EN
登录

综合生物信息学分析新冠肺炎免疫相关中枢基因及其潜在分子机制

Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis

Nature 等信源发布 2024-12-02 01:31

可切换为仅中文


AbstractCOVID-19, caused by the SARS-CoV-2 virus, poses significant health challenges worldwide, particularly due to severe immune-related complications. Understanding the molecular mechanisms and identifying key immune-related genes (IRGs) involved in COVID-19 pathogenesis is critical for developing effective prevention and treatment strategies.

摘要由SARS-CoV-2病毒引起的新型冠状病毒(CoVID-19)在全球范围内构成了重大的健康挑战,特别是由于严重的免疫相关并发症。了解COVID-19发病机制的分子机制并鉴定关键的免疫相关基因(IRGs)对于制定有效的预防和治疗策略至关重要。

This study employed computational tools to analyze biological data (bioinformatics) and a method for inferring causal relationships based on genetic variations, known as Mendelian randomization (MR), to explore the roles of IRGs in COVID-19. We identified differentially expressed genes (DEGs) from datasets available in the Gene Expression Omnibus (GEO), comparing COVID-19 patients with healthy controls.

这项研究使用计算工具分析生物数据(生物信息学)和基于遗传变异推断因果关系的方法,称为孟德尔随机化(MR),以探索IRG在COVID-19中的作用。我们从Gene Expression Omnibus(GEO)中可用的数据集中鉴定了差异表达基因(DEG),将COVID-19患者与健康对照进行了比较。

IRGs were sourced from the ImmPort database. We conducted functional enrichment analysis, pathway analysis, and immune infiltration assessments to determine the biological significance of the identified IRGs. A total of 360 common differential IRGs were identified. Among these genes, CD1C, IL1B, and SLP1 have emerged as key IRGs with potential protective effects against COVID-19.

IRG来自ImmPort数据库。。总共确定了360个常见的差异IRG。在这些基因中,CD1C,IL1B和SLP1已成为对COVID-19具有潜在保护作用的关键IRG。

Pathway enrichment analysis revealed that CD1C is involved in terpenoid backbone biosynthesis and Th17 cell differentiation, while IL1B is linked to B-cell receptor signaling and the NF-kappa B signaling pathway. Significant correlations were observed between key genes and various immune cells, suggesting that they influence immune cell modulation in COVID-19.

。在关键基因和各种免疫细胞之间观察到显着的相关性,表明它们影响COVID-19中的免疫细胞调节。

This study provides new insights into the immune mechanisms underlying COVID-19, highlighting the crucial role of IRGs in disease progression. These findings suggest that CD1C and IL1B could be potential therapeutic targets. The integrated bioinformatics and MR analysis approach offers a robust fr.

这项研究为新型冠状病毒肺炎的免疫机制提供了新的见解,突出了IRG在疾病进展中的关键作用。这些发现表明CD1C和IL1B可能是潜在的治疗靶点。综合生物信息学和MR分析方法提供了强大的fr。

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread worldwide. As of 18th February 2024, there were 774,699,366 confirmed cases of COVID-19 globally, including 7,033,430 deaths, reported to the World Health Organization (WHO) (https://covid19.who.int/).

引言严重急性呼吸综合征冠状病毒2(SARS-CoV-2)继续在全球范围内发展和传播。(https://covid19.who.int/)。

Due to the highly contagious and variant nature of the virus, ongoing outbreaks of COVID-19 pose significant challenges to the sustainability of global public health systems and medical infrastructure. SARS-CoV-2 utilizes angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease-2 (TMPRSS2), which are expressed on type 2 pneumocytes and many other cell types, as receptors to facilitate the fusion of its envelope with the cell membrane and penetration of the cell1,2.

由于该病毒具有高度传染性和变异性,持续爆发的新型冠状病毒对全球公共卫生系统和医疗基础设施的可持续性构成重大挑战。。

The main symptoms of COVID-19 include cough, fever, shortness of breath, and pneumonia. The clinical severity ranges from asymptomatic to mild respiratory symptoms and even critical conditions3 and may be accompanied by severe complications involving the immune system4.The immune system plays a central role in the pathogenesis of COVID-19.

