/增殖。Elife 12,e82703(2023)。Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet.journal 17(2011)。朗米德,B。

& Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article .

&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).Article

Frankish,A。等人。人类和小鼠基因组的GENCODE参考注释。核酸研究47,D766–D773(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, M. et al. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res. 48, 8767–8781 (2020).Article

Yang,M。等人。完整的RNA结构组揭示了mRNA结构介导的体内miRNA切割调控。核酸研究488767-8781(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Low, J. T. & Weeks, K. M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).Article

Low,J.T。&Weeks,K.M。SHAPE指导的RNA二级结构预测。方法52150-158(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Darty, K., Denise, A. & Ponty, Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).Article

Darty,K.,Denise,A。&Ponty,Y。VARNA:RNA二级结构的交互式绘制和编辑。生物信息学251974-1975(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).Article

。BMC生物信息学3,2(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).Article

Li,H。&Durbin,R。使用Burrows-Wheeler变换进行快速准确的长读比对。生物信息学26589-595(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).Article

Wingett,S.W。&Andrews,S.FastQ屏幕:用于多基因组作图和质量控制的工具。F1000Res。71338(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article

Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-2120(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uren, P. J. et al. Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28, 3013–3020 (2012).Article

Uren,P.J。等人。高通量RNA-蛋白质相互作用数据中的位点鉴定。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hon, J., Martinek, T., Zendulka, J. & Lexa, M. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33, 3373–3379 (2017).Article

Hon,J.,Martinek,T.,Zendulka,J。&Lexa,M。pqsfinder:R.Bioinformatics 333373-3379(2017)中潜在的四链体形成序列的详尽且具有缺陷容忍性的搜索工具。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jana, J., Mohr, S., Vianney, Y. M. & Weisz, K. Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem. Biol. 2, 338–353 (2021).Article

Jana,J.,Mohr,S.,Vianney,Y.M。和Weisz,K。非规范G-四链体中的结构基序和分子内相互作用。RSC化学。生物学2338-353(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article

Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article

Kim,D.,Paggi,J.M.,Park,C.,Bennett,C。&Salzberg,S.L。基于图形的基因组比对和HISAT2和HISAT基因型的基因分型。美国国家生物技术公司。37907-915(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article

Liao,Y.,Smyth,G.K。&Shi,W。featureCounts:一种有效的通用程序,用于将序列读数分配给基因组特征。生物信息学30923-930(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boulias, K. et al. Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol. Cell 75, 631–643.e638 (2019).Article

m(6)Am甲基转移酶PCIF1的鉴定揭示了m(6)Am在转录组中的位置和功能。分子细胞75631-643.e638(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Webb, S., Hector, R. D., Kudla, G. & Granneman, S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol. 15, R8 (2014).Article

Webb,S.,Hector,R.D.,Kudla,G。&Granneman,S。PAR-CLIP数据表明Nrd1-Nab3依赖性转录终止调节酵母中数百种蛋白质编码基因的表达。基因组生物学。15,R8(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).Article

Ramirez,F.,Dundar,F.,Diehl,S.,Grunning,B.A。&Manke,T。deepTools:探索深度测序数据的灵活平台。核酸研究42,W187–W191(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).Article

Heinz,S.等人。谱系决定转录因子的简单组合引发巨噬细胞和B细胞身份所需的顺式调控元件。分子细胞38576-589(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).Article

Bailey,T.L.等人,《模因套件:用于主题发现和搜索的工具》。核酸研究37,W202–W208(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).CAS

Wu,T。等人。clusterProfiler 4.0:用于解释组学数据的通用富集工具。因诺夫。(剑桥)2100141(2021)。中科院

Google Scholar

谷歌学者

Yuwei, Z. et al. DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A/YTHDF1. https://doi.org/10.5281/zenodo.13852598 (2024).Download referencesAcknowledgementsThis work was supported by National Key R&D Program of China to H.W. (2022YFA0806003); the National Natural Science Foundation of China (NSFC) (grant no.

