EN
登录

ChIP-DIP同时绘制数百种蛋白质与DNA的结合图,并鉴定不同的基因调控元件

ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements

Nature 等信源发布 2024-11-25 19:43

可切换为仅中文


AbstractGene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment.

摘要基因表达是通过将数千种调节蛋白动态定位到精确的基因组区域来控制的。了解这种细胞类型特异性过程一直是一个长期目标,但仍然具有挑战性,因为DNA-蛋白质作图方法通常一次研究一种蛋白质。在这里,为了解决这个问题,我们开发了并行进行的染色质免疫沉淀(ChIP-DIP),以在单个实验中生成数百种不同调节蛋白的全基因组图谱。

ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation.

ChIP-DIP在大型池(>160种蛋白质)中为所有类别的DNA相关蛋白质(包括修饰的组蛋白,染色质调节剂和转录因子)同时在多种条件下产生高度准确的图谱。首先,我们使用ChIP-DIP测量LPS刺激后原代树突状细胞的时间染色质动力学。

Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system..

接下来,我们探索了组蛋白修饰的定量组合,这些修饰定义了不同类别的调控元件,并表征了它们在人和小鼠细胞系中的功能活性。总体而言,ChIP-DIP在任何分子生物学实验室和实验系统内以联盟规模生成特定于上下文的蛋白质定位图。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journals

Access Nature和54种其他Nature投资组合期刊

Get Nature+, our best-value online-access subscription

获取Nature+,我们最具价值的在线访问订阅

24,99 € / 30 days

24,99欧元/30天

cancel any time

随时取消

Learn more

了解更多信息

Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.com

中国客户的订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.com

Buy this article

购买这篇文章

Purchase on SpringerLink

在SpringerLink上购买

Instant access to full article PDF

即时访问全文PDF

Buy now

立即购买

Prices may be subject to local taxes which are calculated during checkout

价格可能需要缴纳结帐时计算的地方税

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: ChIP-DIP is a highly multiplexed method for mapping proteins to genomic DNA.Fig. 2: ChIP-DIP accurately maps known protein–DNA interactions across a range of multiplexed protein numbers, protein compositions and cell numbers.Fig. 3: ChIP-DIP accurately maps dozens of functionally diverse histone modifications and chromatin regulators.Fig.

图1:ChIP-DIP是一种高度多重的方法,用于将蛋白质映射到基因组DNA。图2:ChIP-DIP准确地绘制了一系列多重蛋白质数量,蛋白质组成和细胞数量的已知蛋白质-DNA相互作用。图3:ChIP-DIP准确地绘制了数十种功能多样的组蛋白修饰和染色质调节剂。图。

4: ChIP-DIP accurately maps dozens of TFs representing diverse functional classes and all three RNAPs.Fig. 5: ChIP-DIP reveals dynamics changes in the chromatin landscape following LPS stimulation of primary mDCs.Fig. 6: Distinct chromatin signatures define the promoters of each RNAP.Fig. 7: Combinations of histone modifications distinguish RNAP II promoter type, activity and potential.Fig.

4: ChIP DIP准确地映射了代表不同功能类别和所有三个RNAP的数十个TF。。图6:不同的染色质特征定义了每个RNAP的启动子。图7:组蛋白修饰的组合区分RNAP II启动子的类型,活性和潜力。图。

8: Distinct combinations of histone acetylation marks define unique enhancer types that differ in their activity and developmental potential..

8: 组蛋白乙酰化标记的不同组合定义了其活性和发育潜力不同的独特增强子类型。。

Data availability

数据可用性

All ChIP-DIP datasets generated in this study are available at GEO: GSE227773. Accession numbers for publicly available datasets used in this study are listed in Supplementary Methods.

本研究中生成的所有芯片倾角数据集均可在GEO获得:GSE227773。本研究中使用的公开可用数据集的登录号列在补充方法中。

Code availability

代码可用性

Publicly available software and packages were used in this study as indicated in Methods and Supplementary Methods. The original code for the ChIP-DIP pipeline is available on GitHub at https://github.com/GuttmanLab/chipdip-pipeline/tree/Paper (https://doi.org/10.5281/zenodo.13952458) (ref. 115).

如方法和补充方法所示,本研究使用了公开可用的软件和软件包。芯片DIP管道的原始代码可在GitHub上获得https://github.com/GuttmanLab/chipdip-pipeline/tree/Paper(笑声)(https://doi.org/10.5281/zenodo.13952458)(参考文献115)。

ReferencesBednar, J. et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl Acad. Sci. USA 95, 14173–14178 (1998).Article

参考文献Bednar,J。等人。核小体,接头DNA和接头组蛋白形成独特的结构基序,指导染色质的高阶折叠和压缩。程序。国家科学院。科学。美国9514173-14178(1998)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).Article

Jenuwein,T。&Allis,C.D。翻译组蛋白代码。科学2931074-1080(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D. & Zhao, Y. SnapShot: histone modifications. Cell 159, 458 (2014).Article

