EN
登录

具有抗菌和再矿化双重功能的新型纳米材料在漱口水中的应用

Application of novel nanomaterials with dual functions of antimicrobial and remineralization in mouthwashes

Nature 等信源发布 2024-11-23 18:54

可切换为仅中文


AbstractThe study aims to improve the antimicrobial and remineralization-promoting properties of mouthwash by synthesizing novel Ag/ZnO/Oyster Shells nanocomposites and evaluating their anti-caries properties and biosafety in vitro and in vivo, so as to reduce the incidence of caries. The antimicrobial properties of the synthesized Ag/ZnO/Oyster Shell nanocomposites were examined by bacterial inhibition zone, minimum inhibitory concentration, minimum bactericidal concentration, fluorescence staining and scanning electron microscopy.

摘要本研究旨在通过合成新型Ag/ZnO/牡蛎壳纳米复合材料,并在体内外评估其防龋性能和生物安全性,以提高漱口水的抗菌和促进再矿化性能,从而降低龋齿的发生率。通过细菌抑制区,最小抑制浓度,最小杀菌浓度,荧光染色和扫描电子显微镜检查合成的Ag/ZnO/牡蛎壳纳米复合材料的抗菌性能。

The potential of the materials to promote remineralization of demineralized enamel was detected by scanning electron microscopy, surface microhardness and depth of hard tissue defects, and laser confocal electron microscopy analysis. The synthesized materials were then incorporated into mouthwash, and their effects on antimicrobial properties, remineralization-promoting properties were evaluated.

通过扫描电子显微镜,表面显微硬度和硬组织缺陷深度以及激光共聚焦电子显微镜分析检测材料促进脱矿牙釉质再矿化的潜力。然后将合成的材料掺入漱口水中,并评估它们对抗菌性能,促进再矿化性能的影响。

Furthermore, an oral mucosal contact model was established to assess local irritation and systemic effects. The results showed that the novel Ag/ZnO/Oyster Shell nanocomposites possessed strong antimicrobial activity, remineralization-promoting ability and good biosafety, and the mouthwash containing Ag/ZnO/Oyster Shell possessed strong antimicrobial performance and remineralization-promoting ability, and showed no obvious abnormalities in local mucosal tissues, blood indices, and histopathology of the liver and kidneys in the oral exposure model of the SD rats.

此外,建立了口腔粘膜接触模型以评估局部刺激和全身效应。结果表明,新型Ag/ZnO/牡蛎壳纳米复合材料具有很强的抗菌活性,促进再矿化能力和良好的生物安全性,含有Ag/ZnO/牡蛎壳的漱口水具有很强的抗菌性能和促进再矿化能力,在SD大鼠口服暴露模型中,局部粘膜组织,血液指标以及肝脏和肾脏的组织病理学没有明显异常。

These findings indicate that Ag/ZnO/Oyster shell incorporated into mouthwash has strong antimicrobial activity, good remineralization-promoting properties and good biosafety in vivo. It is therefore expected to be used in clinical applications..

这些发现表明,掺入漱口水中的Ag/ZnO/牡蛎壳具有很强的抗菌活性,良好的再矿化促进特性和良好的体内生物安全性。因此,预计它将用于临床应用。。

IntroductionAccording to the recently published Global Burden Disease (GBD), dental caries is the most common disease worldwide, affecting nearly 2.3 billion people1,2. The Fourth National Oral Health Epidemiology Survey3published in August 2018 showed that the prevalence of caries among Chinese residents was on the rise, with 71.9% in the 5-year-old group, 38.5% in the 12-year-old group, 89.0% in the 35–44-year-old group, and 98.0% in the 65–74-year-old group.

引言根据最近发表的全球负担疾病(GBD),龋齿是全球最常见的疾病,影响近23亿人1,2。2018年8月发布的第四次全国口腔健康流行病学调查3显示,中国居民的龋齿患病率呈上升趋势,其中5岁组为71.9%,12岁组为38.5%,35-44岁组为89.0%,65-74岁组为98.0%。

The caries process is dynamic, with alternating demineralization and remineralization of tooth structure, and caries can be reversed or arrested even if the loss of minerals in the lesion is sufficient to manifest clinically as a white spot on the tooth surface4,5. Therefore, the key to caries control lies in prevention and routine maintenance, including preventing plaque formation, reducing enamel demineralization, and promoting remineralization of lesions6.Zinc oxide nanoparticles are potent antimicrobial agents because of their ability to accumulate on bacterial cell membranes by electrostatic attraction.

