EN
登录

Zfp260编排骨骼干细胞的早期骨谱系承诺

Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells

Nature 等信源发布 2024-11-24 16:56

可切换为仅中文


AbstractThe initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood.

。虽然命运决定过程已有详细记录,但祖先承诺之前的机制仍然知之甚少。

Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair.

在这里,我们确定了一种转录因子Zfp260,它是干细胞成熟为祖细胞和指导成骨分化的关键。随着细胞从干细胞阶段过渡到祖细胞阶段,Zfp260显着上调;其功能障碍导致祖细胞阶段的谱系停滞,损害骨骼修复。

Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality.

Zfp260是维持染色质可及性所必需的,并通过形成超增强子复合物来调节Runx2的表达。此外,PKCα激酶在残基Y173,S182和S197磷酸化Zfp260,这对其功能活性至关重要。这些残基的突变会严重损害其功能。

These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration..

这些发现将Zfp260定位为桥接干细胞活化与祖细胞命运决定的重要因素,揭示了成功骨再生的基础要素。。

IntroductionThe process of bone regeneration following injury was intricately controlled and primarily driven by skeletal stem cells (SSCs) lineage cells1. These SSCs, located within bone tissue, possessed the ability to self-renew and differentiate along the osteogenic lineage, playing a crucial role in bone repair and maintenance2.

引言损伤后骨再生的过程受到复杂的控制,主要由骨骼干细胞(SSCs)谱系细胞驱动1。这些位于骨组织内的SSC具有自我更新和沿着成骨谱系分化的能力,在骨修复和维持中起着至关重要的作用2。

In vivo studies showed that SSCs labeled with distinct markers exhibited specific distribution patterns. A subset of SSCs identified by the marker Ctsk, found in the periosteum of long bones, cranial bones, and jawbones, was commonly referred to as periosteal stem cells (PSCs)3. During the process of fracture healing, PSCs contributed to repair through both intramembranous and endochondral ossification.

体内研究表明,用不同标记标记标记的SSC表现出特定的分布模式。在长骨,颅骨和颌骨的骨膜中发现的由标记Ctsk鉴定的SSC的子集通常被称为骨膜干细胞(PSC)3。在骨折愈合过程中,PSC通过膜内和软骨内骨化促进修复。

In the maxillofacial region, our previous study indicated that an epithelium-derived progenitor cell, identified by the co-expression of Krt14 and Ctsk, originating from the Schneiderian membrane that covered the maxilla, governed maxillofacial bone regeneration through intramembranous ossification4.The differentiation of SSC lineage cells proceeded sequentially, transitioning from SSC to BCSP and subsequently to chondro-lineage (PCP), osteo-lineage (THY, BLSP), and stromal-lineage (6C3, HEC) cells irreversibly5.

在颌面部区域,我们之前的研究表明,由Krt14和Ctsk的共表达鉴定的上皮来源的祖细胞来源于覆盖上颌骨的施耐德膜,通过膜内骨化控制颌面骨再生4。SSC谱系细胞的分化依次进行,从SSC转变为BCSP,随后不可逆地转变为软骨谱系(PCP),骨谱系(THY,BLSP)和基质谱系(6C3,HEC)细胞5。

This differentiation process was regulated by multiple signaling pathways, including Hedgehog6, BMP7, and Wnt8. The prompt and precise differentiation of stem cells was essential for bone regeneration following injury, and any impediment to this process could result in suboptimal bone healing outcomes9, including bone defects, delayed healing10, and non-union11.

这种分化过程受多种信号通路调节,包括Hedgehog6,BMP7和Wnt8。干细胞的迅速和精确分化对于损伤后的骨再生至关重要,任何阻碍这一过程的因素都可能导致不理想的骨愈合结果9,包括骨缺损,延迟愈合10和不愈合11。

Thus, a comprehensive understanding of the regulatory mechanisms dictating the osteogenic differentiation fate of SSCs held substantial clinical and research significance.Th.

因此,全面了解决定SSc成骨分化命运的调控机制具有重要的临床和研究意义。第。

Data availability

数据可用性

All of the scRNA-seq, bulk RNA-seq, CUT&Tag, ChIP-seq and ATAC-seq data generated in this study have been deposited in the Genome Sequence Archive (GSA) database of the National Genomics Data Center (NGDC) with the accession number CRA019163 under the BioProject PRJCA026768. The mass spectrometry data for GST and GST-Zfp260 pull-down assays reported in this study have been deposited in the NGDC OMIX database (OMIX ID: OMIX007435) and to the ProteomeXchange Consortium via the integrated proteome resources (iProX) database with the dataset identifier PXD057880 [https://www.iprox.cn/page/project.html?id=IPX0010239000].

