EN
登录

人工智能因将塑造医学未来的创新而获得两项诺贝尔奖

Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine

Nature 等信源发布 2024-11-25 22:27

可切换为仅中文


John J. Hopfield and Geoffrey E. Hinton were awarded the 2024 Nobel Prize in Physics for developing machine learning technology using artificial neural networks. In Chemistry it was awarded to Demis Hassabis and John M. Jumper for developing an AI algorithm that solved the 50-year protein structure prediction challenge.

约翰·霍普菲尔德(JohnJ.Hopfield)和杰弗里·辛顿(GeoffreyE.Hinton)因利用人工神经网络开发机器学习技术而获得2024年诺贝尔物理学奖。在化学方面,它被授予Demis Hassabis和John M.Jumper,因为他们开发了一种AI算法,解决了50年来蛋白质结构预测的挑战。

This highlights AI’s impact on science, medicine and society; however, the winners acknowledge ethical aspects of AI that must be considered..

这突出了AI对科学,医学和社会的影响;然而,获奖者承认必须考虑人工智能的道德方面。。

In October 2024, the Nobel Committees in Stockholm announced that the prizes in Physics and Chemistry were awarded to work related to artificial intelligence (AI)1,2. The prize in Physics was awarded to John J. Hopfield and Geoffrey E. Hinton (formerly of Google) for “foundational discoveries and inventions that enable machine learning with artificial neural networks1.” The prize in Chemistry was awarded one-half to David Baker for “computational protein design” and one-half to Demis Hassabis and John M.

。物理学奖授予约翰·J·霍普菲尔德(JohnJ.Hopfield)和杰弗里·E·辛顿(GeoffreyE.Hinton)(前谷歌公司),表彰“利用人工神经网络进行机器学习的基础性发现和发明”。化学奖一半授予大卫·贝克(DavidBaker)“计算蛋白质设计”,一半授予黛米斯·哈萨比斯(DemisHassabis)和约翰·M。

Jumper (of DeepMind) for “protein structure prediction2.” The historic announcement of these Nobel Prizes for AI-related work has been widely discussed in mainstream media, with articles including “A Shift in the World of Science” by New York Times3 and “AI wins big at the Nobels” by The Economist4.

“蛋白质结构预测2”的Jumper(来自DeepMind)。这些与人工智能相关的诺贝尔奖的历史性宣布已在主流媒体上得到广泛讨论,其中包括《纽约时报》3的“科学世界的转变”和《经济学人》4的“人工智能在诺贝尔奖上大获全胜”。

This article summarizes the AI-related work of these Nobel laureates and discusses implications of their discoveries for medical science, the practice of medicine, and society (Fig. 1).Fig. 1: Summary of artificial intelligence work related to the 2024 Nobel Prizes in Physics and Chemistry.This is shown in timeline format.Full size image2024 Nobel Prize in PhysicsHopfield and Hinton developed methods that form the foundation of today’s machine learning (ML) technology1.

本文总结了这些诺贝尔奖获得者与人工智能相关的工作,并讨论了他们的发现对医学,医学实践和社会的影响(图1)。图1:2024年诺贝尔物理学和化学奖相关人工智能工作总结。这以时间线格式显示。全尺寸图像2024诺贝尔物理学奖霍普菲尔德和辛顿开发的方法构成了当今机器学习(ML)技术的基础1。

Hopfield invented the Hopfield network, an associative memory structure that can store and reconstruct information5. Building on the Hopfield network, Hinton developed the Boltzmann machine, a method that can autonomously discover properties in data6. These discoveries are fundamental to artificial neural networks, allowing them to sort and analyze vast amounts of data7.

霍普菲尔德发明了霍普菲尔德网络,这是一种可以存储和重建信息的联想记忆结构5。辛顿在霍普菲尔德网络的基础上开发了玻尔兹曼机器,这种方法可以自主发现数据中的属性6。这些发现是人工神经网络的基础,使它们能够对大量数据进行分类和分析7。

In turn, this allows computers to rapidly process information, learn effectively, and generate memory7. Today, neural networks provide compu.

反过来,这使计算机能够快速处理信息,有效学习并生成记忆7。今天,神经网络提供了计算机。

ReferencesThe Nobel Prize in Physics 2024. NobelPrize.org https://www.nobelprize.org/prizes/physics/2024/press-release/.The Nobel Prize in Chemistry 2024. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/2024/press-release/.Burdick, A. & Miller, K. A Shift in the World of Science. The New York Times (2024).AI wins big at the Nobels.