龋齿过程是动态的,牙齿结构交替脱矿和再矿化,即使病变中矿物质的损失足以在临床上表现为牙齿表面的白色斑点,龋齿也可以逆转或阻止4,5。因此,龋齿控制的关键在于预防和日常维护,包括防止斑块形成,减少牙釉质脱矿,促进病变的再矿化6。氧化锌纳米粒子是有效的抗菌剂,因为它们能够通过静电吸引在细菌细胞膜上积累。

In addition, it has osteogenic, anticancer and remineralization-promoting properties7,8,9. Mouthwashes containing zinc oxide nanoparticles have been shown to have high in vitro activity against cariogenic bacteria10and positively impact dentin by impeding its demineralization11. Meanwhile, silver nanoparticles have attracted broad attention owing to their low cost, nontoxicity, and high antimicrobial activity12,13,14,15.

此外,它具有成骨,抗癌和再矿化促进特性7,8,9。含有氧化锌纳米颗粒的漱口水已被证明对致龋细菌具有很高的体外活性10,并通过阻止其脱矿作用对牙本质产生积极影响11。同时,银纳米粒子由于其低成本,无毒性和高抗菌活性而受到广泛关注12,13,14,15。

According to previous studies, silver nanoparticles were found to not only improve the properties of zinc oxide nanoparticles, but also reduce the amount of ingredients16,17,18,19. In addition, it has also been shown that the combination of antimicrobial materials with calcium compounds (e.g..

根据以前的研究,发现银纳米粒子不仅可以改善氧化锌纳米粒子的性能,还可以减少元素的含量16,17,18,19。此外,还表明抗菌材料与钙化合物的组合(例如)。。

Data availability

数据可用性

Data is provided within the manuscript or supplementary information files.

数据在手稿或补充信息文件中提供。

ReferencesPeres, M. A. et al. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).Article

ReferencesPeres,M.A.等人,《口腔疾病:全球公共卫生挑战》。柳叶刀394249-260(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bernabe, E. et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J. Dent. Res. 99, 362–373 (2020).Article

Bernabe,E.等人,《1990年至2017年全球,地区和国家口腔疾病负担水平和趋势:2017年全球疾病负担研究的系统分析》。J、 凹痕。第99362-373号决议(2020年)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Wang Xing. The Fourth National Oral Health Epidemiological Survey Reportp. 50 (People’s Medical Publishing House, 2018). 77,103,104.(Chinese).

王兴。第四次全国口腔健康流行病学调查报告p。50(人民医学出版社,2018)。77103104(中文)。

Google Scholar

谷歌学者

Sundararaj, D., Venkatachalapathy, S., Tandon, A. & Pereira, A. Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: a meta-analysis. J. Int. Soc. Prev. Community Dentistry. 5 (6), 433–439 (2015).Article

Sundararaj,D.,Venkatachalapathy,S.,Tandon,A。&Pereira,A。对固定正畸矫治器治疗期间白斑病变发生率和患病率的关键评估:荟萃分析。J、 国际社会前。。5(6),433-439(2015)。文章

Google Scholar

谷歌学者

Khoroushi, M. & Kachuie, M. Prevention and Treatment of White Spot lesions in Orthodontic patients. Contemp. Clin. Dent. 8 (1), 11–19 (2017).Article

Khoroushi,M。&Kachuie,M。预防和治疗正畸患者的白斑病变。康坦普。临床。凹痕。8(1),11-19(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Edelstein, B. L. The dental caries pandemic and disparities problem. BMC Oral Health. 6 (Suppl 1), S2 (2006).Article

。BMC口腔健康。6(补充1),S2(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, H., Chen, G., Wang, Y. & Yao, J. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22 (1), 261–273 (2014).Article

。纤维素22(1),261-273(2014)。文章

Google Scholar

谷歌学者

Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275 (1), 177–182 (2004).Article

Sondi,I。&Salopek Sondi,B。银纳米粒子作为抗菌剂:大肠杆菌作为革兰氏阴性菌模型的案例研究。J。胶体界面科学。275(1),177-182(2004)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Grenho, L., Salgado, C. L., Fernandes, M. H., Monteiro, F. J. & Ferraz, M. P. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles–an in vitro and in vivo study. Nanotechnology 26 (31), 315101 (2015).Article .