Huang,H.,Sabari,B.R.,Garcia,B.A.,Allis,C.D。和Zhao,Y。快照:组蛋白修饰。细胞159458(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tekel, S. J. & Haynes, K. A. Molecular structures guide the engineering of chromatin. Nucleic Acids Res. 45, 7555–7570 (2017).Article

Tekel,S.J。和Haynes,K.A。分子结构指导染色质的工程。核酸研究457555-7570(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).Article

。科学373306-315(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).Article

He,S。等人。核小体结合的人BAF复合物的结构。科学367875-881(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).Article

Kundaje,A。等人。111个参考人类表观基因组的综合分析。自然518317-330(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barba-Aliaga, M., Alepuz, P. & Pérez-Ortín, J. E. Eukaryotic RNA polymerases: the many ways to transcribe a gene. Front. Mol. Biosci. 8, 663209 (2021).Article

Barba-Aliaga,M.,Alepuz,P。&Pérez-Ortín,J.E。真核RNA聚合酶:转录基因的多种方法。正面。摩尔生物科学。8663209(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roeder, R. G. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harb. Symp. Quant. Biol. 63, 201–218 (1998).CAS

Roeder,R.G。一般和基因特异性辅因子在真核转录调控中的作用。冷泉兔。症状。数量。生物学63201-218(1998)。中科院

Google Scholar

谷歌学者

Malik, S. & Roeder, R. G. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat. Rev. Genet. 24, 767–782 (2023).Article

Malik,S.&Roeder,R.G。通过其相关的共激活因子调节RNA聚合酶II预启动复合物。Genet自然Rev。24767-782(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).Article

Ho,L。&Crabtree,G.R。发育过程中的染色质重塑。《自然》463474-484(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).Article

Johnson,D.S.,Mortazavi,A.,Myers,R.M。&Wold,B。体内蛋白质-DNA相互作用的全基因组作图。科学3161497-1502(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).Article

Mikkelsen,T.S.等人。多能和谱系定型细胞中染色质状态的全基因组图谱。自然448553-560(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).Article

Barski,A。等人。人类基因组中组蛋白甲基化的高分辨率分析。细胞129823-837(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).Article

Robertson,G。等人。使用染色质免疫沉淀和大规模平行测序的STAT1 DNA关联的全基因组谱。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).Article

He,Q.,Johnston,J。&Zeitlinger,J。ChIP nexus能够改进体内转录因子结合足迹的检测。美国国家生物技术公司。33395-401(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Serandour, A. A., Brown, G. D., Cohen, J. D. & Carroll, J. S. Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1–DNA binding properties. Genome Biol. 14, R147 (2013).Article

Serandour,A.A.,Brown,G.D.,Cohen,J.D。和Carroll,J.S。基于Illumina的ChIP核酸外切酶方法的开发提供了对FoxA1-DNA结合特性的深入了解。基因组生物学。14,R147(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tehranchi, A. K. et al. Pooled ChIP–seq links variation in transcription factor binding to complex disease risk. Cell 165, 730–741 (2016).Article

Tehranchi,A.K.等人的ChIP-seq汇总将转录因子结合的变异与复杂疾病风险联系起来。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aldridge, S. et al. AHT-ChIP–seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation. Genome Biol. 14, R124 (2013).Article

Aldridge,S。等人。AHT ChIP-seq:用于高通量染色质免疫沉淀的全自动机器人方案。基因组生物学。14,R124(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Janssens, D. H. et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat. Genet. 53, 1586–1596 (2021).Article

Janssens,D.H.等人。混合谱系白血病染色质异质性的自动切割和标签分析。纳特·吉内特。531586-1596(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).Article

Kaya Okur,H.S.等人的CUT&Tag用于小样本和单细胞的有效表观基因组分析。国家公社。101930(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).Article

Skene,P.J.,Henikoff,J.G。&Henikoff,S。靶向全基因组原位分析,对低细胞数具有高效率。自然协议。131006-1019(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lochs, S. J. A. et al. Combinatorial single-cell profiling of major chromatin types with MAbID. Nat. Methods 21, 72–82 (2024).Article

Lochs,S.J.A.等人,《用单克隆抗体对主要染色质类型进行组合单细胞分析》,《自然方法》21,72-82(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746 (2021).Article

Gopalan,S.,Wang,Y.,Harper,N.W.,Garber,M。&Fazzio,T.G。同时分析同一细胞中的多种染色质蛋白。分子细胞814736-4746(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gopalan, S. & Fazzio, T. G. Multi-CUT&Tag to simultaneously profile multiple chromatin factors. STAR Protoc. 3, 101100 (2022).Article

Gopalan,S。&Fazzio,T.G。Multi-CUT&Tag可同时分析多种染色质因子。恒星质子。3101100(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).Article

Kaya Okur,H.S.,Janssens,D.H.,Henikoff,J.G.,Ahmad,K。&Henikoff,S。使用CUT&Tag进行高效低成本染色质分析。自然协议。153264-3283(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kong, N. R., Chai, L., Tenen, D. G. & Bassal, M. A. A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines. STAR Protoc. 2, 100750 (2021).Article