新型冠状病毒肺炎的主要症状包括咳嗽、发烧、呼吸急促和肺炎。临床严重程度从无症状到轻度呼吸道症状,甚至是危重症3,并可能伴有涉及免疫系统的严重并发症4。免疫系统在COVID-19的发病机制中起着核心作用。

Increasing evidence has shown that immune-related genes are closely associated with the onset and progression of COVID-19 5, 6. An imbalanced immune response during viral invasion is an important immunopathological mechanism in severe disease7. In particular, cytokine storms and excessive activation of the immune system are closely associated with the severity of COVID-19 8.

越来越多的证据表明,免疫相关基因与COVID-19的发生和发展密切相关5,6。病毒侵袭过程中不平衡的免疫反应是严重疾病的重要免疫病理机制7。。

Research indicates that a “cytokine storm” may occur in severe COVID-19 and result in a worse prognosis9,10. A recent large-scale trial indicated that tocilizumab reduces mortality rates in some groups of hospitalized patients, consistent with previous Mendelian randomization (MR) studi.

研究表明,严重的新型冠状病毒肺炎可能会发生“细胞因子风暴”,并导致预后更差9,10。最近的一项大规模试验表明,托珠单抗可降低某些住院患者的死亡率,这与之前的孟德尔随机(MR)研究一致。

Data availability

数据可用性

The datasets generated during the current study are available from the corresponding author on reasonable request.

当前研究期间生成的数据集可根据合理要求从通讯作者处获得。

AbbreviationsSARS-CoV-2:

严重急性呼吸系统综合征冠状病毒2型缩写:

Revere Acute Respiratory Syndrome Coronavirus 2

里维尔急性呼吸综合征冠状病毒2

ACE-2:

ACE-2:

Angiotensin Converting Enzyme-2

血管紧张素转换酶-2

TMPRSS2:

tmprs2:

Transmembrane Serine Protease-2

跨膜丝氨酸蛋白酶-2

MR:

先生:

Mendelian Randomization

孟德尔随机化

RCTs:

随机对照试验:

Randomized Controlled Trials

随机对照试验

GO:

转到:

Gene Ontology

基因本体论

KEGG:

桶:

Kyoto Encyclopedia of Genes and Genomes

GSEA:

GSEA:

Gene Set Enrichment Analysis

基因组富集分析

DEGs:

学位:

Differentially Expressed Genes

差异表达基因

IRGs:

IRG:

Immune-related Genes

免疫相关基因

GWAS:

GWAS:

Genome-wide Association Studies

全基因组关联研究

TFs:

TFs:

Transcription Factors

转录因子

GEO:

地理位置:

Gene Expression Omnibus

基因表达综合

SNPs:

单核苷酸多态性:

Single Nucleotide Polymorphisms

单核苷酸多态性

IVs:

IV:

Instrumental Variables

工具变量

eQTL:

eQTL:

Expression Quantitative Trait Loci

表达数量性状基因座

ssGSEA:

ssGSEA:

Single-sample Gene-set Enrichment Analysis

单样本基因组富集分析

NES:

NES:

Normalized Enrichment Score

归一化富集分数

AUC:

AUC:

Area Under the Curve

曲线下面积

ReferencesJackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell. Biol. 23, 3–20 (2022).Article

参考文献Jackson,C.B.,Farzan,M.,Chen,B。&Choe,H。SARS-CoV-2进入细胞的机制。自然修订摩尔电池。生物学23,3-20(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shapira, T. et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 605, 340–348 (2022).Article

Shapira,T。等人,TMPRSS2抑制剂可作为泛SARS-CoV-2的预防和治疗药物。自然605340-348(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thibord, F., Chan, M. V., Chen, M. H. & Johnson, A. D. A year of COVID-19 GWAS results from the GRASP portal reveals potential genetic risk factors. HGG Adv. 3, 100095 (2022).CAS