Yuwei,Z。等人。DHX36结合诱导RNA结构体重塑并通过m6A/YTHDF1调节RNA丰度。https://doi.org/10.5281/zenodo.13852598(2024年)。下载参考文献致谢这项工作得到了中国国家重点研发计划对H.W.(2022YFA0806003)的支持;国家自然科学基金(NSFC)(批准号:。

82172436 to H.W.; 32300703 to X.C.; 32270587 to Y.Z.; 32471343 to C.K.K); National Natural Science Foundation of China (NSFC) Excellent Young Scientists Fund (Hong Kong and Macau) Project (32222089) to C.K.K.; Natural Science Foundation of Guangdong Province, China to X.C. (2024A1515030291); General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14115319, 14100620, 14106521, and 14105823 to H.W.; 14120420, 14103522, and 14105123 to H.S.; RFS2425-1S02, CityU 11100123, CityU 11100222, and CityU 11100421 to C.K.K.); the research funds from Health@InnoHK program launched by Innovation Technology Commission, the Government of the Hong Kong SAR, China to H.W.; Collaborative Research Fund (CRF) from RGC to H.W.

82172436给H.W。;32300703给X.C。;32270587至Y.Z。;;国家自然科学基金(NSFC)优秀青年科学家基金(港澳)项目(32222089)授予C.K.K。;广东省自然科学基金(2024A1515030291);香港特别行政区研究资助委员会(RGC)的一般研究基金(GRF)(H.W.的14115319、14100620、14106521和14105823;H.S.的14120420、14103522和14105123;C.K.的RFS2425-1S02、城大11100123、城大11100222和城大11100421);研究经费来自Health@InnoHK由中国香港特别行政区政府创新科技委员会向H.W.发起的计划。;RGC与H.W.的合作研究基金(CRF)。

(C6018-19GF); Theme-based Research Scheme (TRS) from RGC (project number: T13-602/21-N); Area of Excellence Scheme (AoE) from RGC (project number: AoE/M-402/20); Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China (project Code: 10210906 and 08190626 to H.W.); Croucher Foundation Project (9509003) to C.K.K.; State Key Laboratory of Marine Pollution Seed Collaborative Research Fund (SCRF/0037, SCRF/0040, SCRF0070) to C.K.K.; City University of Hong Kong projects (7030001, 9678302 and 6000827) to C.K.K.; the Hong Kong Institute for Advanced Study, City University of Hong Kong [9360157] to C.K.K.Au.

(C6018-19GF);RGC基于主题的研究计划(TRS)(项目编号:T13-602/21-N);RGC的卓越领域计划(AoE)(项目编号:AoE/M-402/20);中国香港特别行政区卫生局健康与医学研究基金(HMRF)(项目代码:10210906和08190626至H.W.);克劳奇基金会项目(9509003)给C.K.K。;海洋污染种子合作研究基金国家重点实验室(SCRF/0037,SCRF/0040,SCRF0070)至C.K.K。;香港城市大学项目(70300019678302和6000827)给C.K.K。;香港城市大学香港高级研究院〔9360157〕致C.K.K.Au。

PubMed Google ScholarJieyu ZhaoView author publicationsYou can also search for this author in

PubMed谷歌学者赵洁玉查看作者出版物您也可以在

PubMed Google ScholarXiaona ChenView author publicationsYou can also search for this author in

PubMed Google ScholarXiaona ChenView作者出版物您也可以在

PubMed Google ScholarYulong QiaoView author publicationsYou can also search for this author in

PubMed Google ScholarYulong QiaoView作者出版物您也可以在

PubMed Google ScholarJinjin KangView author publicationsYou can also search for this author in

PubMed谷歌学者Jinjin KangView作者出版物您也可以在

PubMed Google ScholarXiaofan GuoView author publicationsYou can also search for this author in