Kong,N.R.,Chai,L.,Tenen,D.G。和Bassal,M.A。一种改进的切割和运行方案和分析管道,用于鉴定人类细胞系中的转录因子结合位点。恒星质子。2100 750(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).Article

Dunham,I.等人,《人类基因组中DNA元素的综合百科全书》。《自然》489,57-74(2012)。文章

CAS

中科院

Google Scholar

谷歌学者

PsychENCODE Consortium et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).Article

PsychENCODE Consortium等人。PsychENCODE项目。自然神经科学。181707-1712(2015)。文章

Google Scholar

谷歌学者

The Immunological Genome Project Consortium et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).Article

免疫基因组计划联盟等。免疫基因组计划:免疫细胞中的基因表达网络。。91091-1094(2008)。文章

Google Scholar

谷歌学者

Partridge, E. C. et al. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 583, 720–728 (2020).Article

Partridge,E.C.等人在一种人类细胞类型中208种染色质相关蛋白的占据图。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).Article

。《自然》583752-759(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sisu, C. et al. Transcriptional activity and strain-specific history of mouse pseudogenes. Nat. Commun. 11, 3695 (2020).Article

Sisu,C.等人。小鼠假基因的转录活性和菌株特异性历史。国家公社。113695(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chasman, D. & Roy, S. Inference of cell type specific regulatory networks on mammalian lineages. Curr. Opin. Syst. Biol. 2, 130–139 (2017).Article

Chasman,D。&Roy,S。推断哺乳动物谱系上的细胞类型特异性调控网络。货币。奥平。。生物学2130-139(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021 (2021).Article

Ota,M.等人。免疫介导疾病中免疫细胞特异性基因调控的动态景观。细胞1843006-3021(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Madhani, H. D. et al. Epigenomics: a roadmap, but to where? Science 322, 43–44 (2008).Article

Madhani,H.D.等人,《表观基因组学:路线图,但去哪里?科学322,43-44(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kidder, B. L., Hu, G. & Zhao, K. ChIP–seq: technical considerations for obtaining high-quality data. Nat. Immunol. 12, 918–922 (2011).Article

Kidder,B.L.,Hu,G.&Zhao,K.ChIP–seq:获得高质量数据的技术考虑因素。。12918-922(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).Article

Quinodoz,S.A。等人。高阶染色体间中心形成细胞核中的3D基因组组织。细胞174744-757(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790 (2021).Article

Quinodoz,S.A。等人。RNA促进细胞核中空间区室的形成。细胞1845775-5790(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinodoz, S. A. et al. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding. Nat. Protoc. 17, 36–75 (2022).Article

Quinodoz,S.A。等人,《SPRITE:使用组合分裂和池条形码绘制细胞核中高阶3D相互作用的全基因组方法》。自然协议。17,36-75(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S., Yu, N.-K. & Kaang, B.-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp. Mol. Med. 47, e166 (2015).Article

Kim,S.,Yu,N.-K。&Kaang,B.-K。CTCF作为基因组调控和基因表达中的多功能蛋白。实验分子医学47,e166(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).Article

Kouzarides,T。染色质修饰及其功能。细胞128693-705(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Girbig, M., Misiaszek, A. D. & Müller, C. W. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat. Rev. Mol. Cell Biol. 23, 603–622 (2022).Article

。Nat。Rev。Mol。Cell Biol。23603-622(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).Article

Abascal,F.等人扩展了人类和小鼠基因组中DNA元素的百科全书。自然583699-710(2020)。文章

Google Scholar

谷歌学者

Adli, M., Zhu, J. & Bernstein, B. E. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–618 (2010).Article

Adli,M.,Zhu,J。&Bernstein,B.E。全基因组染色质图谱来源于有限数量的造血祖细胞。《自然方法》7615-618(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karimzadeh, M. & Hoffman, M. M. Virtual ChIP–seq: predicting transcription factor binding by learning from the transcriptome. Genome Biol. 23, 126 (2022).Article

Karimzadeh,M。和Hoffman,M。M。Virtual ChIP–seq:通过从转录组学习来预测转录因子的结合。基因组生物学。23126(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).Article

Ernst,J。&Kellis,M。染色质状态发现和ChromHMM基因组注释。自然协议。122478-2492(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spicuglia, S. & Vanhille, L. Chromatin signatures of active enhancers. Nucleus 3, 126–131 (2012).Article

Spicuglia,S。&Vanhille,L。活性增强子的染色质特征。Nucleus 3126–131(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).Article

Steger,D.J。等人,DOT1L/KMT4募集和H3K79甲基化与哺乳动物细胞中的基因转录普遍相关。摩尔电池。生物学282825-2839(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gates, L. A., Foulds, C. E. & O’Malley, B. W. Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem. Sci. 42, 977–989 (2017).Article