Thibord,F.,Chan,M.V.,Chen,M.H。&Johnson,A.D。GRASP门户网站一年的COVID-19 GWAS结果揭示了潜在的遗传风险因素。HGG Adv.310095(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dotan, A. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 20, 102792 (2021).Article

Dotan,A。等人。SARS-CoV-2是自身免疫的工具性触发因素。自身免疫。第20版,102792(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Della-Torre, E. et al. IL-1 and IL-6 inhibition affects the neutralising activity of anti-SARS-CoV-2 antibodies in patients with COVID-19. Lancet Rheumatol. 3, e829–e831 (2021).Article

Della Torre,E。等人。IL-1和IL-6抑制作用影响新型冠状病毒肺炎患者抗SARS-CoV-2抗体的中和活性。柳叶刀风湿病。3,e829–e831(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rabaan, A. A. et al., Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines (Basel) 9, (2021).Brodin, P. Immune determinants of COVID-19 disease presentation and severity.

Rabaan,A.A.等人,《炎性细胞因子在新型冠状病毒肺炎患者中的作用:分子机制,免疫功能,免疫病理学和免疫调节药物对抗细胞因子风暴的综述》。疫苗(巴塞尔)9,(2021)。Brodin,P。COVID-19疾病表现和严重程度的免疫决定因素。

Nat. Med. 27, 28–33 (2021).Article .

《自然医学》27、28-33(2021)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Catanzaro, M. et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal. Transduct. Target. Ther. 5, 84 (2020).Article

Catanzaro,M.等人,《新型冠状病毒肺炎的免疫反应:通过靶向SARS-CoV-2引发的途径来应对药理学挑战》。信号。Transduct公司。目标。。5,84(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).Article

Chen,G.等人。2019年严重和中度冠状病毒病的临床和免疫学特征。J、 临床。投资。1302620–2629(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).Article

Huang,C.等人。中国武汉2019年新型冠状病毒感染患者的临床特征。柳叶刀395497-506(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bovijn, J., Lindgren, C. M. & Holmes, M. V. Genetic variants mimicking therapeutic inhibition of IL-6 receptor signaling and risk of COVID-19. Lancet Rheumatol. 2, e658–e659 (2020).Article

Bovijn,J.,Lindgren,C.M。&Holmes,M.V。模拟IL-6受体信号传导的治疗性抑制和COVID-19风险的遗传变异。柳叶刀风湿病。2,e658–e659(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lawlor, D. A. et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).Article

Lawlor,D.A.等人,《孟德尔随机化:使用基因作为流行病学因果推断的工具》。《统计医学》271133-1163(2008)。文章

MathSciNet

MathSciNet

PubMed

PubMed

Google Scholar

谷歌学者

Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–98 (2014).Article

。嗯,摩尔·吉内特。23,R89–98(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanderson, E. et al., Mendelian randomization. Nat. Rev. Methods Primers 2, (2022).Initiative, C. H. G. Mapping the human genetic architecture of COVID-19. Nature 600, 472–477 (2021).Article

Sanderson,E。等人,孟德尔随机化。Nat.Rev.Methods引物2,(2022)。倡议,C.H.G。绘制COVID-19的人类遗传结构。自然600472-477(2021)。文章

Google Scholar

谷歌学者

Chen, X. et al. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a mendelian randomization study. J. Transl Med. 20, 216 (2022).Article

Chen,X.等人。体力活动、休闲久坐行为与新型冠状病毒风险之间的因果关系:孟德尔随机研究。J、 Transl Med.20216(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baranova, A. et al. Causal associations of tea intake with COVID-19 infection and severity. Front. Nutr. 9, 1005466 (2022).Article

Baranova,A。等人。茶叶摄入量与新型冠状病毒感染和严重程度的因果关系。正面。营养。91005466(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ma, L. et al. Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Comput. Biol. Chem. 95, 107599 (2021).Article