本研究中产生的所有scRNA-seq,bulk RNA-seq,CUT&Tag,ChIP-seq和ATAC-seq数据已保存在国家基因组学数据中心(NGDC)的基因组序列档案(GSA)数据库中,登录号为CRA019163。生物项目PRJCA026768。本研究报告的GST和GST-Zfp260下拉分析的质谱数据已保存在NGDC OMIX数据库(OMIX ID:OMIX007435)中,并通过数据集标识符为PXD057880的集成蛋白质组资源(iProX)数据库保存在ProteomeXchange Consortium中[https://www.iprox.cn/page/project.html?id=IPX0010239000]。

Other published datasets applied in this study are as follows: GSE154247; GSE152677; GSE206155;.

本研究中应用的其他已发布数据集如下:GSE154247;GSE152677;GSE206155;。

CRA007231. All other data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

CRA007231。本研究中产生的所有其他数据均在补充信息/源数据文件中提供。本文提供了源数据。

ReferencesChan, C. K. F. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).Article

参考Chan,C.K.F.等人,小鼠骨骼干细胞的鉴定和规格。细胞160285-298(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Q., Xu, R., Lei, K. & Yuan, Q. Insights into skeletal stem cells. Bone Res. 10, 61 (2022).Article

Li,Q.,Xu,R.,Lei,K。&Yuan,Q。对骨骼干细胞的见解。Bone Res.10,61(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).Article

Debnath,S.等人发现了一种介导膜内骨形成的骨膜干细胞。自然562133-139(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weng, Y. et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL. Cell Res. 32, 814–830 (2022).Article

Weng,Y。等人。具有双重上皮和间充质特性的新型骨祖细胞谱系控制MSFL后的颌面骨稳态和再生。Cell Res.32814–830(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gulati, G. S. et al. Isolation and functional assessment of mouse skeletal stem cell lineage. Nat. Protoc. 13, 1294–1309 (2018).Article

Gulati,G.S.等人。小鼠骨骼干细胞谱系的分离和功能评估。自然协议。131294-1309(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuwahara, S. T., Liu, S., Chareunsouk, A., Serowoky, M. & Mariani, F. V. On the horizon: Hedgehog signaling to heal broken bones. Bone Res. 10, 13 (2022).Article

Kuwahara,S.T.,Liu,S.,Chareunsouk,A.,Serowoky,M。&Mariani,F.V。在地平线上:刺猬信号治疗骨折。Bone Res.10,13(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, M., Chen, G. & Li, Y.-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4, 16009 (2016).Article

Wu,M.,Chen,G。&Li,Y.-P。TGF-β和BMP信号在成骨细胞,骨骼发育,骨形成,体内平衡和疾病中的作用。Bone Res.416009(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leucht, P., Lee, S. & Yim, N. Wnt signaling and bone regeneration: Can’t have one without the other. Biomaterials 196, 46–50 (2019).Article

Leucht,P.,Lee,S。&Yim,N。Wnt信号传导和骨再生:不能没有另一个。生物材料196,46-50(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duda, G. N. et al. The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023).Article

Duda,G.N.等人,《骨再生的决定性早期阶段》。风湿病杂志。19,78-95(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schlundt, C. et al. Clinical and research approaches to treat non-union fracture. Curr. Osteoporos. Rep. 16, 155–168 (2018).Article

Schlundt,C.等人。治疗不愈合骨折的临床和研究方法。。。代表16155-168(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stewart, S. K. Fracture non-union: A review of clinical challenges and future research needs. Malays. Orthop. J. 13, 1–10 (2019).Article

Stewart,S.K。骨折不愈合:临床挑战和未来研究需求的回顾。。骨科。J、 13,1-10(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Komori, T. Signaling networks in RUNX2-dependent bone development. J. Cell Biochem. 112, 750–755 (2011).Article

Komori,T。RUNX2依赖性骨骼发育中的信号网络。J、 细胞生物化学。112750-755(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nat. Genet 22, 85–89 (1999).Article

Bi,W.,Deng,J.M.,Zhang,Z.,Behringer,R.R。&de Crombrugghe,B。Sox9是软骨形成所必需的。《自然遗传学》22,85-89(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wright, E. et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat. Genet 9, 15–20 (1995).Article

Wright,E。等人。Sry相关基因Sox9在小鼠胚胎的软骨形成过程中表达。《自然遗传学》第9期,第15-20页(1995年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).Article