Gates,L.A.,Foulds,C.E。&O'Malley,B.W。组蛋白标记在“驾驶座”:在控制转录周期中的功能性作用。趋势生物化学。科学。42977-989(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karmodiya, K., Krebs, A. R., Oulad-Abdelghani, M., Kimura, H. & Tora, L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13, 424 (2012).Article

Karmodiya,K.,Krebs,A.R.,Oulad Abdelghani,M.,Kimura,H。&Tora,L。H3K9和H3K14乙酰化共同发生在许多基因调控元件上,而H3K14ac标志着小鼠胚胎干细胞中非活性诱导型启动子的一个子集。BMC基因组学13424(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat. Genet. 53, 551–563 (2021).Article

Chen,Z.,Djekidel,M.N。&Zhang,Y。H2AK119ub1和H3K27me3在小鼠植入前胚胎中的不同动力学和功能。纳特·吉内特。53551-563(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saksouk, N., Simboeck, E. & Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).Article

Saksouk,N.,Simboeck,E。&Déjardin,J。哺乳动物中组成型异染色质的形成和转录。表观遗传学染色质8,3(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, T. & Dent, S. Y. R. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106 (2014).Article

Chen,T。&Dent,S.Y.R。染色质修饰剂和重塑剂:细胞分化的调节剂。Genet自然Rev。15,93-106(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kirtana, R., Manna, S. & Patra, S. K. Molecular mechanisms of KDM5A in cellular functions: facets during development and disease. Exp. Cell Res. 396, 112314 (2020).Article

Kirtana,R.,Manna,S。&Patra,S.K。KDM5A在细胞功能中的分子机制:发育和疾病过程中的各个方面。Exp.Cell Res.396112314(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).Article

Shilatifard,A。组蛋白H3赖氨酸4(H3K4)甲基化的分子实施和生理作用。货币。奥平。细胞生物学。20341-348(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geng, Z. & Gao, Z. Mammalian PRC1 complexes: compositional complexity and diverse molecular mechanisms. Int. J. Mol. Sci. 21, 8594 (2020).Article

Geng,Z。&Gao,Z。哺乳动物PRC1复合物:组成复杂性和多种分子机制。Int.J.Mol.Sci。218594(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mierlo, G., van, Veenstra, G. J. C., Vermeulen, M. & Marks, H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 29, 660–671 (2019).Article

Mierlo,G.,van,Veenstra,G.J.C.,Vermeulen,M。&Marks,H。PRC2子复合体的复杂性。趋势细胞生物学。29660-671(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bosch-Presegué, L. et al. Mammalian HP1 isoforms have specific roles in heterochromatin structure and organization. Cell Rep. 21, 2048–2057 (2017).Article

Bosch Presegué,L。等人。哺乳动物HP1亚型在异染色质结构和组织中具有特定作用。Cell Rep.212048–2057(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mazzocca, M., Colombo, E., Callegari, A. & Mazza, D. Transcription factor binding kinetics and transcriptional bursting: what do we really know? Curr. Opin. Struct. Biol. 71, 239–248 (2021).Article

Mazzocca,M.,Colombo,E.,Callegari,A。&Mazza,D。转录因子结合动力学和转录爆发:我们真正知道什么?货币。奥平。结构。生物学71239-248(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532 (2019).Article

转录爆发起始和聚合酶暂停释放是转录调控的关键控制点。分子细胞73519-532(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rada-Iglesias, A. et al. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res. 18, 380–392 (2008).Article

Rada Iglesias,A。等人。USF1和USF2结合以及组蛋白H3乙酰化的全基因组图谱揭示了启动子结构和常见人类疾病候选基因的新方面。Genome Res.18380–392(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Connor, L., Gilmour, J. & Bonifer, C. The role of the ubiquitously expressed transcription factor Sp1 in tissue-specific transcriptional regulation and in disease. Yale J. Biol. Med. 89, 513–525 (2016).

O'Connor,L.,Gilmour,J。&Bonifer,C。普遍表达的转录因子Sp1在组织特异性转录调控和疾病中的作用。耶鲁J.生物。医学89513-525(2016)。

Google Scholar

谷歌学者

Li, Z., Cogswell, M., Hixson, K., Brooks-Kayal, A. R. & Russek, S. J. Nuclear respiratory factor 1 (NRF-1) controls the activity dependent transcription of the GABA-A receptor β1 subunit gene in neurons. Front. Mol. Neurosci. 11, 285 (2018).Article

Li,Z.,Cogswell,M.,Hixson,K.,Brooks-Kayal,A.R。&Russek,S.J。核呼吸因子1(NRF-1)控制神经元中GABA-A受体β1亚基基因的活性依赖性转录。正面。分子神经科学。11285(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).Article

Horn,H.F。&Vousden,K.H。应对压力:激活p53的多种方法。癌基因261306-1316(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956 (2017).Article

Fischer,M。p53靶基因的普查和评估。癌基因363943-3956(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Akberdin, I. R. et al. Pluripotency gene network dynamics: system views from parametric analysis. PLoS ONE 13, e0194464 (2018).Article