Ma,L.等人。生物信息学在抗击COVID-19大流行中的应用综合分析。计算机。生物化学。95107599(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bu, D. et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 49, W317–W325 (2021).Article

Bu,D。等人。KOBAS-i:基因富集分析的生物功能的智能优先排序和探索性可视化。核酸研究49,W317–W325(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–995 (2013).Article

Barrett,T。等。NCBI GEO:功能基因组学数据集档案–更新。核酸研究41,D991-995(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chakraborty, C. et al. Understanding Gene expression and transcriptome profiling of COVID-19: an Initiative towards the mapping of protective immunity genes against SARS-CoV-2 infection. Front. Immunol. 12, 724936 (2021).Article

Chakraborty,C.等人,《了解新型冠状病毒19的基因表达和转录组分析:针对SARS-CoV-2感染的保护性免疫基因定位的倡议》。正面。免疫。12724936(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vosa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).Article

大规模的顺式和反式eQTL分析确定了数千个调节血液基因表达的基因位点和多基因评分。纳特·吉内特。531300–1310(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).Article

Sollis,E.等人,《NHGRI-EBI GWAS目录:知识库和沉积资源》。核酸研究51,D977–D985(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article

Ritchie,M.E.等人Limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article

Zhou,Y。et al。Metascape为系统级数据集的分析提供了面向生物学家的资源。国家公社。101523(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data mendelian randomization. Stat. Med. 36, 1783–1802 (2017).Article

Bowden,J.等人。双样本汇总数据孟德尔随机化中多效性研究的框架。《统计医学》361783-1802(2017)。文章

ADS

广告

MathSciNet

MathSciNet

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).Article

Bowden,J.,Davey-Smith,G。&Burgess,S。孟德尔随机化与无效工具:通过Egger回归进行效应估计和偏倚检测。国际流行病学杂志。44512-525(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).Article

Bowden,J.,Davey-Smith,G.,Haycock,P.C。&Burgess,S。使用加权中值估计量在孟德尔随机化中使用一些无效工具进行一致估计。基因。。40304-314(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Makowski, L., Chaib, M., Rathmell, J. C. & Immunometabolism From basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).Article

Makowski,L.,Chaib,M.,Rathmell,J.C。&免疫代谢从基本机制到翻译。免疫。第295版,第5-14页(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).Article

Hanzelmann,S.,Castelo,R。&Guinney,J。GSVA:微阵列和RNA-seq数据的基因组变异分析。BMC生物信息。14,7(2013)。文章

Google Scholar

谷歌学者

Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).Article

Mootha,V.K.等人,参与氧化磷酸化的PGC-1α反应基因在人类糖尿病中协同下调。纳特·吉内特。34267-273(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Luo, W. et al. Targeting JAK-STAT signaling to Control Cytokine Release Syndrome in COVID-19. Trends Pharmacol. Sci. 41, 531–543 (2020).Article

Luo,W。等人。靶向JAK-STAT信号传导以控制COVID-19中的细胞因子释放综合征。趋势药理学。科学。41531-543(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Basile, M. S. et al. The PI3K/Akt/mTOR pathway: a potential pharmacological target in COVID-19. Drug Discov Today. 27, 848–856 (2022).Article

Basile,M.S.等人。PI3K/Akt/mTOR途径:新型冠状病毒肺炎的潜在药理学靶点。今天发现了毒品。27848-856(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Heinz, F. X. & Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 6, 104 (2021).Article

Heinz,F.X。&Stiasny,K。当前COVID-19疫苗的区别特征:抗原呈递和作用方式的已知和未知。NPJ疫苗。6104(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dong, J. et al. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Crit. Care. 25, 288 (2021).Article

Dong,J。等人。用于早期预测儿科重症监护中急性肾损伤(AKI)的机器学习模型。暴击。小心。25288(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jesenak, M. et al. Immune parameters and COVID-19 infection - associations with Clinical Severity and Disease Prognosis. Front. Cell. Infect. Microbiol. 10, 364 (2020).Article