Grenho,L.,Salgado,C.L.,Fernandes,M.H.,Monteiro,F.J。&Ferraz,M.P。羟基磷灰石和氧化锌纳米颗粒三维纳米结构多孔颗粒的抗菌活性和生物相容性-体外和体内研究。纳米技术26(31),315101(2015)。文章。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Kachoei, M. D., Baharak;Tabriz, F. & Dabaghi A comparative study of antibacterial effects of mouthwashes containing Ag/ZnO or ZnO nanoparticles with chlorhexidine and investigation of their cytotoxicity. Nanomed. J. 5 (2), 102–110 (2018).

Kachoei,医学博士,Baharak;Tabriz,F。&Dabaghi含有Ag/ZnO或ZnO纳米颗粒的漱口水与洗必泰的抗菌作用的比较研究及其细胞毒性的研究。纳米医学。J、 5(2),102-110(2018)。

Google Scholar

谷歌学者

Takatsuka, T., Tanaka, K. & Iijima, Y. Inhibition of dentine demineralization by zinc oxide: in vitro and in situ studies. Dent. Mater. 21 (12), 1170–1177 (2005).Article

Takatsuka,T.,Tanaka,K。&Iijima,Y。氧化锌抑制牙本质脱矿:体外和原位研究。凹痕。马特。21(12),1170-1177(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dias, H. B. et al. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater. Sci. Engineering: C. 96, 391–401 (2019).Article

Dias,H.B.等人。Ag掺杂ZnO纳米颗粒在复合树脂中的合成,表征和应用。马特。科学。工程:C.96391–401(2019)。文章

Google Scholar

谷歌学者

Salaie, R. N., Besinis, A., Le, H., Tredwin, C. & Handy, R. D. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Mater. Sci. Engineering: C. 107, 110210 (2020).Article

Salaie,R.N.,Besinis,A.,Le,H.,Tredwin,C。&Handy,R.D。钛种植体上银和纳米羟基磷灰石涂层与人原代成骨细胞的生物相容性。马特。科学。工程:C.107110210(2020)。文章

Google Scholar

谷歌学者

De Matteis, V. et al. Silver nanoparticles addition in poly(Methyl Methacrylate) Dental Matrix: Topographic and Antimycotic studies. Int. J. Mol. Sci. 20 (19), 4691 (2019).Article

De Matteis,V。等人。聚(甲基丙烯酸甲酯)牙科基质中添加银纳米颗粒:地形和抗真菌研究。Int.J.Mol.Sci。20(19),4691(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Porter, G. C. et al. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent. Mater. 36 (8), 1096–1107 (2020).Article

Porter,G.C.等人。含银纳米颗粒的玻璃离子水门汀的抗生物膜活性。凹痕。马特。36(8),1096-1107(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jing, X. et al. Preparation of Ag/α-Al2O3 for ethylene epoxidation by an impregnation-bioreduction process with Cinnamomum camphora extract. Chem. Eng. J. 284, 149–157 (2016).Article

。化学。《工程杂志》284149-157(2016)。文章

Google Scholar

谷歌学者

Sinha, T., Ahmaruzzaman, M., Adhikari, P. P. & Bora, R. T. Green and environmentally sustainable fabrication of Ag-SnO2 Nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant Agent. ACS Sustainable Chem. Eng. 5 (6), 4645–4655 (2017).Article .

Sinha,T.,Ahmaruzzaman,M.,Adhikari,P。P。和Bora,R。T。Ag-SnO2纳米复合材料的绿色和环境可持续制造及其作为光催化剂和抗菌剂和抗氧化剂的多功能功效。ACS可持续化学。工程5(6),4645–4655(2017)。文章。

Google Scholar

谷歌学者

Mou, H., Song, C., Zhou, Y., Zhang, B. & Wang, D. Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visiblelight degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B. 221, 565–573 (2018).Article

Mou,H.,Song,C.,Zhou,Y.,Zhang,B。&Wang,D。多孔Ag/ZnO纳米片组件的设计和合成,作为超级光催化剂,用于增强4-硝基苯酚的可见光降解和析氢。应用。加泰罗尼亚。B、 221565-573(2018)。文章

Google Scholar

谷歌学者

Teixeira, L. B., Fernandes, V. K., Maia, B. G. O., Arcaro, S. & Novaes de Oliveira, A. P. Vitrocrystalline foams produced from glass and oyster shell wastes. Ceram. Int. 43 (9), 6730–6737 (2017).Article