Akberdin,I.R.等。多能性基因网络动力学:参数分析的系统视图。PLoS ONE 13,e0194464(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reith, W. et al. MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. Genes Dev. 4, 1528–1540 (1990).Article

MHC II类调节因子RFX具有一个新的DNA结合结构域和一个功能独立的二聚化结构域。Genes Dev.41528–1540(1990)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brivanlou, A. H. & Darnell, J. E. Signal transduction and the control of gene expression. Science 295, 813–818 (2002).Article

Brivanlou,A.H。&Darnell,J.E。信号转导和基因表达的控制。科学295813-818(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Satoh, J., Kawana, N. & Yamamoto, Y. Pathway analysis of ChIP–seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Biol. 7, GRSB.S13204 (2013).Article

Satoh,J.,Kawana,N。和Yamamoto,Y。基于ChIP-seq的NRF1靶基因的途径分析表明,它们参与了神经退行性疾病的发病机理。基因调控。。生物学7,GRSB.S13204(2013)。文章

Google Scholar

谷歌学者

Qi, B., Newcomer, R. & Sang, Q.-X. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr. Pharm. Des. 15, 2336–2348 (2009).Article

Qi,B.,Newcomer,R。&Sang,Q.-X。ADAM19/adamalysin 19的结构,功能和作为肿瘤和炎性疾病中推定靶标的作用。货币。药学博士。152336-2348(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schoch, S., Cibelli, G. & Thiel, G. Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism. J. Biol. Chem. 271, 3317–3323 (1996).Article

Schoch,S.,Cibelli,G。&Thiel,G。突触蛋白的神经元特异性基因表达I.负调节机制的主要作用。J、 生物。化学。2713317-3323(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martin, D. & Grapin-Botton, A. The importance of REST for development and function of beta cells. Front. Cell Dev. Biol. 5, 12 (2017).Article

Martin,D。和Grapin-Botton,A。休息对β细胞发育和功能的重要性。正面。细胞开发生物学。5,12(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bao, F., LoVerso, P. R., Fisk, J. N., Zhurkin, V. B. & Cui, F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle 16, 2073–2085 (2017).Article

Bao,F.,LoVerso,P.R.,Fisk,J.N.,Zhurkin,V.B。&Cui,F。正常细胞和癌细胞中的p53结合位点具有不同的染色质背景。细胞周期162073-2085(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Otto, S. J. et al. A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J. Neurosci. 27, 6729–6739 (2007).Article

。J、 神经科学。276729-6739(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).Article

高通量染色质免疫沉淀法揭示了哺乳动物动态基因调控的原理。分子细胞47810-822(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).Article

Ernst,J。&Kellis,M。染色质状态的发现和表征,用于人类基因组的系统注释。美国国家生物技术公司。28817-825(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).Article

二价染色质结构标志着胚胎干细胞的关键发育基因。细胞125315-326(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 615, 339–348 (2023).Article

Wang,H。等人。H3K4me3调节RNA聚合酶II启动子近端暂停释放。自然615339-348(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).Article

Bilodeau,S.,Kagey,M.H.,Frampton,G.M.,Rahl,P.B。&Young,R.A。SetDB1有助于抑制编码发育调节剂的基因并维持ES细胞状态。Genes Dev.232484–2489(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zentner, G. E. & Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013).Article

Zentner,G.E。&Henikoff,S。通过组蛋白修饰调节核小体动力学。自然结构。分子生物学。20259-266(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Giaimo, B. D. et al. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res. 46, 8197–8215 (2018).Article

Giaimo,B.D.等人。组蛋白变体H2A。Z沉积和乙酰化指导经典的Notch信号传导反应。核酸研究468197-8215(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Giaimo, B. D., Ferrante, F., Herchenröther, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).Article

Giaimo,B.D.,Ferrante,F.,Herchenröther,A.,Hake,S.B。&Borggrefe,T。组蛋白变体H2A。Z在基因调控中。表观遗传学染色质12,37(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gévry, N., Chan, H. M., Laflamme, L., Livingston, D. M. & Gaudreau, L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21, 1869–1881 (2007).Article

Gévry,N.,Chan,H.M.,Laflamme,L.,Livingston,D.M。和Gaudreau,L。p21转录受组蛋白H2A差异定位的调节。Z、 。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gévry, N. et al. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 23, 1522–1533 (2009).Article

Gévry,N。等人。组蛋白H2A。Z对于雌激素受体信号传导至关重要。Genes Dev.231522–1533(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).Article

Akerberg,B.N.等人。小鼠心脏转录因子染色质占据的参考图谱确定了动态和保守的增强子。国家公社。104907(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Currey, L., Thor, S. & Piper, M. TEAD family transcription factors in development and disease. Development 148, dev196675 (2021).Article

Currey,L.,Thor,S。&Piper,M。TEAD家族转录因子在发育和疾病中的作用。发展148,dev196675(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708–716 (2023).Article

Meers,M.P.,Llagas,G.,Janssens,D.H.,Codomo,C.A。&Henikoff,S。使用多标签在单细胞分辨率下对表观遗传景观进行多因素分析。美国国家生物技术公司。41708-716(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stuart, T. et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat. Biotechnol. 41, 806–812 (2023).Article