Jesenak,M。等人。免疫参数和COVID-19感染-与临床严重程度和疾病预后的关系。正面。细胞。感染。微生物。10364(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Azkur, A. K. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75, 1564–1581 (2020).Article

Azkur,A.K.等人。对SARS-CoV-2的免疫应答和COVID-19免疫病理变化的机制。过敏751564-1581(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aquino, Y. et al. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature 621, 120–128 (2023).Article

Aquino,Y。等人。剖析SARS-CoV-2单细胞反应中的人群变异。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Henry, B. M. et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin. Chem. Lab. Med. 58, 1021–1028 (2020).Article

。临床。化学。实验室医学581021-1028(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y. et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev. 7, 1003–1011 (2020).Article

Liu,Y.等人。新型冠状病毒肺炎患者血浆中选择性细胞因子水平升高反映了病毒载量和肺损伤。纳特尔。科学。第71003–1011版(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, M. et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 22, 829–838 (2021).Article

Zheng,M。等人。TLR2感知SARS-CoV-2包膜蛋白产生炎性细胞因子。自然免疫。22829-838(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Villacampa, A. et al. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell. Commun. Signal. 22, 38 (2024).Article

Villacampa,A。等人。SARS-CoV-2 S蛋白激活NLRP3炎性体并解除内皮细胞和免疫细胞中凝血因子的调节。细胞。Commun公司。信号。22,38(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prasad, K. et al. Targeting hub genes and pathways of innate immune response in COVID-19: a network biology perspective. Int. J. Biol. Macromol. 163, 1–8 (2020).Article

Prasad,K.等人。针对新型冠状病毒肺炎先天免疫反应的中枢基因和途径:网络生物学观点。国际生物学杂志。。163,1-8(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Persson, J. et al. Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Mol. Immunol. 145, 17–26 (2022).Article

Persson,J.等人。基于全血中定量免疫相关基因表达的新型冠状病毒肺炎患者分层。分子免疫。145,17-26(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shojaei, M. et al. IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study. Front. Immunol. 13, 1060438 (2022).Article

Shojaei,M。等人。IFI27转录是COVID-19结局的早期预测因子,这是一项多队列观察性研究。正面。免疫。131060438(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, S. et al. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging (Albany NY). 13, 9265–9276 (2021).Article

Li,S.等人根据疾病严重程度在COVID-19患者中差异表达免疫应答基因。老龄化(纽约州奥尔巴尼)。139265–9276(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Moody, D. B. & Suliman, S. CD1: From Molecules to Diseases. F1000Res. 6, 1909 (2017).Chen, X. et al. CD1C is associated with breast cancer prognosis and immune infiltrates. BMC Cancer. 23, 129 (2023).Article

Moody,D.B。和Suliman,S.CD1:从分子到疾病。F1000Res。61909(2017)。Chen,X。等人。CD1C与乳腺癌预后和免疫浸润有关。BMC癌症。23129(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adams, E. J. Diverse antigen presentation by the Group 1 CD1 molecule, CD1c. Mol. Immunol. 55, 182–185 (2013).Article

Adams,E.J。第1组CD1分子CD1c的多种抗原呈递。分子免疫。55182-185(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sanchez-Cerrillo, I. et al. COVID-19 severity associates with pulmonary redistribution of CD1c + DCs and inflammatory transitional and nonclassical monocytes. J. Clin. Invest. 130, 6290–6300 (2020).Article

Sanchez-Cerrillo,I。等人,COVID-19严重程度与CD1c+ DC和炎性过渡性和非经典单核细胞的肺重新分布有关。J、 临床。投资。1306290–6300(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, K. P. H. et al. Circulating CD1c + myeloid dendritic cells are potential precursors to LCH lesion CD1a + CD207 + cells. Blood Adv. 4, 87–99 (2020).Article