Baccin,C。等人结合单细胞和空间转录组学揭示了分子,细胞和空间骨髓生态位组织。自然细胞生物学。22,38-48(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817–830.e8 (2017).Article

Fletcher,R.B.等人。以单细胞分辨率解构嗅觉干细胞轨迹。细胞干细胞20817-830.e8(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bok, S. & Greenblatt, M. B. Shaping the sinuses: a novel Krt14+Ctsk+ cell lineage driving regenerative bone formation. Cell Res. 32, 791–792 (2022).Article

Bok,S。&Greenblatt,M.B。塑造鼻窦:一种新型的Krt14+Ctsk+细胞谱系驱动再生骨形成。Cell Res.32791–792(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, W. C. W., Tan, Z., To, M. K. T. & Chan, D. Regulation and role of transcription factors in osteogenesis. Int. J. Mol. Sci. 22, 5445 (2021).Article

Chan,W.C.W.,Tan,Z.,To,M.K.T。&Chan,D。转录因子在成骨中的调节和作用。Int.J.Mol.Sci。225445(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Q. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).Article

Chen,Q。等。间充质干细胞的命运决定:脂肪细胞还是成骨细胞?细胞死亡不同。231128-1139(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Haseeb, A. et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc. Natl Acad. Sci. USA 118, e2019152118 (2021).Article

Haseeb,A。等人SOX9通过抑制软骨细胞去分化/成骨细胞再分化来保持生长板和关节软骨的健康。程序。国家科学院。科学。美国118,e2019152118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, W. et al. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development 136, 4143–4153 (2009).Article

Wang,W。等人。Atf4通过激活Ihh转录来调节软骨内骨化过程中软骨细胞的增殖和分化。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).Article

Osterix在骨髓发育过程中标志着原始和确定的基质祖细胞的不同波。Dev.Cell 29340–349(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakamura, E. et al. Zfhx4 regulates endochondral ossification as the transcriptional platform of Osterix in mice. Commun. Biol. 4, 1258 (2021).Article

Zfhx4调节软骨内骨化作为小鼠Osterix的转录平台。Commun公司。生物学41258(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).Article

Hnisz,D。等人。控制细胞特性和疾病的超级增强子。细胞155934-947(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet 47, 8–12 (2015).Article

Pott,S.&Lieb,J.D。什么是超级增强剂?《自然遗传学》47,8-12(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kawane, T. et al. Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J. Bone Min. Res 29, 1960–1969 (2014).Article

Kawane,T。等人,Dlx5和mef2调节成骨细胞特异性表达的新型runx2增强子。J、 。文章

CAS

中科院

Google Scholar

谷歌学者

Javed, A. et al. Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs 189, 133–137 (2009).Article

Javed,A。等人。RUNX2的特定残基对于形成BMP2诱导的RUNX2-SMAD复合物以促进成骨细胞分化是必需的。细胞组织器官189133-137(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Deng, Y. et al. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep. 14, 2224–2237 (2016).Article

Deng,Y。等人。Yap1在骨骼发育和骨骼修复过程中调节软骨细胞分化的多个步骤。Cell Rep.142224–2237(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wei, Y. et al. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci. Transl. Med. 13, eabb3946 (2021).Article

Wei,Y.等。靶向软骨EGFR途径治疗骨关节炎。科学。翻译。医学杂志13,eabb3946(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, X. et al. Chondrocyte adipogenic differentiation in softening osteoarthritic cartilage. J. Dent. Res. 101, 655–663 (2022).Article

Xu,X。等人。软化骨关节炎软骨中的软骨细胞脂肪形成分化。J、 凹痕。第101655-663号决议(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y., Li, P., Fan, L. & Wu, M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun. Signal 16, 12 (2018).Article

。细胞通讯。信号16、12(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, J. et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun. Signal 19, 60 (2021).Article

Lu,J.等人。核定位信号的类型和蛋白质导入细胞核的机制。细胞通讯。信号19、60(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schlundt, C. et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 106, 78–89 (2018).Article

Schlundt,C。等人。骨折愈合中的巨噬细胞:它们在软骨内骨化中的重要作用。骨106,78-89(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Coates, B. A. et al. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 127, 577–591 (2019).Article

Coates,B.A.等人。小鼠骨折后膜内和软骨内骨化的转录谱分析。骨骼127577-591(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).Article

Pertea,M.,Kim,D.,Pertea,G.M.,Leek,J.T。&Salzberg,S.L。用HISAT,StringTie和Ballground进行RNA-seq实验的转录水平表达分析。自然协议。111650–1667(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kumar, L. & Futschik, M. E. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 (2007).Article