Stuart,T。等人。纳米体栓系转座能够以单细胞分辨率进行多因素染色质分析。美国国家生物技术公司。41806-812(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).Article

Bartosovic,M.,Kabbe,M。&Castelo-Branco,G。单细胞切割和标签概况复杂组织中的组蛋白修饰和转录因子。美国国家生物技术公司。39825-835(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiong, H., Wang, Q., Li, C. C. & He, A. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Sci. Adv. 10, eadi3664 (2024).Article

Xiong,H.,Wang,Q.,Li,C.C。&He,A。多种表观遗传蛋白和基因转录的单细胞联合分析。科学。Adv.10,eadi3664(2024年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vangala, P. et al. High-resolution mapping of multiway enhancer–promoter interactions regulating pathogen detection. Mol. Cell 80, 359–373 (2020).Article

Vangala,P。等人。调节病原体检测的多向增强子-启动子相互作用的高分辨率作图。分子细胞80359-373(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2022).Article

Arrastia,M.V.等人。使用scSPRITE对高阶3D基因组组织进行单细胞测量。美国国家生物技术公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goronzy, I. N. et al. Simultaneous mapping of 3D structure and nascent RNAs argues against nuclear compartments that preclude transcription. Cell Rep. 41, 111730 (2022).Article

Goronzy,I.N.等人同时绘制3D结构和新生RNA的图谱反对阻止转录的核区室。Cell Rep.41111730(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donnard, E. et al. Comparative analysis of immune cells reveals a conserved regulatory lexicon. Cell Syst. 6, 381–394 (2018).Article

Donnard,E。等人。免疫细胞的比较分析揭示了一个保守的调节词典。细胞系统。6381-394(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article

Ramírez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).Article

Robinson,J.T.等人,《整合基因组学查看器》。美国国家生物技术公司。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).Article

Heinz,S.等人。谱系决定转录因子的简单组合引发巨噬细胞和B细胞身份所需的顺式调控元件。分子细胞38576-589(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input ChIP–seq for histones and transcription factors. Nat. Methods 12, 963–965 (2015).Article

Schmidl,C.,Rendeiro,A.F.,Sheffield,N.C。和Bock,C。ChIPmentation:组蛋白和转录因子的快速,稳健,低输入ChIP-seq。自然方法12963-965(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).Article

Daley,T。&Smith,A.D。预测测序文库的分子复杂性。自然方法10325-327(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article

Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammal, F., Langen, P., de Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2021).Article

Hammal,F.,Langen,P.,de Bergon,A.,Lopez,F。&Ballester,B。ReMap 2022:来自DNA结合测序实验综合分析的人,小鼠,果蝇和拟南芥调控区数据库。核酸研究50,D316–D325(2021)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).Article

McInnes,L.,Healy,J.,Saul,N。&Großberger,L。UMAP:统一流形近似和投影。J、 开源软件。3861(2018)。文章

Google Scholar

谷歌学者

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article

Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dreos, R., Ambrosini, G., Groux, R., Cavin Périer, R. & Bucher, P. The Eukaryotic Promoter Database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res. 45, D51–D55 (2017).Article

Dreos,R.,Ambrosini,G.,Groux,R.,Cavin Périer,R。&Bucher,P。真核启动子数据库第30年:关注非脊椎动物。核酸研究45,D51-D55(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).Article

Frankish,A。等人。人类和小鼠基因组的GENCODE参考注释。核酸研究47,D766–D773(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Satopää, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).Liang, K., Patil, A. & Nakai, K. Discovery of intermediary genes between pathways using sparse regression.

Satopäää,V.,Albrecht,J.,Irwin,D。&Raghavan,B。在干草堆中寻找“膝盖”:检测系统行为中的膝盖点。2011年第31届国际分布式计算系统会议研讨会166-171(IEEE,2011)。Liang,K.,Patil,A。&Nakai,K。使用稀疏回归发现途径之间的中间基因。

PLoS ONE 10, e0137222 (2015).Article .

PLoS ONE 10,e0137222(2015)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tommaso, P. D. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).Article

Tommaso,P.D。等人Nextflow实现了可重复的计算工作流。美国国家生物技术公司。35316-319(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kluger, Y., Basri, R., Chang, J. T. & Gerstein, M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13, 703–716 (2003).Article

Kluger,Y.,Basri,R.,Chang,J.T。&Gerstein,M。微阵列数据的光谱双聚类:共聚类基因和条件。基因组研究13703-716(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Article

Virtanen,P.等人,《SciPy 1.0:Python科学计算的基本算法》。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zitnik, M. & Zupan, B. NIMFA: a Python library for nonnegative matrix factorization. J. Mach. Learn. Res. 13, 849–853 (2012).