Lim,K.P.H.等人,循环CD1c++骨髓树突状细胞是LCH损伤CD1a++CD207+细胞的潜在前体。《血液杂志》第4期,第87-99页(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yuan, X. et al. Mesenchymal stem cell therapy induces FLT3L and CD1c(+) dendritic cells in systemic lupus erythematosus patients. Nat. Commun. 10, 2498 (2019).Article

Yuan,X。等。间充质干细胞疗法在系统性红斑狼疮患者中诱导FLT3L和CD1c(+)树突状细胞。国家公社。102498(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lopes, A. H. et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell. Commun. Signal. 18, 141 (2020).Article

Lopes,A.H.等人。角叉菜胶诱导巨噬细胞产生细胞因子的分子基础。细胞。Commun公司。信号。18141(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).Article

Garlanda,C.,Dinarello,C.A。和Mantovani,A。白细胞介素-1家族:回到未来。免疫力391003-1018(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1beta release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).Article

Karmakar,M。等人,N-GSDMD向中性粒细胞器的运输促进IL-1β的释放,而不依赖于质膜孔和pyroptosis。国家公社。112212(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGinley, A. M. et al., Interleukin-17A Serves a Priming Role in Autoimmunity by Recruiting IL-1beta-Producing Myeloid Cells that Promote Pathogenic T Cells. Immunity. 52, 342–356 e346 (2020).Larsen, S. B., Cowley, C. J. & Fuchs, E. Epithelial cells: liaisons of immunity. Curr. Opin.

McGinley,A.M.等人,白细胞介素-17A通过募集产生IL-1β的骨髓细胞来促进致病性T细胞,从而在自身免疫中发挥启动作用。豁免。。Larsen,S.B.,Cowley,C.J。和Fuchs,E。上皮细胞:免疫联系。货币。奥平。

Immunol. 62, 45–53 (2020).Article .

免疫。62,45-53(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLoed, A. G. et al. Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against Lung Cancer. Cell. Rep. 16, 120–132 (2016).Article

McLoed,A.G.等人。中性粒细胞衍生的IL-1β损害了NF-κB抑制剂对肺癌的疗效。细胞。代表16120–132(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, G. et al. A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells. Inflamm. Res. 67, 539–551 (2018).Article

Yi,G。等人。一项大型肺基因表达研究,确定IL1B是COPD气道上皮细胞气道炎症的新参与者。发炎。第67539-551号决议(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, Y. et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell. Res. 31, 818–820 (2021).Article

Zhao,Y。等人。SARS-CoV-2尖峰蛋白与TLR41相互作用并激活TLR41。细胞。第31818-820号决议(2021年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Livanos, A. E. et al. Intestinal host response to SARS-CoV-2 infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology 160, 2435–2450e2434 (2021).Article

Livanos,A.E.等人。肠道宿主对SARS-CoV-2感染的反应和胃肠道症状患者的COVID-19结果。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brufsky, A., Marti, J. L. G., Nasrazadani, A. & Lotze, M. T. Boning up: amino-bisphophonates as immunostimulants and endosomal disruptors of dendritic cell in SARS-CoV-2 infection. J. Transl Med. 18, 261 (2020).Article

Brufsky,A.,Marti,J.L.G.,Nasrazadani,A。&Lotze,M.T。Boning-up:氨基双膦酸盐作为SARS-CoV-2感染中树突状细胞的免疫刺激剂和内体破坏剂。J、 Transl Med.18261(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grant, R. A. et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 590, 635–641 (2021).Article

。自然590635-641(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fatoba, A. J. et al. Immunoinformatics prediction of overlapping CD8(+) T-cell, IFN-gamma and IL-4 inducer CD4(+) T-cell and linear B-cell epitopes based vaccines against COVID-19 (SARS-CoV-2). Vaccine 39, 1111–1121 (2021).Article