参考2024年诺贝尔物理学奖。诺贝尔奖https://www.nobelprize.org/prizes/physics/2024/press-release/.The2024年诺贝尔化学奖。诺贝尔奖https://www.nobelprize.org/prizes/chemistry/2024/press-release/.Burdick,A。&Miller,K。科学世界的转变。《纽约时报》(2024)。AI在诺贝尔奖上大获全胜。

The Economist.Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982).Article .

《经济学人》。Hopfield,J.J。具有新兴集体计算能力的神经网络和物理系统。程序。纳特尔。阿卡德。科学。792554-2558(1982)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

Ackley,D.H.,Hinton,G.E。和Sejnowski,T.J。玻尔兹曼机器的学习算法。科恩。科学。9147-169(1985)。

Google Scholar

谷歌学者

Kriegeskorte, N. & Golan, T. Neural network models and deep learning. Curr. Biol. CB 29, R231–R236 (2019).Article

Kriegeskorte,N。&Golan,T。神经网络模型和深度学习。货币。生物学CB 29,R231–R236(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

ChatGPT. https://openai.com/chatgpt/overview/.Sarker, I. H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2, 160 (2021).Article

查特普特。https://openai.com/chatgpt/overview/.Sarker,I.H。机器学习:算法,实际应用和研究方向。序列号计算。科学。2160(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fogel, A. L. & Kvedar, J. C. Artificial intelligence powers digital medicine. Npj Digit. Med. 1, 1–4 (2018).Article

Fogel,A.L。和Kvedar,J.C。人工智能推动数字医学。Npj数字。医学1,1-4(2018)。文章

Google Scholar

谷歌学者

Nerella, S. et al. Transformers and large language models in healthcare: A review. Artif. Intell. Med. 154, 102900 (2024).Article

Nerella,S.等人,《医疗保健中的变形金刚和大型语言模型:综述》。人工制品。因特尔。医学154102900(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rittenbach, D. AI will change our lives more than the printing press or internet. Medium https://magus523.medium.com/ai-will-change-our-lives-more-than-the-printing-press-or-internet-51e575041ddb (2022).Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).Article .

Rittenbach,D.AI将比印刷机或互联网更能改变我们的生活。中等https://magus523.medium.com/ai-will-change-our-lives-more-than-the-printing-press-or-internet-51e575041ddb(2022年)。Dill,K.A.&MacCallum,J.L.《蛋白质折叠问题,50年过去了》,《科学》3381042-1046(2012)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bernstein, F. C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).Article

Bernstein,F.C.等人,《蛋白质数据库:基于计算机的大分子结构档案文件》。J、 分子生物学。112535-542(1977)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article

Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).Article

Tunyasuvunakool,K。等人。人类蛋白质组的高度准确的蛋白质结构预测。自然596590-596(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 8, 115 (2023).Article

Yang,Z.,Zeng,X.,Zhao,Y.&Chen,R。AlphaFold2及其在生物学和医学领域的应用。信号传输管。目标。他们。8115(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

About the Nobel Prize. NobelPrize.org https://www.nobelprize.org/about-the-nobel-prize/.Google’s Nobel prize winners stir debate over AI research. CBC News (2024).Triantafyllidis, A. K. & Tsanas, A. Applications of machine learning in real-life digital health interventions: Review of the literature.

关于诺贝尔奖。诺贝尔奖https://www.nobelprize.org/about-the-nobel-prize/.Google的诺贝尔奖获得者引发了关于人工智能研究的争论。CBC新闻(2024)。Triantafylidis,A.K。和Tsanas,A。机器学习在现实生活中数字健康干预中的应用:文献综述。

J. Med. Internet Res. 21, e12286 (2019).Article .

《医学与互联网研究杂志》2019年第21期,第12286页。第[UNK]条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Verma, A. A. et al. Clinical evaluation of a machine learning–based early warning system for patient deterioration. CMAJ 196, E1027–E1037 (2024).Article

Verma,A.A.等人。基于机器学习的患者病情恶化早期预警系统的临床评估。CMAJ 196,E1027–E1037(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, R. et al. Randomised controlled trials evaluating artificial intelligence in clinical practice: A scoping review. Lancet Digit. Health 6, e367–e373 (2024).Article

Han,R.等人,《临床实践中评估人工智能的随机对照试验:范围界定综述》。柳叶刀数字。健康6,e367–e373(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Callan, I. AI could ‘take control’ and ‘make us irrelevant’ as it advances, Nobel Prize winner warns. Global News https://globalnews.ca/news/10811125/artificial-intelligence-threat-geoffrey-hinton/.Korn, J. AI pioneer quits Google to warn about the technology’s ‘dangers’ | CNN Business.