Teixeira,L.B.,Fernandes,V.K.,Maia,B.G.O.,Arcaro,S。和Novaes de Oliveira,A.P。用玻璃和牡蛎壳废料生产的微晶泡沫。赛拉姆。内景43(9),6730–6737(2017)。文章

Google Scholar

谷歌学者

Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods. 54 (2), 177–182 (2003).Article

Sawai,J。通过电导测定法定量评估金属氧化物粉末(ZnO,MgO和CaO)的抗菌活性。J、 微生物。方法。54(2),177-182(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).Article

Lipovsky,A.,Nitzan,Y.,Gedanken,A。&Lubart,R。ZnO纳米颗粒的抗真菌活性ROS介导的细胞损伤的作用。纳米技术22105101(2011)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Chang, L. et al. Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification. RSC Adv. 9, 41336–41344 (2019).Article

Chang,L.等人。双功能牡蛎壳衍生的Ag/ZnO/CaCO3纳米复合材料,具有增强的水净化催化和抗菌活性。RSC Adv.941336–41344(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, X. et al. Plant-mediated synthesis of dual-functional Eggshell/Ag nanocomposites towards catalysis and antibacterial applications. Mater. Sci. Eng. C. 113, 1110152 (2020).Article

Huang,X。等人。植物介导的双功能蛋壳/银纳米复合材料的合成,用于催化和抗菌应用。马特。科学。《工程法典》第1131110152页(2020年)。文章

Google Scholar

谷歌学者

Almohefer, S. A., Levon, J. A., Gregory, R. L., Eckert, G. J. & Lippert, F. Caries lesion remineralization with fluoride toothpastes and chlorhexidine - effects of application timing and toothpaste surfactant. J. Appl. oral Sci. 26, e20170499 (2018).Article

Almohefer,S.A.,Levon,J.A.,Gregory,R.L.,Eckert,G.J.&Lippert,F.龋齿病变用含氟牙膏和洗必泰再矿化-使用时间和牙膏表面活性剂的影响。J、 应用。口腔科学。26,e20170499(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, Y. M. et al. Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass. Korean J. Orthod. 48 (3), 163–171 (2018).Article

Kim,Y.M.等人。含有生物活性玻璃的正畸粘接剂的抗菌和再矿化作用。。48(3),163-171(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, X. et al. Application Study of Novel Eggshell/Ag combined with pit and fissure sealants. Int. J. Nanomed. 18, 2911–2922 (2023).Article

Huang,X。等。新型蛋壳/银结合窝沟密封剂的应用研究。内景J.Nanomed。182911-2922(2023)。文章

Google Scholar

谷歌学者

Tao, S. et al. Nano-calcium phosphate and dimethylaminohexadecyl methacrylate adhesive for dentin remineralization in a biofilm-challenged environment. Dent. Mater. 36 (10), e316–e328 (2020).Article

Tao,S.等人。纳米磷酸钙和甲基丙烯酸二甲氨基十六酯粘合剂在生物膜挑战环境中用于牙本质再矿化。凹痕。马特。36(10),e316–e328(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fan, M. et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent. Mater. 36 (2), 210–220 (2020).Article

Fan,M.等人。具有不同端基的PAMAM树枝状聚合物对体外人工初始牙釉质龋的再矿化效果。凹痕。马特。36(2),210-220(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tenuta, L. M. & Cury, J. A. Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monogr. Oral Sci. 23, 108–124 (2013).Article

Tenuta,L.M.和Cury,J.A.实验室和人体研究,以评估氟化物牙膏的防龋功效。Monogr公司。口腔科学。23108-124(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ruan, Q. et al. Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J. Biomedical Eng. Inf. 2 (1), 119–128 (2016).MathSciNet

Ruan,Q。等人。釉原蛋白-壳聚糖水凝胶在pH循环系统中仿生修复人牙釉质的功效。J、 生物医学工程信息2(1),119-128(2016)。数学网

Google Scholar

谷歌学者

Lippert, F. & Juthani, K. Fluoride dose-response of human and bovine enamel artificial caries lesions under pH-cycling conditions. Clin. Oral Invest. 19 (8), 1947–1954 (2015).Article