Kumar,L。&Futschik,M。E。Mfuzz:用于微阵列数据软聚类的软件包。生物信息2,5-7(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sivaraj, K. K. et al. Mesenchymal stromal cell-derived septoclasts resorb cartilage during developmental ossification and fracture healing. Nat. Commun. 13, 571 (2022).Article

Sivaraj,K.K.等人。间充质基质细胞衍生的破骨细胞在发育性骨化和骨折愈合过程中吸收软骨。国家公社。13571(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).Article

Wolock,S.L.,Lopez,R。&Klein,A.M。Scrublet:单细胞转录组数据中细胞双峰的计算鉴定。细胞系统。8281-291.e9(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article

Wolf,F.A.,Angerer,P。&Theis,F.J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).Article

Zheng,G.X.Y.等人。单细胞的大规模并行数字转录谱分析。国家公社。814049(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).Article

Traag,V.A.,Waltman,L。和van Eck,N.J。从卢旺到莱顿:保证良好连接的社区。科学。Rep.95233(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, D. et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res 49, D1420–D1430 (2021).Article

Sun,D。等人。TISCH:一个全面的网络资源,可以实现肿瘤微环境的交互式单细胞转录组可视化。核酸Res 49,D1420–D1430(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).Article

Wolf,F.A.等人(PAGA):图形抽象通过单个单元的拓扑保持图将聚类与轨迹推断相协调。基因组生物学。20,59(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).Article

Bergen,V.,Lange,M.,Peidli,S.,Wolf,F.A。&Theis,F.J。通过动力学建模将RNA速度推广到瞬时细胞状态。美国国家生物技术公司。381408-1414(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weng, Y. et al. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol. 40, 101849 (2021).Article

Weng,Y。等人。Trem2介导的Syk依赖性ROS扩增对于牙周炎微环境中的破骨细胞生成至关重要。氧化还原生物。40101849(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yan, H. et al. HiChIP: a high-throughput pipeline for integrative analysis of ChIP-Seq data. BMC Bioinforma. 15, 280 (2014).Article

Yan,H。等人。HiChIP:用于ChIP-Seq数据综合分析的高通量管道。BMC生物信息学。15280(2014)。文章

Google Scholar

谷歌学者

Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).Article

塔拉索夫,A.,维拉,A.J.,库蓬,E.,奈曼,I.J。&Prins,P.Sambamba:NGS对齐格式的快速处理。生物信息学312032-2034(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article

Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15, 284 (2014).Article

Shen,L.,Shao,N.,Liu,X。&Nestler,E。ngs.plot:通过整合基因组数据库快速挖掘和可视化下一代测序数据。BMC基因组学15284(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).Article

Whyte,W.A.等人掌握了转录因子和介体,在关键的细胞身份基因上建立了超级增强子。细胞153307-319(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Y.-S. et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat. Commun. 10, 2958 (2019).Article

Yang,Y.-S.等人。骨靶向AAV介导的Schnurri-3沉默可预防骨质疏松症中的骨质流失。国家公社。102958(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kinoshita, E., Kinoshita-Kikuta, E. & Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 4, 1513–1521 (2009).Article

Kinoshita,E.,Kinoshita-Kikuta,E。&Koike,T。使用Phos-tag SDS-PAGE分离和检测大磷蛋白。自然协议。41513-1521(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weng, Y. et al. Glycosylation of DMP1 is essential for chondrogenesis of condylar cartilage. J. Dent. Res. 96, 1535–1545 (2017).Article

Weng,Y。等人。DMP1的糖基化对于髁突软骨的软骨形成至关重要。J、 凹痕。第961535-1545号决议(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).Article

。国家公社。131265(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tovchigrechko, A. & Vakser, I. A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–W314 (2006).Article

Tovchigrechko,A。&Vakser,I.A。用于蛋白质-蛋白质对接的GRAMM-X公共web服务器。核酸研究34,W310–W314(2006)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis study was sponsored by the Original Exploration Program of the National Natural Science Foundation of China (82350001 to Z.W.), the Young Elite Scientist Sponsorship Program by CAST (2023QNRC001 to Y.W.), the Young Scientist Fund of the National Natural Science Foundation of China (82201033 to Y.W.), the Shanghai Sailing Program of Science and Technology Commission of Shanghai Municipality (22YF1451600 to Y.W.) and the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23CGA23 to Y.W.).