诺贝尔奖获得者警告称,人工智能可以在发展过程中“控制”并“使我们变得无关紧要”。全球新闻https://globalnews.ca/news/10811125/artificial-intelligence-threat-geoffrey-hinton/.Korn,J.AI pioneer退出谷歌,警告该技术的“危险”| CNN业务。

CNN https://www.cnn.com/2023/05/01/tech/geoffrey-hinton-leaves-google-ai-fears/index.html (2023).The Nobel Prize in Chemistry 1935. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/1935/summary/.Tirrell, M. With AI warning, Nobel winner joins ranks of laureates who’ve cautioned about the risks of their own work.

美国有线电视新闻网https://www.cnn.com/2023/05/01/tech/geoffrey-hinton-leaves-google-ai-fears/index.html(2023年)。1935年诺贝尔化学奖。诺贝尔奖https://www.nobelprize.org/prizes/chemistry/1935/summary/.Tirrell在AI的警告下,诺贝尔奖获得者加入了警告自己工作风险的获奖者行列。

CNN (2024).Hiroshima and Nagasaki bombings - ICAN. https://www.icanw.org/hiroshima_and_nagasaki_bombings.The Nobel Peace Prize 2024. NobelPrize.org https://www.nobelprize.org/prizes/peace/2024/summary/.Leslie, D., Mazumder, A., Peppin, A., Wolters, M. K. & Hagerty, A. Does “AI” stand for augmenting inequality in the era of covid-19 healthcare? The BMJ 372, n304 (2021).Article .

美国有线电视新闻网(2024)。广岛和长崎爆炸案-ICAN。https://www.icanw.org/hiroshima_and_nagasaki_bombings.The2024年诺贝尔和平奖。诺贝尔奖https://www.nobelprize.org/prizes/peace/2024/summary/.Leslie,D.,Mazumder,A.,Peppin,A.,Wolters,M.K。&Hagerty,A.“AI”是否代表在新型冠状病毒医疗保健时代加剧不平等?BMJ 372,n304(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brundage, M. et al. The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. Preprint at https://doi.org/10.48550/arXiv.1802.07228 (2018).Creemers, R. China’s Social Credit System: An Evolving Practice of Control. SSRN Scholarly Paper at https://doi.org/10.2139/ssrn.3175792 (2018).Javorsky, E., Tegmark, M.

。预印于https://doi.org/10.48550/arXiv.1802.07228(2018年)。Creemers,R。中国的社会信用体系:一种不断发展的控制实践。SSRN学术论文https://doi.org/10.2139/ssrn.3175792(2018年)。贾沃斯基,E.,特格马克,M。

& Helfand, I. Lethal autonomous weapons. BMJ 364, l1171 (2019).Article .

&Helfand,I。致命的自主武器。BMJ 364171(2019)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Challen, R. et al. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 28, 231–237 (2019).Article

Challen,R.等人,《人工智能、偏倚和临床安全》。BMJ质量。南非。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Čartolovni, A., Malešević, A. & Poslon, L. Critical analysis of the AI impact on the patient–physician relationship: A multi-stakeholder qualitative study. Digit. Health 9, 20552076231220833 (2023).Article

Čartolovni,A.,Malešević,A。和Poslon,L。AI对患者-医生关系影响的批判性分析:多方利益相关者定性研究。数字。健康920552076231220833(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murdoch, B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med. Ethics 22, 122 (2021).Article

默多克,B。隐私和人工智能:新时代保护健康信息的挑战。BMC医学伦理学22122(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mitchell, M. Debates on the nature of artificial general intelligence. Science 383, eado7069 (2024).Article

Mitchell,M。关于人工通用智能性质的辩论。科学383,eado7069(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Federspiel, F., Mitchell, R., Asokan, A., Umana, C. & McCoy, D. Threats by artificial intelligence to human health and human existence. BMJ Glob. Health 8, e010435 (2023).Article

Federspiel,F.,Mitchell,R.,Asokan,A.,Umana,C。&McCoy,D。人工智能对人类健康和人类生存的威胁。BMJ全球。健康8,e010435(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Statement on AI Risk | CAIS. https://www.safe.ai/work/statement-on-ai-risk.Ambartsoumean, V. M. & Yampolskiy, R. V. AI risk skepticism, a comprehensive survey. Preprint at https://doi.org/10.48550/arXiv.2303.03885 (2023).Lazar, S. & Nelson, A. AI safety on whose terms? Science 381, 138 (2023).Article .