Lippert,F。&Juthani,K。pH循环条件下人和牛牙釉质人工龋病变的氟化物剂量反应。临床。口头投资。19(8),1947-1954(2015)。文章

Google Scholar

谷歌学者

Hannas, A. R. et al. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro. J. Appl. Oral Sci. 24 (1), 61–66 (2016).Article

Hannas,A.R.等人。含有MMP抑制剂的牙膏在体外对人牙本质侵蚀和磨损的预防作用。J、 应用。口腔科学。24(1),61-66(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X. et al. Bifunctional anticaries peptides with antibacterial and remineralizing effects. Oral Dis. 25 (2), 488–496 (2019).Article

Wang,X。等人。具有抗菌和再矿化作用的双功能防龋肽。口腔疾病。25(2),488-496(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fontana, M. et al. Measurement of enamel demineralization using microradiography and confocal microscopy. A correlation study. Caries Res. 30 (5), 317–325 (1996).Article

Fontana,M.等人。使用显微射线照相术和共聚焦显微镜测量牙釉质脱矿。相关性研究。。文章

PubMed

PubMed

Google Scholar

谷歌学者

State Food and Drug Administration. YY/T 0127.13. Biological Evaluation of Oral Medical Devices Unit 2: Test Methods-Oral Mucosal Irritation Test (Chinese) (China Standard, 2010).

国家食品药品监督管理局。YY/T 0127.13。口腔医疗器械的生物学评价第2单元:试验方法口腔粘膜刺激试验(中文)(中国标准,2010)。

Google Scholar

谷歌学者

Lv, X. et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch. Oral Biol. 60 (10), 1482–1487 (2015).Article

Lv,X。等人。基于釉原蛋白的肽在促进初始牙釉质龋再矿化中的潜力。拱门。口腔生物学。60(10),1482–1487(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Armentano, I. et al. The interaction of bacteria with engineered nanostructured polymeric materials: a review. The Scientific World Journal. ; 2014: 410423. (2014).Li, H., Chen, Q., Zhao, J. & Urmila, K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles.

Armentano,I。等人。细菌与工程纳米结构聚合物材料的相互作用:综述。《科学世界杂志》;2014年:410423。(2014年)。Li,H.,Chen,Q.,Zhao,J。&Urmila,K。使用合成的超小金属纳米粒子增强天然提取物的抗菌活性。

Sci. Rep. 5, 11033 (2015).Article .

科学。代表511033(2015)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luan, B., Huynh, T. & Zhou, R. Complete wetting of graphene by biological lipids. Nanoscale 8 (10), 5750–5754 (2016).Article

。纳米级8(10),5750-5754(2016)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdisciplinary Reviews Nanomed. Nanobiotechnol. 6 (6), 532–547 (2014).Article

Gao,W.,Thamphiwatana,S.,Angsantikul,P。&Zhang,L。纳米粒子对抗细菌感染的方法。Wiley跨学科评论Nanomed。纳米生物技术。6(6),532-547(2014)。文章

Google Scholar

谷歌学者

Gurunathan, S., Han, J. W., Dayem, A. A., Eppakayala, V. & Kim, J. H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012).Article

Gurunathan,S.,Han,J.W.,Dayem,A.A.,Eppakayala,V。&Kim,J.H。氧化应激介导的氧化石墨烯的抗菌活性和铜绿假单胞菌中氧化石墨烯的还原。内景J.Nanomed。75901-5914(2012)。文章

Google Scholar

谷歌学者

Zakharova, O. V. et al. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes. BioMed research international. ; 2015: 412530. (2015).Yang, W. et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA.

Zakharova,O.V.等人。根据储存时间,分散介质和粒径,铜纳米颗粒悬浮液的抗菌活性存在很大差异。生物医学研究国际;2015年:412530。(2015年)。Yang,W。等人。食品储存材料银纳米粒子干扰DNA复制保真度并与DNA结合。

Nanotechnology 20 (8), 085102 (2009).Article .