下载参考文献致谢本研究由国家自然科学基金原始探索项目(82350001至Z.W.),CAST青年精英科学家赞助项目(2023QNRC001至Y.W.),国家自然科学基金青年科学家基金(82201033至Y.W.),上海市科委上海帆船项目(22YF1451600至Y.W.)和上海市教育发展基金会和上海市教育委员会晨光项目(23CGA23至Y.W.)赞助。

Figures 1a, 4c, 7b and Fig. 8 are created in BioRender. li, z. (2024) https://BioRender.com/d18i396 and https://BioRender.com/k73i285.Author informationAuthors and AffiliationsShanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, ChinaYuteng Weng, Yanhuizhi Feng, Zeyuan Li, Shuyu Xu, Di Wu, Jie Huang, Haicheng Wang & Zuolin WangDepartment of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, ChinaYuteng Weng, Yanhuizhi Feng, Zeyuan Li, Shuyu Xu, Di Wu, Jie Huang, Haicheng Wang & Zuolin WangAuthorsYuteng WengView author publicationsYou can also search for this author in.

图1a、4c、7b和图8是在BioRender中创建的。李忠(2024)https://BioRender.com/d18i396和https://BioRender.com/k73i285.Author信息作者和附属机构上海市牙齿修复与再生工程研究中心和同济口腔医学研究所,上海,200072,中国宇腾翁,严惠志峰,李泽元,徐树宇,吴棣,黄杰,王海成,王左林同济大学上海同济口腔医院和牙科学院口腔颌面外科,上海,200072,中国宇腾翁,冯延惠志,李泽元,徐树宇,吴棣,黄杰,王海成,王左林作者宇腾翁观点作者出版物也可以在中搜索此作者。

PubMed Google ScholarYanhuizhi FengView author publicationsYou can also search for this author in

PubMed Google ScholarYanhuizhi FengView作者出版物您也可以在

PubMed Google ScholarZeyuan LiView author publicationsYou can also search for this author in

PubMed Google ScholarZeyuan LiView作者出版物您也可以在

PubMed Google ScholarShuyu XuView author publicationsYou can also search for this author in

PubMed Google ScholarShuyu XuView作者出版物您也可以在

PubMed Google ScholarDi WuView author publicationsYou can also search for this author in

PubMed Google ScholarDi WuView作者出版物您也可以在

PubMed Google ScholarJie HuangView author publicationsYou can also search for this author in

PubMed Google ScholarHaicheng WangView author publicationsYou can also search for this author in

PubMed谷歌学者Haicheng WangView作者出版物您也可以在

PubMed Google ScholarZuolin WangView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsZ.W. designed and supervised the research and wrote the manuscript. Y.W. conducted the majority of the experiments and participated in the analysis of scRNA-seq and bulk RNA-seq data. Y.F. was responsible for the phenotypic analysis in animal experiments.

PubMed谷歌学术贡献。W、 设计和监督研究并撰写手稿。Y、 W.进行了大部分实验,并参与了scRNA-seq和大量RNA-seq数据的分析。Y、 F.负责动物实验中的表型分析。

Z.L. assisted with the molecular biology experiments. S.X. participated in in vitro cell culture. D.W. contributed to the FACS experiments. J.H. helped create the schematic diagrams. D.W., J.H., and H.W. participated in breeding and crossbreeding of the mouse models.Corresponding authorCorrespondence to.

Z、 L.协助分子生物学实验。S、 X.参与体外细胞培养。D、 W.为FACS实验做出了贡献。J、 H.帮助创建示意图。D、 W.,J.H。和H.W.参与了小鼠模型的育种和杂交。对应作者对应。

Zuolin Wang.Ethics declarations

王佐林。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Matthew Greenblatt, Jae-Hyuck Shim, Hironori Hojo, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationTransparent Peer Review fileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息透明同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleWeng, Y., Feng, Y., Li, Z. et al. Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells.

转载和许可本文引用本文Weng,Y.,Feng,Y.,Li,Z。等人。Zfp260编排了骨骼干细胞的早期骨谱系承诺。

Nat Commun 15, 10186 (2024). https://doi.org/10.1038/s41467-024-54640-0Download citationReceived: 21 June 2024Accepted: 15 November 2024Published: 24 November 2024DOI: https://doi.org/10.1038/s41467-024-54640-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Commun 1510186(2024)。https://doi.org/10.1038/s41467-024-54640-0Download引文接收日期:2024年6月21日接受日期:2024年11月15日发布日期:2024年11月24日OI:https://doi.org/10.1038/s41467-024-54640-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供