Zitnik,M。&Zupan,B。NIMFA:用于非负矩阵分解的Python库。J、 马赫。学习。第13849-853号决议(2012年)。

Google Scholar

谷歌学者

Zheng, R. et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47, D729–D735 (2019).Article

Zheng,R。et al。Cistrome数据浏览器:扩展的数据集和基因调控分析的新工具。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yeh, B. & Goronzy, I. GuttmanLab/chipdip-pipeline: Nature Genetics (2024) paper release (v1.0_publication). Zenodo https://doi.org/10.5281/zenodo.13952458 (2024).Download referencesAcknowledgementsWe thank S. Hiley for editing. We thank I.-M. Strazhnik and A. Koivula for illustrations and formatting the figures.

Yeh,B。&Goronzy,I。GuttmanLab/chipdip管道:自然遗传学(2024)论文发布(v1.0\u出版物)。泽诺多https://doi.org/10.5281/zenodo.13952458(2024年)。下载参考文献致谢我们感谢S.Hiley的编辑。我们感谢I.-M.Strazhnik和A.Koivula的插图和数字格式。

This work was funded by grants from the NIH (R01 HG012216, R01 DA053178, U01 DK127420 to M.G.), the Chan Zuckerberg Initiative Ben Barres Early Career Acceleration Award, the NIH UCLA-Caltech Medical Scientist Training Program (T32GM008042, I.N.G. and B.T.Y.), NCI F30CA278005 (J.K.G.) and the University of Southern California MD/PhD program (J.K.G.).

这项工作由NIH(R01 HG012216,R01 DA053178,U01 DK127420授予M.G.),Chan Zuckerberg Initiative Ben Barres早期职业加速奖,NIH UCLA Caltech医学科学家培训计划(T32GM008042,I.N.G.和B.T.Y.),NCI F30CA27805(J.K.G.)和南加州大学医学博士/博士计划(J.K.G.)的资助。

Sequencing was performed at the Millard and Muriel Jacobs Genetics and Genomics facility at Caltech with support from I. Antoshechkin and at the Broad Institute Genomics Platform.Author informationAuthor notesThese authors contributed equally: Andrew A. Perez, Isabel N. Goronzy.Authors and AffiliationsDivision of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USAAndrew A.

在I.Antoshechkin和Broad Institute Genomics平台的支持下,在加州理工学院的Millard and Muriel Jacobs Genetics and Genomics facility进行了测序。作者信息作者注意到这些作者做出了同样的贡献:Andrew A.Perez,Isabel N.Goronzy。作者和附属机构美国加利福尼亚州帕萨迪纳市加利福尼亚理工学院生物学与生物工程系Andrew A。

Perez, Isabel N. Goronzy, Mario R. Blanco, Benjamin T. Yeh, Jimmy K. Guo, Olivia Ettlin, Alex Burr & Mitchell GuttmanDavid Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USAIsabel N. Goronzy & Benjamin T. YehDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USAIsabel N.

佩雷斯(Perez)、伊莎贝尔·戈隆齐(Isabel N.Goronzy)、马里奥·布兰科(Mario R.Blanco)、本杰明·叶杰(Benjamin T.Yeh)、吉米·K·郭(Jimmy K.Guo)、奥利维亚·埃特林(Olivia Ettlin)、亚历克斯·伯尔(Alex Burr)和米切尔·古特曼达维德·格芬(Mitchell GuttmanDavid Geffen)医学院(University of California)、洛杉矶(Los Angeles)、加利福尼亚州(USAIsabel N。

GoronzyKeck School of Medicine, University of Southern California, Los Angeles, CA, USAJimmy K. GuoProgram in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USACarolina S. LopesAuthorsAndrew A. PerezView author publicationsYou can also search for this author in.

美国加利福尼亚州洛杉矶市南加州大学戈龙·齐克克医学院Jimmy K.Guo生物信息学和整合生物学项目,马萨诸塞大学医学院,伍斯特,马萨诸塞州,美国卡罗莱纳州S.LopesAuthorsAndrew A.PerezView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarIsabel N. GoronzyView author publicationsYou can also search for this author in

PubMed Google ScholarIsabel N.GoronzyView作者出版物您也可以在

PubMed Google ScholarMario R. BlancoView author publicationsYou can also search for this author in

PubMed Google ScholarMario R.BlancoView作者出版物您也可以在

PubMed Google ScholarBenjamin T. YehView author publicationsYou can also search for this author in

PubMed Google ScholarBenjamin T.YehView作者出版物您也可以在

PubMed Google ScholarJimmy K. GuoView author publicationsYou can also search for this author in

PubMed谷歌学者Jimmy K.GuoView作者出版物您也可以在

PubMed Google ScholarCarolina S. LopesView author publicationsYou can also search for this author in

PubMed Google ScholarCarolina S.LopesView作者出版物您也可以在

PubMed Google ScholarOlivia EttlinView author publicationsYou can also search for this author in

PubMed Google ScholarOlivia EttlinView作者出版物您也可以在

PubMed Google ScholarAlex BurrView author publicationsYou can also search for this author in

PubMed Google ScholarAlex BurrView作者出版物您也可以在

PubMed Google ScholarMitchell GuttmanView author publicationsYou can also search for this author in

PubMed谷歌ScholarMitchell GuttmanView作者出版物您也可以在

PubMed Google ScholarContributionsA.A.P., M.R.B. and M.G. conceived ChIP-DIP; A.A.P. and M.R.B. developed ChIP-DIP; A.A.P., I.N.G. and J.K.G. optimized ChIP-DIP; A.A.P. and I.N.G. generated the data presented in this paper; C.S.L., O.E. and A.B. cultured, collected and treated cells; I.N.G.