Fatoba,A.J.等人。重叠CD8(+)T细胞,IFN-γ和IL-4诱导剂CD4(+)T细胞和基于线性B细胞表位的抗COVID-19疫苗(SARS-CoV-2)的免疫信息学预测。疫苗391111-1121(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Silva, M. J. A., Ribeiro, L. R., Lima, K. V. B. & Lima, L. Adaptive immunity to SARS-CoV-2 infection: a systematic review. Front. Immunol. 13, 1001198 (2022).Article

Silva,M.J.A.,Ribeiro,L.R.,Lima,K.V.B。&Lima,L。对SARS-CoV-2感染的适应性免疫:系统综述。正面。免疫。131001198(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136 (2023).Article

HLA的一个常见等位基因与无症状SARS-CoV-2感染有关。自然620128-136(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Laurent, P. et al. Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci. Immunol. 7, eadd4906 (2022).Article

Laurent,P。等人。通过pDC检测SARS-CoV-2及其随后产生的IFN-1有助于在COVID-19期间巨噬细胞诱导的细胞因子风暴。科学。免疫。7,eadd4906(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, R. et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 53, 864–877e865 (2020).Article

Zhou,R。等人。急性SARS-CoV-2感染损害树突状细胞和T细胞反应。免疫力53864–877e865(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pulugulla, S. H. et al. A combined computational and experimental approach reveals the structure of a C/EBPbeta-Spi1 interaction required for IL1B gene transcription. J. Biol. Chem. 293, 19942–19956 (2018).Article

Pulugulla,S.H。等人。一种结合计算和实验的方法揭示了IL1B基因转录所需的C/EBPbeta-Spi1相互作用的结构。J、 生物。化学。29319942-19956(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Delgado, I. et al. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat. Commun. 12, 3086 (2021).Article

Delgado,I。等人。通过Meis转录因子控制小鼠肢体起始和前后模式。国家公社。123086(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Massoni-Badosa, R. et al. An atlas of cells in the human tonsil. Immunity 57, 379–399e318 (2024).Article

Massoni Badosa,R.等人,《人类扁桃体细胞图谱》。免疫力57379–399e318(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Georgi, J. A. et al. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia 38, 281–290 (2024).Article

Georgi,J.A。等人。CEBPA突变亚组对成人AML的预后影响。白血病38281-290(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gong, Z. T. et al. Nicorandil-pretreated mesenchymal stem cell-derived exosomes facilitate Cardiac Repair after myocardial infarction via promoting macrophage M2 polarization by targeting miR-125a-5p/TRAF6/IRF5 signaling pathway. Int. J. Nanomed. 19, 2005–2024 (2024).Article

Gong,Z.T.等人,尼可地尔预处理的间充质干细胞衍生的外泌体通过靶向miR-125a-5p/TRAF6/IRF5信号通路促进巨噬细胞M2极化,从而促进心肌梗死后的心脏修复。内景J.Nanomed。2005年至2024年(2024年)。文章

Google Scholar

谷歌学者

Lee, Y. S. et al. IL-32gamma suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J. Allergy Clin. Immunol. 146, 156–168 (2020).Article

Lee,Y。S。等人。IL-32gamma通过核因子κB的失活抑制miR-205的表达来抑制特应性皮炎。J。过敏临床。免疫。146156-168(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Z. et al. Bioinformatic analyses hinted at augmented T helper 17 cell differentiation and cytokine response as the central mechanism of COVID-19-associated Guillain-Barre syndrome. Cell. Prolif. 54, e13024 (2021).Article

Li,Z。等人。生物信息学分析暗示增强的T辅助细胞17分化和细胞因子反应是COVID-19相关格林-巴利综合征的中心机制。细胞。Prolif公司。54,e13024(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download references