关于AI风险的声明| CAIS。https://www.safe.ai/work/statement-on-ai-risk.Ambartsoumean,V.M。&Yampolskiy,R.V.AI风险怀疑论,一项综合调查。预印于https://doi.org/10.48550/arXiv.2303.03885(2023年)。?科学381138(2023)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Qian, N. & Sejnowski, T. J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884 (1988).Article

Qian,N。&Sejnowski,T。J。使用神经网络模型预测球状蛋白质的二级结构。J、 分子生物学。202865-884(1988)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bohr, H. et al. Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. FEBS Lett. 241, 223–228 (1988).Article

Bohr,H.等人。通过神经网络的蛋白质二级结构和同源性。视紫红质中的α螺旋。FEBS Lett公司。241223-228(1988)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Google DeepMind. Google DeepMind https://deepmind.google/ (2024).Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).Article

谷歌DeepMind。谷歌DeepMindhttps://deepmind.google/(2024年)。Senior,A.W.等人利用深度学习的潜力改进了蛋白质结构预测。自然577706-710(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAuthor informationAuthors and AffiliationsDivision of Vascular Surgery, University of Toronto, Toronto, ON, CanadaBen LiTemerty Centre for Artificial Intelligence Research and Education in Medicine, University of Toronto, Toronto, ON, CanadaBen LiElse Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, GermanyStephen GilbertAuthorsBen LiView author publicationsYou can also search for this author in.

PubMed Google ScholarStephen GilbertView author publicationsYou can also search for this author in

PubMed Google ScholarStephen GilbertView作者出版物您也可以在

PubMed Google ScholarContributionsB.L. and S.G. developed the concept of the manuscript. B.L. wrote the first draft of the manuscript. B.L. and S.G. contributed to the writing, interpretation of the content, and editing of the manuscript, revising it critically for important intellectual content.

PubMed谷歌学术贡献b。五十、 S.G.开发了手稿的概念。B、 L.写了手稿的初稿。B、 L.和S.G.为稿件的撰写,内容的解释和编辑做出了贡献,并对重要的知识内容进行了批判性的修改。

All authors had final approval of the completed version and take accountability for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.Corresponding authorCorrespondence to.

所有作者都最终批准了完成的版本,并对工作的各个方面负责,以确保与工作任何部分的准确性或完整性有关的问题得到适当的调查和解决。对应作者对应。

Stephen Gilbert.Ethics declarations

史蒂芬·吉尔伯特。道德宣言

Competing interests

相互竞争的利益

B.L. declares no nonfinancial interests and no competing financial interests. S.G. declares anonfinancial interest as an Advisory Group member of the EY-coordinated “Study on RegulatoryGovernance and Innovation in the field of Medical Devices” conducted on behalf of the DG SANTE of the European Commission.

B、 L.声明没有非财务利益,也没有相互竞争的财务利益。S、 G.宣布anonfinancial interest为代表欧盟委员会DG SANTE进行的安永协调的“医疗器械领域监管和创新研究”咨询小组成员。

S.G. is the coordinator of a Bundesministerium für Bildung und Forschung (BMBF) project (Personal Mastery of Health & WellnessData, PATH) on consent in health data sharing, financed through the European Union NextGenerationEU program. S.G. declares the following competing financial interests: he has or has had consulting relationships with Una Health GmbH, Lindus Health Ltd., Flo Ltd, Thymia Ltd., FORUM Institut für Management GmbH, High-Tech Gründerfonds Management GmbH, Prova Health Ltd., and Ada Health GmbH and holds share options in Ada Health GmbH.

S、 G.是Bundesministerium für Bildung und Forschung(BMBF)项目(个人掌握健康与健康数据,PATH)的协调员,该项目通过欧盟下一代计划(European Union NextGenerationEU program)资助,同意健康数据共享。S、 G.宣布以下相互竞争的财务利益:他与Una Health GmbH,Lindus Health Ltd.,Flo Ltd,Thymia Ltd.,FORUM Institut für Management GmbH,High Tech Gründerfonds Management GmbH,Prova Health Ltd。和Ada Health GmbH有或曾经有过咨询关系,并持有Ada Health GmbH的股票期权。

S.G. is a News and Views Editor for npj Digital Medicine. S.G. played no role in the internal review or decision to publish this News and Views article..

S、 G.是npj数字医学的新闻和观点编辑。S、 G.在内部审查或决定发布此新闻和观点文章时未发挥任何作用。。

Rights and permissions

权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleLi, B., Gilbert, S. Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine.

转载和许可本文引用本文Li,B.,Gilbert,S。人工智能因将塑造医学未来的创新而获得两项诺贝尔奖。

npj Digit. Med. 7, 336 (2024). https://doi.org/10.1038/s41746-024-01345-9Download citationReceived: 27 October 2024Accepted: 15 November 2024Published: 25 November 2024DOI: https://doi.org/10.1038/s41746-024-01345-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

npj数字。医学杂志7336(2024)。https://doi.org/10.1038/s41746-024-01345-9Download引文接收日期:2024年10月27日接受日期:2024年11月15日发布日期:2024年11月25日OI:https://doi.org/10.1038/s41746-024-01345-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供