PubMed谷歌学术贡献。A、 P.,M.R.B.和M.G.构思了芯片DIP;A、 A.P.和M.R.B.开发了芯片DIP;A、 A.P.,I.N.G.和J.K.G.优化芯片倾角;A、 A.P.和I.N.G.生成了本文提供的数据;C、 ;一、 N.G。

developed the computational pipeline; B.T.Y. generated the GitHub repository for the pipeline; I.N.G. performed data analysis and visualization; A.A.P., I.N.G. and M.G. generated figures and wrote the paper.Corresponding authorCorrespondence to.

开发了计算流水线;B、 T.Y.为管道生成了GitHub存储库;一、 N.G.进行数据分析和可视化;A、 A.P.,I.N.G.和M.G.生成了数字并撰写了论文。对应作者对应。

Mitchell Guttman.Ethics declarations

米切尔·古特曼。道德宣言

Competing interests

相互竞争的利益

M.G., A.A.P., M.R.B., I.N.G. and J.K.G. are inventors of a submitted patent covering the ChIP-DIP method. The other authors declare no competing interests.

M、 G.、A.A.P.、M.R.B.、I.N.G.和J.K.G.是一项涉及芯片浸渍法的已提交专利的发明人。其他作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Nature Genetics感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审报告。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Potential sources of mixing in ChIP-DIP.(a) Schematic of labeling strategy to generate Protein G beads coupled with a unique antibody-identifying oligonucleotide and a matched antibody.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1芯片DIP中混合的潜在来源。(a) 产生蛋白G珠的标记策略示意图,该蛋白G珠与识别寡核苷酸和匹配抗体的独特抗体偶联。

(i) Protein G beads are covalently modified with a biotin, (ii) oligonucleotides containing a 3’ biotin are conjugated to streptavidin, (iii) oligo-streptavidin complexes are mixed with biotinylated protein G beads and (iv) protein G beads are mixed with antibodies. This process is repeated for each unique oligonucleotide-antibody pair and then all bead-antibody conjugates are pooled together.

(i) 。对于每个独特的寡核苷酸-抗体对重复该过程,然后将所有珠子-抗体缀合物合并在一起。

(b) Schematic of three potential sources of dissociation of chromatin-antibody-bead-oligo conjugates that could lead to mixing during ChIP-DIP: dissociation 1) between oligo and bead, 2) between antibody and bead, or 3) between antibody and chromatin. (c) If oligos dissociate from their original beads and bind to distinct beads (oligo-bead dissociation), we would expect multiple distinct oligo types on the same bead.

(b) 染色质-抗体-珠-寡核苷酸缀合物解离的三个潜在来源的示意图,其可能导致ChIP-DIP期间的混合:解离1)寡核苷酸和珠之间,2)抗体和珠之间,或3)抗体和染色质之间。(c) 如果寡核苷酸从其原始珠子上解离并结合到不同的珠子上(寡核苷酸珠子解离),我们预计在同一珠子上会有多种不同的寡核苷酸类型。

To quantify this, we computed the percent uniqueness of oligo-types within each split-pool cluster. The cumulative distribution of the uniqueness of antibody-ID oligos type (x-axis) within individual clusters is shown. (d) If antibodies dissociate from their original bead and reassociate with a different bead (antibody-bead dissociation), we expect that chromatin would associate with empty beads present in the experiment.

为了量化这一点,我们计算了每个分裂池集群中寡核苷酸类型的唯一性百分比。显示了单个簇内抗体ID寡核苷酸类型(x轴)唯一性的累积分布。(d) 如果抗体从其原始珠子解离并与不同的珠子重新缔合(抗体珠子解离),我们预计染色质将与实验中存在的空珠子缔合。

We show a schematic of the experimental design to test for antibody movement between beads (top) and the quantification of reads per bead assigned to true targets (CTCF) or empty .

我们显示了实验设计的示意图,以测试珠子(顶部)之间的抗体运动以及分配给真实靶标(CTCF)或空的每个珠子的读数的定量。

Nat Genet (2024). https://doi.org/10.1038/s41588-024-02000-5Download citationReceived: 11 December 2023Accepted: 21 October 2024Published: 25 November 2024DOI: https://doi.org/10.1038/s41588-024-02000-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Genet(2024)。https://doi.org/10.1038/s41588-024-02000-5Download引文收到日期:2023年12月11日接受日期:2024年10月21日发布日期:2024年11月25日OI:https://doi.org/10.1038/s41588-024-02000-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供