下载参考资料

Acknowledgements

致谢

We are deeply grateful for the support from the Institute of Biotechnology, Academy of Military Medical Sciences, in providing essential COVID-19-related background information. We thank all the participants and consortiums for their contributions to the original GWASs.FundingThis work was supported by the Science and Technology Project of Traditional Chinese Medicine of Zhejiang Province (2023ZL729, 2023ZL328) and the Scientific Research Fund of Zhejiang Provincial Education Department (202251034).Author informationAuthor notesRui Zhu and Yaping Zhao contributed equally to this work.Authors and AffiliationsSchool of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, ChinaRui ZhuDepartment of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, ChinaYingli TaoDepartment of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, ChinaYaping ZhaoSchool of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, ChinaRui ZhuAnimal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, ChinaHui YinSchool of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, ChinaLinfeng Shu & Yuhang MaAuthorsRui ZhuView author publicationsYou can also search for this author in.

我们非常感谢军事医学科学院生物技术研究所提供的重要COVID-19相关背景信息的支持。我们感谢所有参与者和财团对原始GWAS的贡献。资助这项工作得到了浙江省中医药科技项目(2023ZL7292023ZL328)和浙江省教育厅科研基金(202251034)的支持。作者信息作者注朱瑞丽和赵亚萍对这项工作做出了同样的贡献。作者和所属南京中医药大学药学院,南京,210023,朱瑞瑞浙江省同德医院生殖免疫学系,杭州,310012,陶英利浙江中医药大学附属绍兴中医院药学系,绍兴,312000,浙江中医药大学赵亚平药学院,杭州,310053,北京农业大学中国瑞转医学院,北京,102206,沈阳药科大学中国惠阴中医学院,沈阳,110016,中国林峰舒和余杭MaAuthorsRui ZhuView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarYaping ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarYaping ZhaoView作者出版物您也可以在

PubMed Google ScholarHui YinView author publicationsYou can also search for this author in

PubMed Google ScholarHui YinView作者出版物您也可以在

PubMed Google ScholarLinfeng ShuView author publicationsYou can also search for this author in

PubMed Google ScholarLinfeng ShuView作者出版物您也可以在

PubMed Google ScholarYuhang MaView author publicationsYou can also search for this author in

PubMed Google ScholarYuhang MaView作者出版物您也可以在

PubMed Google ScholarYingli TaoView author publicationsYou can also search for this author in

PubMed Google ScholarYingli TaoView作者出版物您也可以在

PubMed Google ScholarContributionsYingli Tao and Rui Zhu were responsible for designing and supervising the study. Yaping Zhao and Hui Yin extracted raw GWAS summary data from public databases. Linfeng Shu and Yuhang Ma participated in the data analysis and interpretation. Rui Zhu, Yaping Zhao, and Hui Yin contributed to the writing and revision of the manuscript.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献陶英利和朱睿负责设计和监督这项研究。赵亚平和尹辉从公共数据库中提取了原始GWAS摘要数据。舒林峰和马余杭参与了数据分析和解释。朱睿,赵亚平和尹辉为手稿的撰写和修订做出了贡献。。

Yingli Tao.Ethics declarations

陶英利。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Supplementary Material 5Rights and permissions.

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1补充材料2补充材料3补充材料4补充材料5权利和权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhu, R., Zhao, Y., Yin, H. et al. Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis.

转载和许可本文引用本文Zhu,R.,Zhao,Y.,Yin,H。等人。通过综合生物信息学分析鉴定COVID-19中涉及的免疫相关中枢基因和潜在分子机制。

Sci Rep 14, 29964 (2024). https://doi.org/10.1038/s41598-024-81803-2Download citationReceived: 08 July 2024Accepted: 29 November 2024Published: 02 December 2024DOI: https://doi.org/10.1038/s41598-024-81803-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1429964(2024)。https://doi.org/10.1038/s41598-024-81803-2Download引文接收日期:2024年7月8日接受日期:2024年11月29日发布日期:2024年12月2日OI:https://doi.org/10.1038/s41598-024-81803-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsCOVID-19Immune-related genesBioinformaticsMendelian randomizationImmune infiltrationPathway analysis

关键词Vid-19免疫相关基因信息孟德尔随机化免疫浸润途径分析