纳米技术20(8),085102(2009)。文章。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).Article

Wang,L.,Hu,C。&Shao,L。纳米粒子的抗菌活性:现状和未来前景。内景J.Nanomed。121227-1249(2017)。文章

Google Scholar

谷歌学者

Wang, Z., Jiang, S., Zhao, Y. & Zeng, M. Synthesis and characterization of hydroxyapatite nano-rods from oyster shell with exogenous surfactants. Mater. Sci. Eng., C. 105, 110102 (2019).Article

Wang,Z.,Jiang,S.,Zhao,Y。&Zeng,M。用外源表面活性剂从牡蛎壳中合成和表征羟基磷灰石纳米棒。马特。科学。《工程》,第105110102页(2019年)。文章

Google Scholar

谷歌学者

Panacek, A. et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. C. 110 (33), 16248–16253 (2006).Article

Panacek,A。等人。银胶体纳米粒子:合成,表征及其抗菌活性。J、 物理。化学。C、 110(33),16248–16253(2006)。文章

Google Scholar

谷歌学者

Qasim, M., Udomluck, N., Chang, J., Park, H. & Kim, K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int. J. Nanomed. 13, 235–249 (2018).Article

Qasim,M.,Udomluck,N.,Chang,J.,Park,H。&Kim,K。包封在聚N-异丙基丙烯酰胺基聚合物纳米颗粒中的银纳米颗粒的抗菌活性。内景J.Nanomed。13235-249(2018)。文章

Google Scholar

谷歌学者

Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16 (10), 2346–2353 (2005).Article

Morones,J.R.等人。银纳米颗粒的杀菌作用。纳米技术16(10),2346-2353(2005)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Li, J. et al. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J. Nanosci. Nanotechnol. 13 (10), 6806–6813 (2013).Article

Li,J.等人。银纳米粒子对枯草芽孢杆菌的高选择性抗菌活性。J、 纳诺西。纳米技术。13(10),6806–6813(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Antifungal activity of ZnO nanoparticles–the role of ROS mediated cell injury. Nanotechnology 22 (10), 105101 (2011).Article

Lipovsky,A.,Nitzan,Y.,Gedanken,A。&Lubart,R。ZnO纳米颗粒的抗真菌活性-ROS介导的细胞损伤的作用。纳米技术22(10),105101(2011)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Tian, X. et al. ACS Appl. Mater. Interfaces ; 10: 8443–8450. (2018).Article

Tian,X.等人,ACS Appl。马特。接口;10:8443-8450。(2018年)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Katsikogianni, M. & Missirlis, Y. F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cells Mater. 8, 37–57 (2004).Article

Katsikogianni,M.&Misserlis,Y.F.简要回顾了细菌与生物材料粘附的机制以及用于估计细菌-材料相互作用的技术。欧洲细胞材料。8,37-57(2004)。文章

Google Scholar

谷歌学者

Scheie, A. A. & Petersen, F. C. The Biofilm Concept: consequences for future prophylaxis of oral diseases? Crit. Reviews Oral Biology Med. 15 (1), 4–12 (2004).Article

Scheie,A.A.&Petersen,F.C。生物膜概念:对未来预防口腔疾病的影响?暴击。评论口腔生物学医学15(1),4-12(2004)。文章

Google Scholar

谷歌学者

Ulagesan, S., Krishnan, S., Nam, T. J. & Choi, Y. H. A review of Bioactive compounds in Oyster Shell and tissues. Front. Bioeng. Biotechnol. 10, 913839 (2022).Article

Ulagesan,S.,Krishnan,S.,Nam,T.J。&Choi,Y.H。牡蛎壳和组织中生物活性化合物的综述。正面。生物能源。生物技术。10913839(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Churchley, D. et al. Protection against enamel demineralisation using toothpastes containing o-cymen-5-ol, zinc chloride and sodium fluoride. Int. Dent. J. 61 (Suppl 3), 55–59 (2011).Article

Churchley,D.等人。使用含有o-cymen-5-ol、氯化锌和氟化钠的牙膏防止牙釉质脱矿。内景凹痕。J、 61(补充3),55-59(2011)。文章

MathSciNet

MathSciNet

PubMed

PubMed

Google Scholar

谷歌学者

Mohammed, N. R. et al. Physical chemical effects of zinc on in vitro enamel demineralization. J. Dent. 42 (9), 1096–1104 (2014).Article

Mohammed,N.R.等人。锌对体外牙釉质脱矿的物理化学作用。J、 凹痕。42(9),1096-1104(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rahman, M. T., Hossain, A., Pin, C. H. & Yahya, N. A. Zinc and Metallothionein in the Development and Progression of Dental Caries. Biol. Trace Elem. Res. 187 (1), 51–58 (2019).Article