PubMed Google ScholarXiaofan GuoView作者出版物您也可以在

PubMed Google ScholarFeng YangView author publicationsYou can also search for this author in

PubMed Google ScholarFeng YangView作者出版物您也可以在

PubMed Google ScholarKaixin LyuView author publicationsYou can also search for this author in

PubMed Google ScholarYiliang DingView author publicationsYou can also search for this author in

PubMed Google ScholarYiliang DingView作者出版物您也可以在

PubMed Google ScholarYu ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarYu ZhaoView作者出版物您也可以在

PubMed Google ScholarHao SunView author publicationsYou can also search for this author in

PubMed Google ScholarHao SunView作者出版物您也可以在

PubMed Google ScholarChun-Kit KwokView author publicationsYou can also search for this author in

PubMed Google ScholarChun Kit KwokView作者出版物您也可以在

PubMed Google ScholarHuating WangView author publicationsYou can also search for this author in

PubMed Google ScholarHuating WangView作者出版物您也可以在

PubMed Google ScholarContributionsY.W.Z., X.C., and H.W. conceived the research. Y.W.Z. designed and performed all computational analyses. K.L. constructed the DHX36-KO cell line. J.Z. constructed Structure-seq library, RBNS library, and performed experimental validation assisted by X.C.

PubMed谷歌学术贡献。W、 Z.,X.C。和H.W.构思了这项研究。Y、 W.Z.设计并执行了所有计算分析。K、 L.构建了DHX36-KO细胞系。J、 Z.构建了Structure-seq库,RBNS库,并在X.C.的协助下进行了实验验证。

Y.Q. conducted m6A inhibition and quantification. J.K. and Y.Z. constructed YTHDF1 CLIP-seq libraries. F.Y. analyzed the YTHDF1 CLIP-seq data. X.G. conducted the reporter assay assisted by X.C. H.S. supervised computational analyses. Y.D. and C.K.K. supervised RNA Structure-seq and RBNS experiments and analyses.

Y、 Q.进行m6A抑制和定量。J、 K.和Y.Z.构建了YTHDF1 CLIP-seq库。F、 Y.分析了YTHDF1 CLIP-seq数据。十、 G.在X.C.H.S.监督的计算分析的帮助下进行了报告分析。Y、 D.和C.K.K.监督RNA Structure-seq和RBNS实验和分析。

C.K.K. and H.W. supervised experimental validation. Y.W.Z., J.Z., X.C., C.K.K., and H.W. wrote the manuscript with input from all authors.Corresponding authorsCorrespondence to.

C、 K.K.和H.W.监督实验验证。Y、 W.Z.,J.Z.,X.C.,C.K.K。和H.W.在所有作者的意见下撰写了手稿。通讯作者通讯。

Hao Sun, Chun-Kit Kwok or Huating Wang.Ethics declarations

孙浩、郭振杰或王华亭。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Yun-Gui Yang and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢杨云贵和其他匿名审稿人对这项工作的同行评议做出的贡献。可以获得同行评议文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Supplementary Data 7Supplementary Data 8Supplementary Data 9Reporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6补充数据7补充数据8补充数据9报告摘要透明同行评审文件源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, Y., Zhao, J., Chen, X. et al. DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1.

转载和许可本文引用本文Zhang,Y.,Zhao,J.,Chen,X。等人。DHX36结合诱导RNA结构体重塑并通过m6A读取器YTHDF1调节RNA丰度。

Nat Commun 15, 9890 (2024). https://doi.org/10.1038/s41467-024-54000-yDownload citationReceived: 15 September 2023Accepted: 28 October 2024Published: 15 November 2024DOI: https://doi.org/10.1038/s41467-024-54000-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》159890(2024)。https://doi.org/10.1038/s41467-024-54000-yDownloadhttps://doi.org/10.1038/s41467-024-54000-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Molecular biologyStructural biology