Rahman,M.T.,Hossain,A.,Pin,C.H。&Yahya,N.A。锌和金属硫蛋白在龋齿的发展和进展中。生物示踪元素。第187(1)号决议,第51-58(2019)号决议。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsNot applicable.FundingThe research project was supported by Natural Sciences Foundation of Fujian Province (grant number 2021J01801 and 2022J01767);Finance Department of Fujian Province (grant number 2021CZ01); the Open Project of Fujian Provincial Engineering Research Center of Oral Biomaterial (grant number 2021KQ01).Author informationAuthors and AffiliationsDepartment of Rende Road, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of ChinaLin ChangDepartment of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of ChinaRuihuan Gan, Xiaoyu Huang, Youguang Lu & Yan FengFujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of ChinaLin Chang, Ruihuan Gan, Xiaoyu Huang, Dali Zheng, Chen Su, Youguang Lu & Yan FengAuthorsLin ChangView author publicationsYou can also search for this author in.

下载参考确认不适用。资助该研究项目由福建省自然科学基金(批准号2021J01801和2022J01767)资助;福建省财政厅(批准号2021CZ01);。作者信息作者和所属单位福建医科大学口腔学院和医院仁德路教研室,福建省福州市福建医科大学口腔学院和医院预防牙科系,福建省福州市福建医科大学口腔学院和医院,福建省福州市,中华人民共和国福建医科大学口腔学院口腔疾病重点实验室,福建省福州市在。

PubMed Google ScholarRuihuan GanView author publicationsYou can also search for this author in

PubMed谷歌学术评论GanView作者出版物您也可以在

PubMed Google ScholarXiaoyu HuangView author publicationsYou can also search for this author in

PubMed谷歌学者黄晓宇查看作者出版物您也可以在

PubMed Google ScholarDali ZhengView author publicationsYou can also search for this author in

PubMed Google ScholarDali ZhengView作者出版物您也可以在

PubMed Google ScholarChen SuView author publicationsYou can also search for this author in

PubMed Google ScholarChen SuView作者出版物您也可以在

PubMed Google ScholarYouguang LuView author publicationsYou can also search for this author in

PubMed Google ScholarYouguang LuView作者出版物您也可以在

PubMed Google ScholarYan FengView author publicationsYou can also search for this author in

PubMed Google ScholarYan FengView作者出版物您也可以在

PubMed Google ScholarContributionsChang conducted the study and wrote the main manuscript; Gan and Huang reviewed and revised the manuscript; Su collected and processed the data; Zheng led the planning of the research activities; Feng and Lu managed and coordinated the execution of the research activities.

PubMed谷歌学术贡献Schang进行了这项研究并撰写了主要手稿;甘和黄审查并修改了手稿;苏收集并处理了数据;郑领导了研究活动的规划;冯和陆管理并协调了研究活动的执行。

All authors reviewed the manuscript.Corresponding authorsCorrespondence to.

所有作者都审阅了手稿。通讯作者通讯。

Youguang Lu or Yan Feng.Ethics declarations

路有光或严峰。道德宣言

Ethics approval and consent to participate

道德批准和同意参与

All methods were carried out in accordance with relevant guidelines and regulations.

所有方法均按照相关指南和规定进行。

Consent for publication

同意出版

All listed authors consent to the submission.

所有列出的作者都同意提交。

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

All methods are reported in accordance with ARRIVE guidelines ( https://arriveguidelines.org ).

所有方法均按照ARRIVE指南报告(https://arriveguidelines.org))。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleChang, L., Gan, R., Huang, X. et al. Application of novel nanomaterials with dual functions of antimicrobial and remineralization in mouthwashes.

转载和许可本文引用本文Chang,L.,Gan,R.,Huang,X。等人在漱口水中应用具有抗菌和再矿化双重功能的新型纳米材料。

Sci Rep 14, 29027 (2024). https://doi.org/10.1038/s41598-024-80703-9Download citationReceived: 03 July 2024Accepted: 21 November 2024Published: 23 November 2024DOI: https://doi.org/10.1038/s41598-024-80703-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1429027(2024)。https://doi.org/10.1038/s41598-024-80703-9Download引文接收日期:2024年7月3日接受日期:2024年11月21日发布日期:2024年11月23日OI:https://doi.org/10.1038/s41598-024-80703-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsNanocompositesMouthwashAntibacterialRemineralization propertiesBiosafety

关键词SnaNoCompositesMouthWash抗菌再矿化特性生物安全